Challenges of index exchange for search engine interoperability

by Djoerd Hiemstra, Gijs Hendriksen, Chris Kamphuis, and Arjen de Vries

We discuss tokenization challenges that arise when sharing inverted file indexes to support interoperability between search engines, in particular: How to tokenize queries such that the tokens are consistent with the tokens in the shared index? We discuss various solutions and present preliminary experimental results that show when the problem occurs and how it can be mitigated by standardizing on a simple, generic tokenizer for all shared indexes.

To be presented at the 5th International Open Search Symposium #OSSYM2023 at CERN, Geneva, Switzerland on 4-6 October 2023

[download pdf]

Impact and development of an Open Web Index for open web search

by Michael Granitzer, Stefan Voigt, Noor Afshan Fathima, Martin Golasowski, Christian Guetl, Tobias Hecking, Gijs Hendriksen, Djoerd Hiemstra, Jan Martinovič, Jelena Mitrović, Izidor Mlakar, Stavros Moiras, Alexander Nussbaumer, Per Öster, Martin Potthast, Marjana Senčar Srdič, Sharikadze Megi, Kateřina Slaninová, Benno Stein, Arjen P. de Vries, Vít Vondrák, Andreas Wagner, Saber Zerhoudi

Web search is a crucial technology for the digital economy. Dominated by a few gatekeepers focused on commercial success, however, web publishers have to optimize their content for these gatekeepers, resulting in a closed ecosystem of search engines as well as the risk of publishers sacrificing quality. To encourage an open search ecosystem and offer users genuine choice among alternative search engines, we propose the development of an Open Web Index (OWI). We outline six core principles for developing and maintaining an open index, based on open data principles, legal compliance, and collaborative technology development. The combination of an open index with what we call declarative search engines will facilitate the development of vertical search engines and innovative web data products (including, e.g., large language models), enabling a fair and open information space. This framework underpins the EU-funded project OpenWebSearch.EU, marking the first step towards realizing an Open Web Index.

Published by the Journal of the American Society of Information Science and Technology (JASIST)

[download pdf]

Fausto de Lang graduates on tokenization for information retrieval

An empirical study of the effect of vocabulary size for various tokenization strategies in passage retrieval performance.

by Fausto de Lang

Many interactions between the the fields of lexical retrieval and large language models still remain underexplored, in particular there is little research into the use of advanced language model tokenizers in combination with classical information retrieval mechanisms. This research looks into the effect of vocabulary size for various tokenization strategies in passage retrieval performance. It also provides an overview of the impact of the WordPiece, Byte-Pair Encoding and Unigram tokenization techniques on the MSMARCO passage retreival task. These techniques are explored in both re-trained tokenizers and in tokenizers trained from scratch. Based on three metrics this research has found the WordPiece tokenization technique is the best performing technique on the MSMARCO passage retrieval tasks. It has also found that a training vocabulary size of around 10,000 tokens is best in regards to Recall performance, while around 320,000 tokens shows the optimal Mean Reciprocal Rank and Normalized Discounted Cumulative Gain scores. Most importantly, the optimum at a relatively small vocabulary size suggests that shorter subwords can benefit the indexing and searching process (up to a certain point). This is a meaningful result since it means that many applications where (re-)trained tokenizers are used in information retrieval capacity might be improved by tweaking the vocabulary size during training. This research has mainly focused on building a bridge between (re-)trainable tokenizers and information retrieval software, while reporting on interesting tunable parameters. Finally, this research recommends researchers to build their
own tokenizer from scratch since it forces one to look at the configuration of the underlying processing steps.

Defended on 27 June 2023

Git repository at: gitlab.com/tokenization/Lucene

UNFair: Search Engine Manipulation, Undetectable by Amortized Inequity

by Tim de Jonge and Djoerd Hiemstra

Modern society increasingly relies on Information Retrieval systems to answer various information needs. Since this impacts society in many ways, there has been a great deal of work to ensure the fairness of these systems, and to prevent societal harms. There is a prevalent risk of failing to model the entire system, where nefarious actors can produce harm outside the scope of fairness metrics. We demonstrate the practical possibility of this risk through UNFair, a ranking system that achieves performance and measured fairness competitive with current state-of-the-art, while simultaneously being manipulative in setup. UNFair demonstrates how adhering to a fairness metric, Amortized Equity, can be insufficient to prevent Search Engine Manipulation. This possibility of manipulation bypassing a fairness metric discourages imposing a fairness metric ahead of time, and motivates instead a more holistic approach to fairness assessments.

To be presented at the ACM Conference on Fairness, Accountability, and Transparency (FAccT 2023) on 12-15 June in Chicago, USA.

[download pdf]

Cross-Market Product-Related Question Answering

by Negin Ghasemi, Mohammad Aliannejadi, Hamed Bonab, Evangelos Kanoulas, Arjen de Vries, James Allan, and Djoerd Hiemstra

Online shops such as Amazon, eBay, and Etsy continue to expand their presence in multiple countries, creating new resource-scarce marketplaces with thousands of items. We consider a marketplace to be resource-scarce when only limited user-generated data is available about the products (e.g., ratings, reviews, and product-related questions). In such a marketplace, an information retrieval system is less likely to help users find answers to their questions about the products. As a result, questions posted online may go unanswered for extended periods. This study investigates the impact of using available data in a resource-rich marketplace to answer new questions in a resource-scarce marketplace, a new problem we call cross-market question answering. To study this problem’s potential impact, we collect and annotate a new dataset, XMarket-QA, from Amazon’s UK (resource-scarce) and US (resource-rich) local marketplaces. We conduct a data analysis to understand the scope of the cross-market question-answering task. This analysis shows a temporal gap of almost one year between the first question answered in the UK marketplace and the US marketplace. Also, it shows that the first question about a product is posted in the UK marketplace only when 28 questions, on average, have already been answered about the same product in the US marketplace. Human annotations demonstrate that, on average, 65% of the questions in the UK marketplace can be answered within the US marketplace, supporting the concept of cross-market question answering. Inspired by these findings, we develop a new method, CMJim, which utilizes product similarities across marketplaces in the training phase for retrieving answers from the resource-rich marketplace that can be used to answer a question in the resource-scarce marketplace. Our evaluations show CMJim’s significant improvement compared to competitive baselines.

To be presented at the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2023) on July 23-27 in Taipei, Taiwan.

[download pdf]

#OSSYM2023 at CERN

The Open Search Symposium #OSSYM2023 brings together the Open Internet Search community in Europe for the fifth time this year. The interactive conference provides a forum to discuss and further develop the ideas and concepts of open internet search. Participants include researchers, data centres, libraries, policy makers, legal and ethical experts, and society.

#OSSYM2023 takes place at CERN, Geneva, Switzerland on 4-6 October 2023 organized by the Open Search Foundation. The Call for Papers ends 31 May 2023.

More info at: https://opensearchfoundation.org/5th-international-open-search-symposium-ossym2023/

Open Web Search project kicked off

Today, we kick-off our new EU project OpenWebSearch.eu. In the project, we develop a new architecture for search engines where many parts of the system will be decentralized. The key idea is to separate index construction from the search engines themselves, where the most expensive step to create index shards can be carried out on large clusters while the search engine itself can be operated locally.

We also envision an Open-Web-Search Engine Hub, where companies and individuals can share their specifications of search engines and pre-computed, regularly updated search indices. We think of this as a search engine mash-up, that would enable a new future of human-centric search without privacy concerns.

More information at: https://openwebsearch.eu/partners/radboud-university/

Open Search Symposium 2022

10-12 October 202 at CERN

The Open Search Symposium series (#OSSYM) provides a forum to discuss and advance the ideas and concepts of Open Internet search in Europe. This year’s #OSSYM2022 takes place at CERN and online from 10-12 October 2022. The programme is great with for instance on Monday a keynote from Tomáš “Word2Vec” Mikolov, on Tuesday a track with alternative search engines including Raphael Auphan (the CEO of Qwant), Isabel Claus (founder of the B-to-B engine thinkers.ai), and Joseph Cullhead (alexandria.org, a Swedish nonprofit organization with a low budget search engine). Wednesday has a panel discussion about the ethics of search.

[Register now via CERN]