PhD candidate vacancy: Transfer Learning for Federated Search

We are looking for a PhD candidate to join the Data Science group at Radboud University for an exciting new project on transfer learning for language modelling with an application for federated search. Transfer learning learns general purpose language models from huge datasets, such as web crawls, and then trains the models further on smaller datasets for a specific task. Transfer learning in NLP has successfully used pre-trained word-embeddings for several tasks. Although the success of word embeddings on search tasks has been limited, recently pre-trained general purpose language representations such as BERT and ELMo have been successful on several search tasks, including question answering tasks and conversational search tasks. Resource descriptions in federated search consist of samples of the full data that are sparser than full resource representations. This raises the question of how to infer vocabulary that is missing from the sampled data. A promising approach comes from transfer learning from pre-trained language representations. An open question is how to effectively and efficiently apply those pre-trained representations and how to adapt them to the domain of federated search. In this project, you will use pre-trained language models, and further train those models for a (federated) search task. You will evaluate the quality of those models as part of international evaluation conferences like the Text Retrieval Conference (TREC) and the Conference and Labs of the Evaluation Forum (CLEF).

[more information]