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tThis paper des
ribes the oÆ
ial runs of the Twenty-One group for TREC-8. The Twenty-One groupparti
ipated in the Ad-ho
, CLIR, Adaptive Filtering and SDR tra
ks. The main fo
us of our experimentsis the development and evaluation of retrieval methods that are motivated by natural language pro
essingte
hniques. The following new te
hniques are introdu
ed in this paper. In the Ad-Ho
 and CLIR taskswe experimented with automati
 sense disambiguation followed by query expansion or translation. Weused a 
ombination of thesaurial and 
orpus information for the disambiguation pro
ess. We 
ontinuedresear
h on CLIR te
hniques whi
h exploit the target 
orpus for an impli
it disambiguation, by importingthe translation probabilities into the probabilisti
 term-weighting framework. In �ltering we extendedthe the use of language models for do
ument ranking with a relevan
e feedba
k algorithm for query termreweighting.1 Introdu
tionTwenty-One1 is a proje
t funded by the EU Telemati
s programme, se
tor Information Engineering. Theproje
t subtitle is \Development of a Multimedia Information Transa
tion and Dissemination Tool". Twenty-One started early 1996 and was 
ompleted in June 1999. Be
ause the TREC ad-ho
 and CLIR tasks �ttedour needs to evaluate the system on the aspe
ts of monolingual and 
ross-language retrieval performan
e,TNO-TPD and University of Twente parti
ipated under the 
ag of \Twenty-One" in TREC-6 and TREC-7.Be
ause the 
ooperation is 
ontinued in other proje
ts: Olive and Druid we have de
ided to 
ontinue ourTREC parti
ipation as \Twenty-One". For the Ad-Ho
, CLIR and SDR tasks, we used the TNO ve
torspa
e engine. The engine supports several term-weighting s
hemes. The prin
ipal term weighting s
heme weused is based on statisti
al language models (LM). Cf. [10℄ and the appendix for a more detailed des
riptionof the baseline system.2 The Ad Ho
 task2.1 Expansion of title queriesFor TREC-8 we de
ided to fo
us our experiments on title queries, be
ause they 
orrespond better to theaverage queries of 
urrent IR system users. For title queries, query expansion seems an obvious te
hnique toimprove retrieval e�e
tiveness. We have experimented with te
hniques to use a lexi
al thesaurus for queryexpansion. The thesaurus is part of the VLIS lexi
al database of Van Dale publishers. Query expansioninvolves a series of steps:1. POS tagging and lemmatization of ea
h query word1Information about Twenty-one, Olive and DRUID is available at http://dis.tpd.tno.nl/1



2. Lookup of the lemma in the VLIS lexi
al database. The result is a \Lexi
al Entity" (LE), whi
h is areferen
e to a 
on
ept des
ription in the VLIS database3. Often the previous step results in a list of 
on
epts, espe
ially in the 
ase of homonyms. In these 
asessome form of disambiguation is needed.4. Expansion of the 
on
epts with related 
on
epts, e.g. synonyms and/or hyponyms5. Realisation of the expansion 
on
epts in English, using the VLIS translation relationsUnfortunately the te
hnique did not yield 
onvin
ing results on the TREC-7 topi
 set, so we de
idedto base the oÆ
ial TREC-8 runs on our TREC-7 system, without any of the newly developed te
hniques.However, these te
hniques were used in one of the oÆ
ial TREC-8 CLIR runs.We will dis
uss one potential reason for the failure of query expansion te
hniques for title queries: Oneof the problems in developing a system tuned for title-only runs is the fa
t that the judgments for test
olle
tions are based on the full topi
s. The title �eld is a two or three word summary of the topi
 whi
h is
omposed after the topi
 has been developed. Therefore su
h a title will always 
over only a limited set oftopi
 aspe
ts. If di�erent persons would interpret the title query, they would have di�erent interpretationsof the relevan
e of retrieved do
uments. That is be
ause title queries are ne
essarily under-spe
i�ed. Butbe
ause the judgments have been done with the full topi
 des
ription in mind (in
luding detailed 
onstraintswhen a do
ument is - or is not - relevant) it is hard to devise a query expansion method whi
h will improveaverage pre
ision of a title run, be
ause it is hard to predi
t whi
h query 
onstraints are des
ribed in thedes
ription and narrative se
tions of the topi
.2.2 Experimental setup and resultsFor the oÆ
ial runs in the ad-ho
 task we eventually re-used our TREC-7 system, be
ause the experimentalquery expansion systems s
ored signi�
antly worse on the TREC-7 test 
olle
tion. The TNO ve
tor spa
eengine was 
on�gured to use LM weighting using an �i of 0.15 and standard Porter stemming. Stop-wordswere removed from the do
uments, in
luding words that are frequent in previous TREC topi
s like relevantand do
ument. Queries were generated automati
ally from the full topi
s (title, des
ription and narrative)using the same pro
edure as used for indexing.The results of our oÆ
ial runs in the Ad Ho
 tasks are given in table 1. We submitted 3 oÆ
ial runs,using either only the title or both the title and des
ription �elds. We 
ompared a baseline run with aPseudo Relevan
e Feedba
k(PRF) run. After an initial retrieval run, the top 200 of the weighted indexterms extra
ted from a 
on
atenation of the top 3 do
uments were added to the query with a ratio of 20 : 3,i.e. the weight of the added terms was multiplied by 3=20 before adding. These parameters were determinedempiri
ally by experimenting with the English topi
s of the TREC-6 CLIR tra
k.run-name topi
 �elds mode AVPtno8d3 t+d PRF 0.2921tno8d4 t+d base 0.2778tno8t2 t base 0.2423tno8t3 t PRF 0.2755Table 1: Ad Ho
 results3 Cross Language Information Retrieval (CLIR)3.1 Introdu
tionLike in previous years, our CLIR approa
h is based on query translation using bilingual di
tionaries. ATwenty-One 
ross-lingual run 
onsists of three steps:



1. Translate the topi
s in the three other languages (we used the English topi
s as sour
e)2. Perform 4 parallel runs on the sub-
olle
tions, with the translated topi
s3. Merge the 4 runs into a �nal result �leUnlike the Ad Ho
 task where we used Porter stemming, we used morphologi
al stemming based on theXelda tools of XRCE Grenoble for all languages 2. We have some indi
ations that the fa
t that the stemmeronly removes in
e
tional aÆxes, results in redu
ed e�e
tiveness. Experiments with a derivational version areplanned. For German we experimented with several strategies to deal with 
ompounds, whi
h were initiallydeveloped for Dut
h [16℄. We eventually used a non-optimal strategy (i.e. the strategy whi
h repla
es a
ompound by its parts) be
ause the optimal strategy ( just add 
ompound parts as index terms) interferedwith the merging strategy (retrieval status values (RSVs) are not 
ompatible). All CLIR runs used the fuzzyexpansion pro
edure as des
ribed in [10℄ to 
at
h spelling variants of proper nouns and typos.3.2 Translation strategiesQuery translation in Twenty-One is based on the VLIS lexi
al database developed by Van Dale Lexi
ographyfor translations into German and Fren
h and on Systran for the translation from English into Italian. We usedthree di�erent strategies for sele
ting translations from the VLIS database: di
tionary preferred, boolean anddisambiguation. The di
tionary preferred and boolean strategies were also used last year, the disambiguationstrategy was developed for this year's parti
ipation.3.2.1 Di
tionary preferredIn the di
tionary preferred translation strategy, the sele
tion of translations is based on the number ofo

urren
es of a 
ertain translation in the di
tionary. Some lemmas have identi
al translations for di�erentsenses. If this is the 
ase, this translation is sele
ted. If no translation o

urs more than on
e, the �rsttranslation is 
hosen by default.3.2.2 BooleanFor the boolean strategy, translations are weighted based on the number of o

urren
es in the di
tionary.If a translation o

urs in the di
tionary under three senses we assign it a weight that is three times ashigh. As Dut
h serves as an interlingua, translation 
an be 
arried out via several Dut
h pivot lemmas.This possibly generates even more o

urren
es of the same translation. The impli
it assumption made byweighting translations is that the number of o

urren
es generated from the di
tionary may serve as roughestimates of a
tual frequen
ies in parallel 
orpora. Ideally, if the domain is limited and parallel 
orpora onthe domain are available, weights should be estimated from a
tual data.3.2.3 Word sense disambiguationThis year we also experimented with a word sense disambiguation te
hnique for 
ross-language retrieval. Inthis te
hnique, di
tionary-based word senses are disambiguated using 
orpus information. First, the originalquery is used for monolingual retrieval on the TREC ad-ho
 
orpus. All terms in the top N do
umentsprodu
ed by this run are saved. Subsequently, the LEs and all lexi
al realisations of query terms are lookedup in the VLIS database. The semanti
 relations de�ned in VLIS are used to look up synonym, hyponymand hyperonym LEs of ea
h di�erent sense of a query term and their lexi
al realisations. In this way wegather a stru
tured group of words asso
iated with ea
h parti
ular sense of a query term. These groups arefurther expanded using words from example senten
es whi
h are also in
luded in the database.The groups of words for ea
h possible sense of a query term are subsequently 
ompared with the termsfrom the monolingual retrieval run and \eviden
e" for ea
h sense is 
omputed based on the overlap betweenthe two sets of terms. The sense for whi
h the most eviden
e is found is sele
ted. If no eviden
e is found atall or all senses s
ore equally, the �rst sense is sele
ted by default.2In TREC-7 we relied on the Porter stemmer for Italian, developed at ETH



LEs hyperonym relations synonym relations hyponym relationsbank 
on
ern undertaking business enterprise house institute banker deposit mortgage loan tradebank rise elevation mound sandbank shoal aground stu
kpipe obje
t du
t funnel nozzle tube supply drain eusta
hianpipe toba

o pea
e 
lay water hookah opiumTable 2: example word groupsQuery translation is now fairly straightforward. The translations for the sele
ted word senses are lookedup in the VLIS database, if more than one translation is given for a parti
ular sense the boolean weightingstrategy is applied (
f. se
tion 3.2.2 above).We experimented with di�erent values of N for the initial monolingual retrieval run, 20 turned out tobe the best 
hoi
e. We also experimented with re-weighting words asso
iated with a parti
ular word sensebased on their semanti
 relation to the original term, e.g. assign hyponyms a higher weight than hyperonyms.This experimentation provided some eviden
e that hyponyms are very important for sense determinationbut synonyms should possibly be ex
luded from the sense groups.3.3 Merging StrategiesThe merging strategies used for TREC-7 were a major performan
e bottlene
k, be
ause the merged runss
ored about 75-80% of the averaged average pre
ision of the 
onstituting runs. We 
ompared di�erentmerging strategies: i) naive merge: this means simply merging the result �les, assuming that the RSVs are\
ompatible" ii) Rank based merge: This te
hnique was applied by IBM at TREC-7 [6℄. The assumptionis that log(R) where R is the rank number has a linear relationship with the probability of relevan
e. Themethod estimates the linear model on training data (e.g. previous TREC 
olle
tion) e.g. by applyingregression and simply repla
es ea
h RSV in a run by the estimated probability of relevan
e whi
h is afun
tion of the rank. iii) 
ombination of eviden
e: just add the RSVs of method i and ii.The LM term weighting model is founded in probability theory, but the RSV's in the implementation inthe TNO ve
tor spa
e engine are not equivalent to the probability of relevan
e. The RSVs are a
tually alog of the probability of relevan
e o�set by a query dependent 
onstant and a 
olle
tion dependent 
onstant.For the naive merge method we divided the RSVs by the query length in order to 
ompensate for di�eren
esin query length between di�erent language versions of a topi
3 . The IBM merge strategy has the impli
itassumption that all topi
s have a similar probability fun
tion of R for all languages. It's obvious that thisassumption is not optimal, be
ause the distribution of relevant topi
s over the di�erent 
olle
tions is notequal, with the extreme 
ase that some topi
s only have relevant do
uments in 1 or 2 sub-
olle
tions. Our
ombined strategy simply sums the original RSV (whi
h is the log of the probability of relevan
e, normalizedon query length but o�set by some unknown 
onstant) with the estimated log of the probability of relevan
eat rank R. The method empiri
ally s
ored well, probably be
ause the IBM probability estimates help to mapto a normalized RSV. There is some theoreti
al justi�
ation be
ause the probability at rank R P (DjR) 
anbe used as an estimate for the a-priori probability that a do
ument is relevant P (D).3.4 ResultsTable 4 lists the results for our oÆ
ial runs. We dis
overed an error in the tno8gr merged run, it did
ontain no Fren
h do
uments. The tables list the results for the �xed tno8gr run. As a baseline we in
ludedtno8mx, a run whi
h is based on a merge of 4 monolingual runs. We hoped to improve the pool with thisrun, in order to enable a better evaluation of the monolingual and bilingual intermediate runs. The bestresult is a
hieved by tno8gr-�xed the boolean run. The table also lists the results of the other mergingalternatives. From our preliminary analysis we 
on
lude that for the xlingual runs the naive s
ore basedmerging strategy performs always better than the interleaved or rank based probability estimates strategy.The 
ombination of eviden
e approa
h adds some extra improvement in most 
ases. The rank based mergingstrategy is based on pre
ision at rank R estimates of the TREC7 tno7mx run. However, the TREC8 topi
3Only ne
essary for the merged monolingual run



run-name des
riptiontno8dpx di
tionary preferred translation of English query into 3 otherlanguages; fuzzy expansion of ea
h query termtno8gr probabilisti
ly interpreted boolean query of all possible translationsof the English queries into 3 other languages ; fuzzy expansiontno8dis disambiguation and translation of English queries into 3 otherlanguages; fuzzy expansion of ea
h translated termtno8mx referen
e run: merged run of four monolingual sear
hes; fuzzyexpansion of ea
h query termTable 3: des
ription of CLIR runsrun-name 
ombination of eviden
e interleave naive rank basedoÆ
ial unoÆ
ial unoÆ
ial unoÆ
ialtno8dpx 0.2523 0.2049 0.245 0.2214tno8gr-�xed 0.2789 0.2288 0.2763 0.2102tno8dis 0.2407 0.1905 0.2355 0.1906tno8mx 0.3226 0.3159 0.2763 0,2625Table 4: mean average pre
ision of CLIR runsset has mu
h less relevant English do
uments. This is probably the reason that the su

ess of a pure rankbased merging strategy is limited.When we look at the results of the 
onstituting runs (table 5), the results are more 
onsistent than inTREC-7. In TREC-7 the best performing intermediate runs were the di
tionary preferred runs, and theboolean run was the best merged run. In TREC-8 the boolean strategy has the best intermediate andmerged average pre
ision.If we 
ompare the 
ross-language runs with their monolingual 
ounterparts on a per-query basis, thereare a number of queries with very poor results for all three query translation strategies. We have identi�edsome of the fa
tors whi
h 
ontributed to this e�e
t.� The failure to re
ognize and translate phrases as a unit. This is espe
ially detrimental for the Englishto German runs where English phrases have to be translated into German single word 
ompounds, e.g."World War" ! "Weltkrieg", "armed for
es" ! "Bundeswehr" (query 61).� Tagging errors, e.g. "arms" (weapons) was tagged as the plural of "arm" (body part) by the Xeroxtagger (query 66).� Be
ause most words in query titles were 
apitalized, we de
ided to 
onvert them to lower 
ase toprevent the tagger from tagging all title words as proper nouns. This had the e�e
t that those titlewords that were a
tually proper nouns were not tagged 
orre
tly, e.g. the proper name "Turkey" wastranslated as "Truthuhn" and "dindon" (bird) in German and Fren
h respe
tively (query 66).Although the results with disambiguation were somewhat disappointing, we intend to 
ontinue our ex-periments with word sense disambiguation in the future. One possible improvement we intend to investigatewould be to use the unique Lexi
al Entity identi�ers provided by the VLIS database instead of a
tual wordsrun-name avg.pre
. avg.pre
. avg.pre
. avg.pre
. average merged relat. toenglish fren
h german italian over 4 avg. (%)tno8dpx 0.3130(m) 0.3319 0.2053 0.3017 0.2880 0.2523 88tno8gr-�xed 0.3130(m) 0.3672 0.2511 0.3017 0.3080 0.2789 91tno8dis 0.3130(m) 0.3099 0.1806 0.3017 0.2763 0.2407 87tno8mx(m) 0.3130(m) 0.5510(m) 0.4100(m) 0.3620(m) 0.4090 0.3226 79Table 5: per language performan
e and the e�e
t of merging on 28 topi
s TREC-8, (m) indi
ates monolingualrun



as a 
on
eptual interlingua. Our 
urrent strategy has the disadvantage that after the monolingual disam-biguation pro
ess, whi
h redu
es sour
e language query terms to unique LEs, new ambiguities are introdu
edin the translation pro
ess when the LEs are realized as a
tual words in the target language.Not surprisingly, sin
e it was less well tested than the other two strategies whi
h were also used last year,we also found that the disambiguation pro
edure 
ontained a few omissions whi
h resulted in the failure totranslate query terms. We found that some LEs in the VLIS database did not have lexi
al realisations in alllanguages (i.e. so-
alled lexi
al gaps). In those 
ases the VLIS database suggests a less optimal translation.These translations were not found by the disambiguation pro
edure, however.3.5 Pool validationJudgements for the 
ross-language task are probably not as 
omplete as the judgements for the other TRECtasks [10℄. In this se
tion we try to get an indi
ation of how mu
h of a problem the in
omplete judgementsa
tually are. For previous TREC CLIR task runs, we evaluated ea
h run that 
ontributed to the pool usingrelevan
e judgements both with (standard evaluation) and without the relevant do
uments that the rununiquely 
ontributed to the pool.4. The di�eren
e between the two evaluations will give an idea of howreliable the 
olle
tions are for future work.run name average pre
ision di�eren
e uniqueunjudged judged rel.98EITdes 0.1919 0.1962 0.0043 2.2 % 4598EITful 0.2514 0.2767 0.0253 10.1 % 15998EITtit 0.1807 0.1841 0.0034 1.9 % 27BKYCL7AG 0.2345 0.2406 0.0061 2.6 % 44BKYCL7AI 0.2012 0.2184 0.0172 8.6 % 120BKYCL7ME 0.3111 0.3391 0.0280 9.0 % 164RaliDi
APf2e 0.1405 0.1687 0.0282 20.1 % 176TW1E2EF 0.1425 0.1569 0.0144 10.1 % 107
eat7f2 0.1808 0.2319 0.0511 28.3 % 293ibm
l7al 0.2939 0.3168 0.0229 7.8 % 135lanl982 0.0296 0.0487 0.0191 64.5 % 140tno7ddp 0.2174 0.2382 0.0208 9.6 % 152tno7edpx 0.2551 0.2846 0.0295 11.6 % 109umdxeof 0.1448 0.1610 0.0162 11.2 % 140max: 0.0511 64.5 % 293mean: 0.0205 14.1 % 129standard deviation: 0.0124 16.1 % 67Table 6: TREC-7 pool validationTable 6 shows the results of the pool validation experiment. On average, an unjudged run will have 0.02higher average pre
ision after judging. However, the di�eren
e may be mu
h worse, up to 0.05 for 
eat7f2.It might be possible to use information about the quality of the pool like the mean and standard deviationof the di�eren
es to de�ne a 
on�den
e interval on the average pre
ision of unjudged runs, but that goesbeyond the s
ope of this paper. A 
ompli
ating fa
tor is how to handle the 
ase where a pair of judgedruns from the same group uniquely found a relevant do
ument. The runs that show the maximum absolutedi�eren
e (
eat7f2) and the maximum relative di�eren
e (lanl982) 
ome from systems of whi
h only one runwas judged. For a resear
h group that did not parti
ipate in TREC-7, the penalty for not being able to judgethe run may therefore be higher than table 6 suggests.Table 7 shows that the total number of judged do
uments is more or less the same as last year. Howeverthe average number of relevant do
uments per topi
 is lower than 100. This probably means that the qualityof the pool has improved, whi
h makes the 
olle
tion more useful for per language 
omparisons.4Thanks to Chris Bu
kley for proposing the pool validation experiment




olle
tion total judged relevant no hits judged judged relevant no hits judgeddo
s. do
s. do
s. in topi
 fra
tion do
s. do
s. in fra
tionenglish 242,866 8,973 956 59,63,66,75 0.0013 9,810 1,689 26,46 0.0014fren
h 141,637 5,751 578 76 0.0014 6,130 991 - 0.0015german 185,099 4,098 717 60,75,76 0.0008 4,558 917 26 0.0009italian 62,359 4,334 170 60,63,75,80 0.0024 3,062 501 26,44,51 0.0018total 631,961 23,156 2,421 average: 0.0013 23,560 4,098 average: 0.0013Table 7: CLIR task statisti
s (a) 28 topi
s TREC-8, (b) 28 topi
s TREC-74 Adaptive �lteringIn the TREC-7 �ltering task three important issues turned up [5℄: 1) the initial threshold, 2) thresholdadaption and 3) query reweighting. Setting the thresholds probably has the greater impa
t on per
eivedperforman
e in terms of utility [21℄. On
e the threshold performs satisfa
tory, it is hard to improve uponthe performan
e by query reweighting. Although we put a 
onsiderable amount of work in the thresholdalgorithms, the main obje
tive of the Twenty-One parti
ipation was the development of relevan
e weightingalgorithms for the linguisti
ally motivated probabilisti
 model. Details of the probabilisti
 retrieval model
an be found in the appendix of this paper.4.1 Evaluation setupFor the �lter tra
k we used the experimental linguisti
ally motivated probabilisti
 retrieval engine developedat the University of Twente. Initial do
ument frequen
ies for term weighting were 
olle
ted from the '87 to'91 editions of the Wall Street Journal (TREC CDs 1 and 2). We did not use the '92 editions be
ause this datawould not have been available in a real world appli
ation. The topi
s and The Finan
ial Times do
umentswere stemmed using the Porter stemmer and stopped using the Smart stop-list whi
h was augmented withsome domain-spe
i�
 stopwords like 'do
ument' and 'relevant'. We used title, narrative and des
ription of thetopi
s to build the initial pro�le. The 
ontrolled language �elds of the Finan
ial Times test 
olle
tion were notused. We did not pro
ess the in
oming do
uments in 
hunks. That is, do
ument frequen
ies were updatedfor ea
h in
oming do
ument; a binary de
ision was made dire
tly for ea
h in
oming do
ument; sele
teddo
uments were immediately 
he
ked for relevan
e; thresholds and pro�les were immediately updated afterthe relevan
e assessments. Unjudged do
uments were assumed to be not relevant. All sele
ted do
umentswere saved for future updating of thresholds and query pro�les.4.2 Setting the initial thresholdThe linguisti
ally motivated model ranks do
uments by the probability that the language model of thedo
ument generates the query (see the appendix). For ranking this is suÆ
ient, but for binary sele
tion of ado
ument we need to answer the question "when is the probability high enough?". One way to answer thisquestion is to relate the probability of sampling the query from a do
ument to the probability that the queryis the result of a random sample from the entire 
olle
tion. Queries that have a high probability of beingsampled from the 
olle
tion (i.e. queries with 
ommon words), should re
eive a higher initial threshold thanqueries with a low probability of being sampled from the 
olle
tion (i.e. queries with un
ommon words). Wemight approximate the probability that the query T1; T2; � � � ; Tn of length n is sampled from the 
olle
tionas follows. P (T1= t1; T2= t2; � � � ; Tn= tn) = nYi=1 df(ti)Pt df(t) (1)Initially only do
uments that generate the query with a mu
h higher probability than equation 1 shouldbe sele
ted. The initial threshold might be set to sele
t do
uments with probabilities that are more than100.000 times higher than the probability of random sele
tion. This does not result in a very high threshold,be
ause words that appear only on
e in the Wallstreet Journal re
eive a probability smaller than 1 in 2million a

ording to equation 1 and the probabilities P (T = tjD = d) of a term t given a do
ument-id d aremu
h higher for mat
hing terms.



After rewriting the probability measures to their 
orresponding ve
tor produ
t weighting algorithms (seethe appendix), the do
ument frequen
ies in the initial threshold disappear. The ve
tor produ
t thresholdthat 
orresponds with the de
ision above is threshold = n log(1=(1� �i)) + 
, where 
 = log(100:000). Thisshows an interesting feature of the initial threshold. In its ve
tor produ
t form, the threshold is related tothe relevan
e weights �i. High initial relevan
e weights result in a high initial threshold. Relevan
e weightswere initialised as �i = 0:5 and were re-estimated after feedba
k.4.3 Threshold adaptionThe threshold adaption algorithm is the part of the system that uses the utility fun
tions to optimise itsperforman
e. We simply de
ided to aim just below the optimum utility given the similarities of the do
umentsthat were sele
ted be the system. Updating was done as follows.1. re
ompute the similarities of all sele
ted do
uments (be
ause of 
hanged do
ument frequen
ies and
hanged relevan
e weights);2. re
ompute the initial threshold (be
ause of 
hanged relevan
e weights) and add it to the sele
teddo
uments like it was a non-relevant do
ument;3. rank the sele
ted do
uments by their similarities and �nd the maximum utility max;4. the new threshold will be the similarity of the lowest ranked do
ument that has a utility of max � 3when optimising for LF1 and max� 1 when optimising for LF2.As long as the system does not �nd any relevant do
ument, it will in
rease its threshold quite fast. In general,it will never lower its threshold again, although this might happen in pra
ti
e be
ause 
hanged do
umentfrequen
ies and relevan
e weights sometimes 
hange the ranking of sele
ted do
uments.4.4 Relevan
e weighting of query termsInitially, when no information on relevant do
uments is available, ea
h query term will get the same relevan
eweight �i = 0:5. So, initially we assume that the query pro�le is best explained if on average half of thequery terms is sampled from relevant do
uments and the other half is sampled from the updated Wall StreetJournal data. If a relevant do
ument is available, we might be able to explain the query pro�le better.Query terms that o

ur often in the relevant do
ument(s) are more likely to be sampled from the relevantdo
ument. They should get a higher relevan
e weight. Query terms that do not o

ur (often) in the relevantdo
ument(s) are more likely to be sampled from the Wall Street Journal data.Noti
e that we 
annot simply use the proportions of relevant and non-relevant do
uments that 
ontaina query term to dire
tly estimate the new relevan
e weight as is done in 
lassi
al probabilisti
 models [19℄.When sear
hing for the best relevan
e weights, we have to take into a

ount the term frequen
ies of termsin the relevant do
uments. A possible approa
h to relevan
e weighting is the EM-algorithm (expe
tationE-step: mi = rXj=1 �(p)i � P (Ti= tijDj=dj)(1� �(p)i )P (Ti= ti) + �(p)i P (Ti= tijDj=dj)M-step: �(p+1)i = mi + 1:5r + 3Figure 1: relevan
e weighting of query terms: EM-algorithmmaximisation algorithm [4℄) of �gure 1. The algorithm iteratively maximises the probability of the queryt1; t2; � � � ; tn given r relevant do
uments d1; d2; � � � ; dr. Before the iteration pro
ess starts, the relevan
eweights are initialised to their default values �(0)i = 0:5, where i is the position in the query. Ea
h iterationp estimates a new relevan
e weight �(p+1)i by �rst doing the E-step and then the M-step until the value ofthe relevan
e weight does not 
hange signi�
antly anymore. The M-step should be a maximum likelihoodestimate a

ording to its de�nition [4℄, but we used a Baysian update be
ause a small number of relevantdo
uments should not radi
ally 
hange the initial relevan
e weights.



4.5 Experimental resultsSix oÆ
ial runs were submitted: three optimised for LF1 and three optimised for LF2. For both utilityfun
tions we did the same three experiments.1. a baseline run that only uses the initial threshold setting and threshold adaption routines;2. the same run as 1, but with relevan
e weighting of query terms;3. the same run as 1, but using a very high initial threshold.The high initial threshold experiments were done using the TNO ve
tor engine under slightly di�erent
onditions. These two runs use the AP Newswire data for the initial estimation of do
ument frequen
iesand a somewhat di�erent stop list. We do not think that these slightly di�erent 
onditions 
hange the bigpi
ture of our evaluation results.run name des
ription LF1 LF2 pre
. re
alluttno8lf1 optimised for LF1 -9.30 4.86 0.242 0.240uttno8lf1f optimised for LF1; query reweighting -7.28 7.10 0.243 0.251uttno8lf1p optimised for LF1; high initial threshold -1.20 2.46 0.216 0.105uttno8lf2 optimised for LF2 -12.96 4.80 0.232 0.254uttno8lf2f optimised for LF2; query reweighting -9.12 6.60 0.237 0.254uttno8lf2p optimised for LF2; high initial threshold -5.54 1.34 0.199 0.127Table 8: adaptive �ltering, oÆ
ial results averaged over topi
sTable 8 lists the evaluation results of the oÆ
ial runs using four evaluation meaures: LF1, LF2, pre
ision andre
all averaged over topi
s. Re
all and pre
ision were 
al
ulated by assigning 0 % re
all to topi
s with norelevant do
uments and assigning 0 % pre
ision to topi
s with emtpy retrieved sets. Both baseline runs showa 
onsistent improvement in the average utility and the average pre
ision/re
all after relevan
e weighting ofquery terms.The high initial threshold run shows di�erent behaviour. When optimising for LF1 (uttno8lf1p), theperforman
e in terms of average LF1 utility improves 
onsiderably. At the same time, the performan
e interms of pre
ision and re
all goes down. When optimising for LF2, a high initial threshold results in a systemwith lower performan
e than the baseline in terms of average utility, pre
ision and re
all.4.6 Some thoughts on the evaluationThe problem with the LF1 utility is that it is plain too hard to build a system that does not perform belowzero utility on average. S
oring negatively on utility means that the user would prefer to use no system atall. We found ourselves deliberately worsening our �ltering system (that is lowering its pre
ision and re
all)to improve the utility s
ore up to a point where we 
ame pretty 
lose to no system at all. The uttno8lf1prun did not sele
t any do
ument for 22 out of 50 topi
s.Average utility and average pre
ision/re
all both have their disadvantages if used for the evaluationof adaptive �ltering runs. In short, pre
ision 
auses problems with topi
s for whi
h the system sele
tedno relevant do
ument at all, and the problem with average utility is that it will be dominated by topi
swith large retrieved sets [11℄. We feel that utility and pre
ision/re
all are both valuable measures for theevaluation of adaptive �ltering systems. In future evaluations, situations in whi
h both measures 
ontradi
tea
h other, like for the LF1 experiments mentioned above, should be avoided. An obvious solution would beto aim a little bit lower. The LF2 utility fun
tion seems to be a reasonable measure for future evaluations.5 Spoken Do
ument Retrieval5.1 Word re
ognition vs. word spottingIn TREC-7, TNO [5℄ investigated whether e�e
tive retrieval algorithms based on phoneme re
ognition anda word spotter 
ould be built. The absen
e of a Language Model (whi
h is a key 
omponent in a word based



re
ognizer) was found to be a serious drawba
k. For TREC-8, LIMSI kindly provided the word re
ognitiontrans
ripts. For details on the spee
h re
ognition algorithms we refer to LIMSI's paper in this volume.5.2 OliveTNO-TPD , University of Twente and LIMSI parti
ipate in the EU proje
t Olive. This proje
t is a di-re
t des
endant of the Twenty-One proje
t. Olive uses Twenty-One retrieval te
hnology to retrieve videofragments from a video database. In order to enable an automati
 indexing step of the video material, weemploy automati
 spee
h re
ognition on the soundtra
k of the video. The re
ognition trans
ripts 
ontaindetailed time
ode information whi
h ensures a pre
ise 
oupling of the trans
ripts with the video. For videoretrieval, a user must type a query, the query is mat
hed against an index of noun phrases extra
ted fromthe re
ognition trans
ripts. The resulting hitlist is visualized by marking hits on a bar whi
h represents thetimeline of a video. Cli
king on one of these marks will start the video at the 
orresponding o�set through astreaming server. The video material that is used in Olive is in German and Fren
h. The spee
h re
ognitionfor these languages is developed at LIMSI. Be
ause the TREC SDR task is higly relevant for Olive, wede
ided to 
ooperate with LIMSI for the TREC-8 task. LIMSI provided us with trans
ripts of both theTREC-7 and TREC-8 SDR data, and we tuned our retrieval on the TREC-7 SDR test 
olle
tion.5.3 Relevan
e Feedba
kWe studied pseudo relevan
e feedba
k te
hniques that were su

essfully applied by other groups in TREC-7.After some testing on TREC-7 we found that a te
hnique introdu
ed as \Blind Relevan
e Feedba
k" [15℄performed best. The relevan
e feedba
k was applied on a larger se
ondary 
orpus: the TREC Ad Ho

orpus. Even though the 
orpus 
overs a di�erent time-span, results with the se
ondary 
orpus were betterthan BRF on the SDR 
orpus. The following BRF parameters were used:� sele
t top 20 do
uments� 
ompute 60 best terms based on BRF algorithm� add new terms down-weighted with fa
tor 20/65.4 Unknown story boundariesWe reviewed the literature on story segmentation but be
ause of time pressure we were only able to implementa baseline system for unknown story boundaries, based on �xed windows. So we did not attempt to dete
tstory boundaries at all, we simply wanted to know how a baseline system would perform. In [18℄ a defaultse
tion window size of 250 words was re
ommended, this was estimated as a 15kbyte length fragment of thetrans
ript �les, be
ause the average number of bytes per re
ognized word (in
luding time
ode mark-up) isabout 60. The segments have an overlap of 50 bytes to avoid missing words that o

ur right at a windowboundary.5.5 Experimental setup and resultsWe tested two term weighting algorithms (LM and BM25) in 
ombination with two automati
 query expan-sion te
hniques (PRF and BRF) on the TREC-7 SDR test 
olle
tion. A 
ombination of BM25 and Blindrelevan
e feedba
k (as implemented by Cambridge University[15℄ ) yielded the best results. For TREC8 wefound that LM weighting performed 
onsistently better than BM25 in 
ombination with BRF (see table 9).The somewhat poorer performan
e of LM on TREC-7 SDR 
an probably attributed to the rather small sizeof the TREC-7 
olle
tion, the TREC-8 results are probably mu
h more reliable.The results5 for the known story boundary 
onditions are good, though they 
ould be improved. Itwas only after the submission deadline that we dis
overed that quite a few topi
s 
ontain proper nounabbreviations in a format whi
h is idiosyn
rati
 for re
ognizer output, e.g, U. S. whi
h would normally be5We list the uninterpolated average pre
ision over 49 topi
s



run-name trans
ript sour
e term weighting mode AVPtno8b-r1-limsi manual BM25 BRF 0.4806tno8b-b1-limsi NIST BM25 BRF 0.4650tno8b-s1-limsi LIMSI BM25 BRF 0.4826tno8
-r1-limsi manual LM BRF 0.5169tno8
-b1-limsi NIST LM BRF 0.4898tno8
-s1-limsi LIMSI LM BRF 0.4969Table 9: SDR results: Known Story Boundariesspelled as US. Our tokenizer will remove the abbreviation dots, and the single letters will be stopped as well.What we need is a spe
ial tokenizer whi
h re
ognizes these spe
ial 
ases.run-name trans
ript sour
e mode AVPtno8b-b1u-limsi NIST BRF 0.0238tno8b-s1u-limsi LIMSI BRF 0.0325Table 10: SDR results: Unknown Story BoundariesThe unknown story boundary 
ondition yielded very poor results. This is probably due to the fa
t thatno e�ort was done to merge 
lusters of hits into single do
uments. Multiple hits in the same story were quiteheavily penalized in the s
oring algorithm. Further analysis is needed to 
he
k this assumption.6 Con
lusionsThe probabilisti
 retrieval model based on statisti
al language models performs 
onsistently well in alltra
ks. The results of the experiments with sense disambiguation are slightly disappointing, although a realevaluation is only possible when the te
hniques are more mature. It is a question however whether thedisambiguation step 
an be e�e
tive be
ause do
uments are indexed on terms, not on senses. We improvedupon our CLIR results of last year, due to a better merging te
hnique, unfortunately our best oÆ
ial xlingualrun (tno8gr) su�ered from a merging error. Our best xlingual run uses the 
orpus for impli
it disambiguationand interpolates between a rank and s
ore based merging strategy. In Adaptive Filtering we showed thatLM weighting 
an be extended with a relevan
e feedba
k algorithm. Finally, in the SDR tra
k we showedthat a word error rate of 26.3% does not harm retrieval e�e
tiveness in a signi�
ant way when standardretrieval te
hniques are used.A
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ripts to us.Appendix: using language models for do
ument rankingThe Twenty-One TREC-8 evaluations are based on the use of statisti
al language models for informationretrieval [8, 9, 10℄. This appendix gives an overview of the model and of its appli
ation to 
ross-languageinformation retrieval and adaptive �ltering. Similar models were developed and evaluated by other groupsparti
ipating in TREC [3, 12, 14, 17℄.



A.1 An informal des
ription of the underlying ideasWhen using statisti
al language models for information retrieval, one builds a simple language model forea
h do
ument in the 
olle
tion. The term \language model" refers to statisti
al models similar to languagemodels used in e.g. spee
h re
ognition. Given a query, a do
ument is assigned the probability that thelanguage model of that do
ument generated the query.The metaphor of \urn models" [13℄ might give more insight. Instead of drawing balls at random withrepla
ement from an urn, we will 
onsider the pro
ess of drawing words at random with repla
ement froma do
ument. Suppose someone sele
ts one do
ument in the do
ument 
olle
tion; draws at random, one ata time, with repla
ement, ten words from this do
ument and hands those ten words (the query terms) overto the system. The system now 
an make an edu
ated guess as from whi
h do
ument the words 
ame from,by 
al
ulating for ea
h do
ument the probability that the ten words were sampled from it and by rankingthe do
uments a

ordingly. The intuition behind it is that users have a reasonable idea of whi
h terms arelikely to o

ur in do
uments of interest and will 
hoose query terms a

ordingly [17℄. In pra
ti
e, some queryterms do not o

ur in any of the relevant do
uments. This 
an be modeled by a slightly more 
ompli
atedurn model. In this 
ase the person who draws at random the ten words, �rst de
ides for ea
h draw if he willdraw randomly from a relevant do
ument or randomly from the entire 
olle
tion. The yes/no de
ision ofdrawing from a relevant do
ument or not, will also be assigned a probability. This probability will be 
alledthe relevan
e weight of a term, be
ause it de�nes the distribution of the term over relevant and non-relevantdo
uments. For ad-ho
 retrieval all non stop words in the query will be assigned the same relevan
e weight.For adaptive �ltering, the user's feedba
k will be used to re-estimate the relevan
e weight for ea
h queryterm.The model evaluates Boolean queries by treating the sampling pro
ess as an AND-query and allowing thatea
h draw is spe
i�ed by a disjun
tion of more than one term. For example, the probability of �rst drawingthe term information and then drawing either the term retrieval or the term �ltering from a do
ument 
anbe 
al
ulated by the model introdu
ed in this paper without any additional modeling assumptions. Booleanqueries were used to model more than one possible translation per query term in 
ross-language informationretrieval.Furthermore, the model 
an be extended with additional statisti
al pro
esses to model di�eren
es betweenthe vo
abulary of the query and the vo
abulary of the do
uments. Statisti
al translation 
an be added to thepro
ess of sampling terms from a do
ument by assuming that the translation of a term does not depend onthe do
ument it was sampled from. Cross-language retrieval using e.g. English queries on a Fren
h do
ument
olle
tion uses the sampling metaphor as follows: �rst an Fren
h word is sampled from the do
ument, andthen this word is translated to English with some probability that 
an be estimated from a parallel 
orpus.A.2 De�nition of the 
orresponding probability measuresBased on the ideas mentioned above, probability measures 
an be de�ned to rank the do
uments given aquery. The probability that a query T1; T2; � � � ; Tn of length n is sampled from a do
ument with do
umentidenti�er D is de�ned by equation 2.P (T1; T2; � � � ; TnjD) = nYi=1((1� �i)P (Ti) + �iP (TijD)) (2)In the formula, P (T ) is the probability of drawing a term randomly from the 
olle
tion, P (T jD) is theprobability of drawing a term randomly from a do
ument and �i is the relevan
e weight of the term. If aquery term is assigned a relevan
e weight of �i = 1, then the term is treated as in exa
t mat
hing: the systemwill assign zero probability to do
uments in whi
h the term does not o

ur. If a query term is assigned arelevan
e weight of 0, then the term is treated like a stop word: the term does not have any in
uen
e onthe �nal ranking. In se
tion A.4 it is shown that this probability measure 
an be rewritten to a tf�idfterm weighting algorithm. A similar probability fun
tion was used by Miller, Leek and S
hwartz [12℄. Theyshowed that it 
an be interpreted as a two-state hidden Markov model in whi
h � and (1 � �) de�ne thestate transition probabilities and P (T ) and P (T jD) de�ne the emission probabilities.



The evaluation of Boolean queries for 
ross-language retrieval is straightforward. For ea
h draw, di�erentterms are mutually ex
lusive. That is, if one term is drawn from a do
ument, the probability of drawing e.g.both the term information and the term retrieval is 0. Following the axioms of probability theory (see e.g.Mood [13℄) the probability of a disjun
tion of terms in one draw is the sum of the probabilities of drawingthe single terms. Disjun
tion of m possible translations Tij (1 � j � m) of the sour
e language query termon position i is de�ned as follows.P (Ti1 [ Ti2 [ � � � [ TimjD) = mXj=1((1� �i)P (Tij) + �iP (Tij jD)) (3)Following this line of reasoning, AND queries are interpreted similar as unstru
tured queries de�ned byequation 2. Or, to put it di�erently, unstru
tured queries are impli
itly assumed to be AND queries. If arelevan
e weight of �i = 1 is assigned to ea
h query term, then the system will behave like the traditionalBoolean model of IR. Statisti
al translation is added to these probability measures by assuming that thetranslation of a term does not depend on the do
ument it was drawn from [9℄. If N1; N2; � � � ; Nn is a Englishquery of length n and a English term on position i has mi possible Fren
h translations Tij (1 � j � mi),then the ranking as stru
tured queries would be done a

ording to equation 4P (N1; N2; � � � ; NnjD) = nYi=1 miXj=1 P (NijTij)((1� �i)P (Tij) + �iP (Tij jD)) (4)The translation probabilities P (NijTij) 
an be estimated from parallel 
orpora, or alternatively by usingo

urren
es in a ma
hine readable di
tionary . A very similar model that also 
ombines do
ument rankingand statisti
al translation was introdu
ed by Berger and La�erty [2, 3℄. Their model di�ers from equation 4only by a di�erent smoothing method, using global information on Ni instead of global information on ea
hTij .A.3 Parameter estimationIn information retrieval it is good pra
ti
e to use the term frequen
y and do
ument frequen
y as the main
omponents of term weighting algorithms. Our probabilisti
 model does not make an ex
eption. The termfrequen
y tf (t; d) is de�ned by the number of times the term t o

urs in the do
ument d. The do
umentfrequen
y df(t) is de�ned by the number of do
uments in whi
h the term t o

urs. Estimation of P (T ) andP (T jD) in equation 2, 3 and 4 was done as follows:P (Ti = ti) = df(ti)Pt df(t) (5)P (Ti = tijD = d) = tf (ti; d)Pt tf (t; d) (6)The value of the relevan
e weights �i might 
hange for di�erent appli
ations. High relevan
e weights resultin tf�idf rankings that obey the 
onditions of 
oordination level ranking [10℄, that is, do
uments 
ontainingn query terms are always ranked above do
uments 
ontaining n � 1 query terms. High relevan
e weightsare a good 
hoi
e for appli
ations that aim at high pre
ision or appli
ations in whi
h very short queries areused, like web sear
h engines. Do
uments that are judged as relevant by the user 
an be used to re-estimatethe relevan
e weights. An algorithm for relevan
e weighting was developed for the adaptive �ltering task(see se
tion 4).A.4 Some notes on the implementationSimilar to traditional probabilisti
 models of information retrieval [19℄ probability measures for rankingdo
uments 
an be rewritten into a format that is easy to implement. A presen
e weighting s
heme (asopposed to a presen
e/absen
e weighting s
heme) assigns a zero weight to terms that are not present in ado
ument. Presen
e weighting s
hemes 
an be implemented using the ve
tor produ
t formula. This se
tion



presents the resulting algorithms. Rewriting equation 2 results in the formula displayed in �gure 2 [10℄. It
an be interpreted as a tf�idf weighting algorithm with do
ument length normalisation as de�ned by Saltonand Bu
kley [20℄. ve
tor produ
t formula: s
ore(d; q) = Xk 2mat
h-ing terms wqk � wdkquery term weight: wqk = tf (k; q)do
ument term weight: wdk = log(1 + tf (k; d)Pt df(t)df(k)Pt tf (t; d) � �k1��k )Figure 2: tf�idf term weighting algorithmIf a stru
tured query is used, the disjun
tion of possible translations as de�ned by equation 3 shouldbe 
al
ulated �rst. As addition is asso
iative and 
ommutative, we do not have to 
al
ulate ea
h linearinterpolation of equation 3 separately before summing them. Instead, the do
ument frequen
ies and theterm frequen
ies of the disjun
ts respe
tively, 
an be added beforehand. The added frequen
ies 
an be usedto repla
e df(k) and tf (k; d) in the weighting formula of table 2. A similar ranking algorithm for Booleanqueries was introdu
ed earlier by Harman [7℄ for on-line stemming. Harman did not present her algorithmas an extension of Boolean sear
hing, but instead 
alled it 'grouping'. Instead of adding the do
umentfrequen
ies, the TNO ve
tor engine 
al
ulates the a
tual do
ument frequen
ies of the disjun
ts, by mergingtheir postings at run time. A similar approa
h for 
ross-language information retrieval was adopted byBallesteros and Croft [1℄ by using a 'synonym operator' on possible translations.If translation probabilities are used following equation 4, the adding of respe
tively the do
ument fre-quen
ies and the term frequen
ies of the disjun
ts should be done as a weighted sum with the translationprobabilities as weights.Referen
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