Jan Trienes graduates cum laude on de-identification of Dutch medical records

Comparing Rule-based, Feature-based and Deep Neural Methods for De-identification of Dutch Medical Records

by Jan Trienes

Unstructured information in electronic health records provide an invaluable resource for medical research. To protect the confidentiality of patients and to conform to privacy regulations, de-identification methods automatically remove personally identifying information from these medical records. However, due to the unavailability of labeled data, most existing research is constrained to English medical text and little is known about the generalizability of de-identification methods across languages and domains. In this study, we construct a novel dataset consisting of the medical records of 1260 patients among three domains of Dutch healthcare. We test the generalizability across languages and domains for three de-identification methods. Our experiments show that an existing rule-based method specifically developed for the Dutch language fails to generalize to this new data, and that a state-of-the-art neural architecture outperforms rule-based and feature-based methods when testing on new domains even when limited training data is available.

Leave a Reply

Your email address will not be published. Required fields are marked *