Somto Enendu graduates cum laude on labelling document images

Predicting Semantic Labels of Text Regions in Heterogeneous Document Images

by Somtochukwu Enendu

This MSc thesis describes the use of sequence labeling methods in predicting the semantic labels of extracted text regions of heterogeneous electronic documents, by utilizing features related to each semantic label. In this study, we construct a novel dataset consisting of real world documents from multiple domains. We test the performance of the methods on the dataset and offer a novel investigation into the influence of textual features on performance across multiple domains. The results of the experiments show that the Conditional Random Field method is robust, outperforming the neural network when limited training data is available. Regarding generalizability, our experiments show that the inclusion of textual features does not guarantee performance improvements.

[download pdf]

Leave a Reply

Your email address will not be published. Required fields are marked *