
StreetTiVo: Using a P2P XML Database System
to Manage Multimedia Data in Your Living

Room

Ying Zhang1, Arjen de Vries1,2, Peter Boncz1, Djoerd Hiemstra3, and Roeland
Ordelman3

1 Centrum voor Wiskunde en Informatica, Amsterdam, the Netherlands
2 Delft University of Technology, Delft, The Netherlands

3 University of Twente, Enschede, The Netherlands
{zhang, arjen, boncz}@cwi.nl, {hiemstra, ordelman}@cs.utwente.nl

Abstract. StreetTiVo is a project that aims at bringing research results
into the living room; in particular, a mix of current results in the areas
of Peer-to-Peer XML Database Management System (P2P XDBMS),
advanced multimedia analysis techniques, and advanced information re-
trieval techniques. The project develops a plug-in application for the
so-called Home Theatre PCs, such as set-top boxes with MythTV or
Windows Media Center Edition installed, that can be considered as
programmable digital video recorders. StreetTiVo distributes compute-
intensive multimedia analysis tasks over multiple peers (i.e., StreetTiVo
users) that have recorded the same TV program, such that a user can
search in the content of a recorded TV program shortly after its broad-
casting; i.e., it enables near real-time availability of the meta-data (e.g.,
speech recognition) required for searching the recorded content. Street-
TiVo relies on our P2P XDBMS technology, which in turn is based on a
DHT overlay network, for distributed collaborator discovery, work coor-
dination and meta-data exchange in a volatile WAN environment. The
technologies of video analysis and information retrieval are seamlessly
integrated into the system as XQuery functions.

1 Introduction

Things are changing in the living room, under the TV set: TV is going digital
and consumer electronics gets networked. The so-called “set-top” boxes that are
needed for digital television have appeared in the houses of many; and, many of
these set-top boxes are rather powerful computers connected to the Internet, run-
ning Windows Media Center or its open-source MythTV equivalent. A related
trend is the increasing demand for multimedia information access. Presently,
“ordinary” people own hundreds of gigabytes of multimedia data, resulting from
their digital photo cameras, hard-disk video recorders, etc. However, searching
multimedia files is usually restricted to simple look up in the meta-data of files,
such as file names and (human-edited) descriptions. More advanced multime-
dia retrieval requires highly compute-intensive pre-processing of the data (e.g.,

2

speech recognition and image processing). As a rough estimation, it takes a
moderate computer more than one order of magnitude more time to derive the
auxiliary data that would enable better search facilities.

The idea of StreetTiVo is to unite the computing power of those Media Cen-
ter devices (peers) in the living rooms. By distributed and parallel execution of
compute-intensive multimedia analysis tasks on multiple peers, near real-time
indexing of the content can be provided using just the ordinary hardware avail-
able in the network. StreetTiVo divides the Media Center devices into groups
and assigns each group a short time slice of a recording (e.g., ten seconds), to run
multimedia analysis tools on those time slices only. Thus, the peers form virtual
digital streets and are virtual neighbours of each other. Note that StreetTiVo
uses the P2P concept in a strictly legal way, as it is not used to distribute the
video files themselves. Users can only watch the content that they have recorded
themselves. What is exchanged by StreetTiVo are only the results of multimedia
analysis of those videos, i.e., generated meta-data.

Summarizing, the goal of the StreetTiVo project is: unite Media Center de-
vices using P2P technologies to cooperatively run compute intensive multimedia
analysis applications just in everybody’s living room so that they could produce
results in near real-time.

Imagine for example, if only a tiny fraction of the millions of people record-
ing the Champions League soccer competition would participate in StreetTiVo!
Useful media analysis tools would include the transcription of the text spoken
by the presenters during the match, but also the cross-media analysis to recog-
nize goals and other exciting moments (e.g., from audio volume and/or camera
motion patterns). After each group of media centers has exchanged its partial
analysis results with the other groups (that recorded the same match), all Street-
TiVo participants obtain the complete set of automatically derived annotations,
so that meta-data could be used for direct entry to the most exciting moment(s)
of the game, or, the automatic generation of a summary including all highlights.

In this paper we describe the P2P data management approach of StreetTiVo
in Section 2. The current system architecture is presented in Section 3. We
briefly describe the three major components: XRPC, ASR and PF/Tijah. This
first version of StreetTiVo was chosen to be simple, so that we could quickly
demonstrate the cooperation between XRPC, ASR, PF/Tijah in a non-trivial
application setting. A distributed architecture is adopted, in which all StreetTiVo
users (i.e., clients) are managed by a central server. In Section 4, we explain the
envisioned P2P model and discuss the challenges on our way to make StreetTiVo
a truly P2P application. We conclude in Section 5.

2 P2P Data Management

From a network communication perspective, DHT-based overlays have gained
much popularity in both research projects and real-world P2P applications [1–
12]. DHT networks have proven to be efficient and scalable (guarantees O(logN)

3

scalability) in volatile WAN environments [6, 13]. From a data management per-
spective, XML has become the de facto standard for data exchange over the
Internet, and XQuery the W3C standard for querying XML data. The infras-
tructure of StreetTiVo is therefore provided by MonetDB/XQuery? [14], a P2P
XML DBMS that supports distributed evaluation of XQuery[15] queries over
DHT networks [1, 3, 4, 6]. Each peer runs an XDBMS, MonetDB/XQuery [16],
to manage its local data. Communication among peers is done by remote ex-
ecution of XQuery functions using XRPC [17, 18], a simple XQuery extension
for Remote Procedure Calls (RPC) that enables efficient distributed querying
of heterogeneous XQuery data sources.

The current implementation of StreetTiVo as XQuery expressions applies
a Dutch automatic speech recognition system (ASR) [19] to the recorded pro-
grammes, and provides a full-text retrieval service of the ASR output by em-
ploying the MonetDB/XQuery extension PF/Tijah [20]. When a TV program
is broadcast, all participants (peers that are recording this TV program) jointly
extract the (Dutch) spoken text using the ASR component, and exchange local
partial ASR results with each other. ASR produces XML documents contain-
ing speech texts and some meta-data, for example, start/end timestamp of a
sentence in the video file. Each participant stores all resulting XML documents
of the recording in its local MonetDB/XQuery that can then be queried using
PF/Tijah. The meta-data of the retrieved sentences provide sufficient informa-
tion for the StreetTiVo GUI to display only the desired video fragment.

GUI

StreetTiVo

StreetTiVo

StreetTiVo

ASR

Multimedia feature

MonetDB/XQuery

extraction engineMonetDB/XQuery

Search

1. register−recording($channel, $startDT, $duration, $clntAddr): fragment
2. start−asr($progID, $fragID, $start, $end)

XRPC

Coordinator

XRPC

PF/Tijah
(IR engine)

StreetTiVo Client

3. add−finished−fragment($progID, $fragID, $text, $clntAddr): fragment
4. get−speech−text($progID, $fragIDs)

2

431

Fig. 1. StreetTiVo architecture: client-
server model

〈recording progID=“bbc1 20080425 200000”〉
〈participants〉
〈participant host=“x.example.org” /〉
〈participant host=“y.example.org” /〉

〈/participants〉
〈fragments〉
〈fragment fragID=“1” start=“0” end=“10”〉
〈owner host=“x.example.org” /〉〈/fragment〉

〈fragment fragID=“2” start=“10” end=“25”〉
〈assignee host=“y.example.org” /〉〈/fragment〉

〈fragment fragID=“3” start=“25” end=“30”〉
〈assignee host=“x.example.org” /〉〈/fragment〉

〈fragment fragID=“4” start=“30” end=“38”/〉
〈/fragments〉

〈/recording〉

Fig. 2. Information maintained for each
recording

3 StreetTiVo Architecture

The current version of StreetTiVo uses a simple client-server network model, as
shown in Figure 1. In this setup, we assume that the coordinator is a reliable
host, while the clients join and leave unpredictably (similar to the early work of
[21]). While our next step will be to replace this model with a more sophisticated
DHT-based P2P model, we first detail the current implementation.

Each peer runs a MonetDB/XQuery server and communicates with other
peers via XRPC, by sending SOAP XRPC request/response messages. The cen-
tral StreetTiVo coordinator is responsible for registration of recordings, and the

4

generation and distribution of ASR tasks. For each recording, the coordinator
maintains a list of participating peers and a list of tasks (called fragments). A
recording is divided into short fragments (usually several seconds) to be analyzed
parallelly by the participants. For each fragment, the coordinator maintains if
it is being processed by a peer (i.e., it has an assignee), or if its speech text is
already available (i.e. it has an owner). All meta-data are in XML format and
stored in MonetDB/XQuery.

Example 1. The XML snippet in Figure 2 shows the recording element for the
TV program bbc1 20080425 200000. The progID is determined by channel, date
and start time. The TV program is recorded by two peers and is divided into
4 fragments. The attributes start and end of a fragment indicate the relative
start/end timestamps of the fragment in the video file. Fragments are assigned
to the participants in the order they register, so initially fragments 1 and 2
are assigned to the hosts x.example.org and y.example.org, respectively. So far,
x.example.org has finished analyse fragment 1 (indicated as the owner of the
fragment) and has been assigned a new job fragment 3. The host y.example.org
is still processing fragment 2. Since there are no more participants, fragment 4 is
waiting to be assigned.

All interfaces between coordinator, clients and the local ASR engine have
been defined as XQuery functions. A small Java program implements the XQuery
function (start-asr() in Figure 1) that triggers the ASR engine. The interaction
between one StreetTiVo client and the coordinator is shown in details. Collabo-
rative speech recognition works as follows.

Step ¬ When a TV program is scheduled for recording, the StreetTiVo client
sends an XRPC request to the coordinator to execute the function register-
recording(). The coordinator responds with a fragment, which has not been pro-
cessed by any participants, and inserts the client as an assignee into the fragment
element. For reliability reason, each fragment is assigned to multiple clients.

If the request is the first registration for a TV program, the coordinator first
needs to generate ASR tasks. An easy way to do this is to divide the whole
recording into equal sized fragments. To get high quality ASR result, the ASR
segmenter should be used, which is able to filter out the audio that do not con-
tain speech and generates fragments accordingly (see Section 3.2). Information
provided by the ASR segmenter ensures that the ASR speech recognizer pro-
duces more accurate results. However, the better quality comes at a high cost of
speed, because the coordinator must record the TV program itself and run ASR
segmenter afterwards. So, there is a trade-off between speed and quality.

Step Upon receipt of the response from the coordinator (in Step ¬), the
StreetTiVo client starts its local ASR engine to analyze the fragment specified
in the response message, by calling the interface function start-asr().

Step ® After the ASR engine has finished analyzing a fragment, the Street-
TiVo client reports this by calling add-finished-fragment() on the coordinator and
passing among others the retrieved text as parameter.

5

Step ¯ After having finished one task, the StreetTiVo client is expected to
request a new task (get-job()), until the coordinator responds with an empty
task, which might mean that there are sufficient number of assignees for each
fragment, or that the coordinator has received the ASR results of all fragments.

Step ° If there are no new tasks, the StreetTiVo client waits for some predefined
time to give the other participants the opportunity to finish their ASR tasks,
and then attempts to retrieve the speech text of the missing fragments. The
StreetTiVo client can directly ask the coordinator for the missing fragments
(get-speech-text()), since all ASR results are also stored at the coordinator, but
the preferred procedure is to just call the coordinator’s get-fragments() function
(not shown) to find out what participant owns which ASR result, and retrieve
the fragments’ texts from those nodes.

Once the ASR results are locally available, StreetTiVo users can search for
video fragments by entering keywords in the GUI. The keywords are subsequently
translated into Tijah queries. PF/Tijah returns matching sentences ranked by
their estimated probability of relevance.Each sentence is tagged with its relative
start/end timestamps in the video file, this way, the desired video fragments can
be retrieved. In summary, StreetTiVo has three major components: XRPC takes
care of communication among peers, ASR provides video analysis functions, and
PF/Tijah enables retrieval of video fragments using keywords. In the remainder
of this section, we give a brief overview of these techniques.

3.1 XRPC: Distributed XQuery Processing

XQuery 1.0 [15] only provides a data shipping model for querying XML docu-
ments over the Internet. The built-in function fn:doc() fetches an XML document
from a remote peer to the local server, where it subsequently can be queried. The
recent W3C Candidate Recommendation XQuery Update Facility (XQUF) [22]
introduces a built-in function fn:put() for remote storage of XML documents,
which again implies data shipping. There have been various proposals to equip
XQuery with function shipping style distributed querying abilities [23–25]. On
the syntax level, we consider our XRPC proposal an incremental development of
these. XRPC adds RPC to XQuery in the most simple way: adding a destination
URI to the XQuery equivalent of a procedure call (i.e. function application).

Remote function applications in XRPC take the XQuery syntax: execute at

{Expr}{FunApp (ParamList)}, where Expr is an XQuery xs:string expression that
specifies the URI of the peer on which the function FunApp is to be executed.
As a running example, we assume a set of XQuery DBMS (peers) that each store
a movie database in an XML document filmDB.xml with contents similar to:

〈films〉
〈film〉〈name〉The Rock〈/name〉〈actor〉Sean Connery〈/actor〉〈/film〉
〈film〉〈name〉Green Card〈/name〉〈actor〉Gerard Depardieu〈/actor〉〈/film〉

〈/films〉

We assume an XQuery module film.xq stored at the host example.org that
defines a function filmsByActor():

6

Decode II
Unsupervised

adaptationDecode I
warp factor

Determination
Clustering

Segmentation
and

Speech
Activity

Detection

Fig. 3. Overview of the ASR decoding system.

module namespace file=“films”;

declare function film:filmsByActor($actor as xs:string) as node()*
{ doc(“filmDB.xml”)//name[../actor=$actor] };

With XRPC, we can execute this function on a remote peer, e.g. x.example.org,
to get a sequence of films in which Sean Connery plays in the film database
stored on the remote peer.

import module namespace f=“films” at “http://example.org/film.xq”;

〈films〉 { execute at {“xrpc://x.example.org”} {f:filmsByActor(“Sean Connery”)} } 〈/films〉

which yields: 〈films〉〈name〉The Rock〈/name〉〈/films〉. We introduce here a new xrpc://
network protocol, accepted in the destination URI of execute at, to indicate
a peer’s ability of handling XRPC queries. The generic form of such URIs is
xrpc://〈host〉[:port] [/[path]], where xrpc:// is the network protocol, 〈host〉[:port] iden-
tifies the remote peer, and [/[path]] is an optional local path at the remote peer.

The SOAP XRPC Protocol. The design goal of XRPC is to create a dis-
tributed XQuery mechanism with which different XQuery engines at different
sites can jointly execute queries. This implies that our proposal also encompasses
a network protocol, SOAP XRPC, which uses the Simple Object Access Protocol
(SOAP) [26] (i.e. XML messages) over HTTP. XML is ideal for distributed envi-
ronments (think of character encoding hassles, byte ordering), XQuery engines
are perfectly equipped to process XML messages, and an XML-based message
protocol makes it trivial to support passing values of any type from the XQuery
Data Model [27]. The choice for SOAP brings as additional advantages seam-
less integration of XQuery data sources with web services and Service Oriented
Architectures (SOA) as well as AJAX-style GUIs. The complete specification of
the SOAP XRPC protocol can be found in [17]. Here we show, as an example,
the XRPC request message that should be generated for the query above:

〈?xml version=”1.0” encoding=”utf-8”?〉
〈env:Envelope xmlns:xrpc=”http://monetdb.cwi.nl/XQuery”

xmlns:env=”http://www.w3.org/2003/05/soap-envelope”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://monetdb.cwi.nl/XQuery

http://monetdb.cwi.nl/XQuery/XRPC.xsd”〉
〈env:Body〉
〈xrpc:request xrpc:module=”films” xrpc:method=”filmsByActor” xrpc:arity=”1” xrpc:iter-count=”1”

xrpc:updCall=”no” xrpc:location=”http://x.example.org/film.xq”〉
〈xrpc:call〉
〈xrpc:sequence〉
〈xrpc:atomic-value xsi:type=”xs:string”〉Sean Connery〈/xrpc:atomic-value〉

〈/xrpc:sequence〉
〈/xrpc:call〉

〈/xrpc:request〉
〈/env:Body〉

〈/env:Envelope〉

7

3.2 ASR: I Know What You Said

Automatic Speech Recognition (ASR) supports the conceptual querying of video
content and the synchronization to any kind of textual resource that is accessi-
ble, including other annotations for audiovisual material such as subtitles. The
potential of ASR-based indexing has been demonstrated most successfully in the
broadcast news domain. Typically large vocabulary speaker independent contin-
uous speech recognition (LVCSR) is deployed to this end.

The ASR system deployed in StreetTiVo was developed at the University
of Twente and is part of the open-source SHoUT speech recognition toolkit4.
Figure 3 gives an overview of the ASR decoding system. Each step provides the
input for the following step. The whole process can be roughly divided into two
stages. During the first stage, the Speech Activity Detection (SAD) is used to
filter out the audio parts that do not contain speech. This step is crucial for the
performance of the ASR system to avoid that it tries to recognize non-speech
audio that is typically found in recorded TV programs such as music, sound
effects or background noise with high volume (traffic, cheering audience, etc).
After SAD, the system tries to figure out ‘who spoke when’, a procedure that
is typically referred to as speaker diarization. In this step, the speech fragments
are split into segments that only contain speech from one single speaker. Each
segment is labelled with its corresponding speaker ID. Next, for each segment
the vocal tract length (VTLN) warping factor is determined for vocal tract
length normalisation. Variation of vocal tract length between speakers makes it
harder to train robust acoustic models. In the SHoUT system, normalisation of
the feature vectors is obtained by shifting the Mel-scale windows by a certain
warping factor during feature extraction for the first decoding step.

After having cleaned up the input sound and gained sufficient meta infor-
mation, speech recognition can be started in the second stage. Decoding is done
using the HMM-based Viterbi decoder. In the first decoding iteration, triphone
VTLN acoustic models and trigram language models are used. For each speaker,
a first best hypothesis aligned on a phone basis is created for unsupervised acous-
tic model adaptation. Optionally, for each file a topic specific language model
can be generated based on the input of first recognition pass. The second de-
coding iteration uses the speaker adapted acoustic models and the topic specific
language models to create the final first best hypothesis aligned on word basis.
Also, for each segment, a word lattices is created. A more detailed description
of each step can be found in [19].

3.3 PF/Tijah: XML text search

PF/Tijah [20] is another research project run by the University of Twente with
the goal to create a flexible environment for setting up search systems by inte-
grating MonetDB/XQuery that uses the Pathfinder compiler [28] with the Tijah

4 For information on the use of the SHoUT speech recognition toolkit see http://

wwwhome.cs.utwente.nl/~huijbreg/shout/index.html

8

XML Information Retrieval (IR) system [29]. The main features supported by
PF/Tijah include the following:

• Retrieving arbitrary parts of textual data, unlike traditional IR systems for
which the notion of a document needs to be defined up front by the appli-
cation developers. For example, if the data consist of scientific journals one
can query for complete journals, journal issues, single articles, sections from
articles or paragraphs without adapting the index or any other part of the
system configuration;

• Complex scoring and ranking of the retrieved results by means of so-called
Narrowed Extended XPath (NEXI) [30] queries. NEXI is a query language
similar to XPath that only supports the descendant and the self axis step, but
that is extended with a special about() function that takes a sequence of nodes
and ranks those by their estimated probability of relevance to the query;

• PF/Tijah supports incremental indexing: when new ASR fragments are added
to the database, their text will be automatically indexed by PF/Tijah, without
the need to re-index the entire database from scratch;

• search combined with traditional database querying, including for instance
joins on values. As an example, one could search for programmes mentioning
“football” that are broadcast on the same channel as programmes mentioning
“crime”.

StreetTiVo inserts fragments containing the transcripts of ASR whenever
they are available. Therefore, they will not be nicely grouped per programme in
the database, nor will they be in chronological order. The combination XQuery
and NEXI text search enables StreetTiVo to search matching fragments, combine
the fragments with the same programme identifier, combine their scores (or take
the score of the best matching fragment), rerank programmes by the scores of
their fragments, and display the matching programmes along with their best
matching fragments: all of this is done in one query.

4 Next Steps

1. register−recording($channel, $startDT, $duration, $clntAddr)
2. start−asr($progID, $fragID, $start, $end)
3. report−finished−fragment($progID, $fragID, $clntAddr)
4. get−fragments($progID)
5. get−speech−text($progID, $fragIDs)

streettivo
P73

streettivo
P65

streettivo
P82

streettivo
P8

streettivo
P23

streettivo
P40 (keys [40,53])

streettivo
P54

Hash("bbc1_20080425_200000") => 42

5

5

5

43
1

4
3

1

4
3

1

Fig. 4. StreetTiVo architecture: P2P
model

Our next step in the development of
StreetTiVo is to replace the client-server
model with MonetDB/XQuery? [14],
which integrate the P2P data structure
Distributed Hash Tables (DHTs) into
XQuery (see Figure 4). A DHT [1, 3, 4,
6] provides (i) robust connectivity (i.e.,
it tries to prevent network partitioning),
(ii) high data availability (i.e., prevent
data loss if a peer goes down by au-
tomatic replication), and (iii) a scal-
able (key, value) storage mechanism with
O(log(N)) cost complexity, where N is

9

the number of peers in the network. A number of P2P database prototypes
have already used DHTs [5, 7, 8, 10, 11].

In a StreetTiVo system using a DHT model, peers are managed by a DHT
ring. There is no single StreetTiVo coordinator. All peers are unreliable and
each can be both a coordinator and a client, thus, each peer must additionally
support the functions provided by the coordinator, as discussed in Section 3.
The process to collectively speech extraction using ASR is similar as in the
client-server model, except several small changes:

Example 2. Figure 4 shows an example scenario, in which three peers N65, N73
and N82 will record the TV program with progID=“bbc1 20080425 200000”.
All participants use the same hash function to calculate the hash of the progID,
which is 42 here. Since the peer P40 is responsible for keys [40, 53], it is chosen
as the coordinator for this TV program. The participating peers register the
recording at P40 (Step ¬). Generating ASR tasks is still done by the (temporary)
coordinator, P40. When a peer finished an ASR task, it reports this at the
coordinator (Step ®), but without sending the extracted text. All participants
will repeat steps ¯, and ® to process more fragments, until there are no more
ASR tasks. Finally, the participants exchange the ASR results by first finding
the owner of each fragments from the coordinator (Step °), and then retrieving
the missing ASR results from each other (Step °).

Note that, in the DHT model, the availability of the recording meta-data
(i.e., the recording elements maintained by a coordinator as discussed in Sec-
tion 3) is guaranteed thanks to the automatic replication facility provided by
the underlying DHT network, that is, all data on a peer managed by the DHT
network are replicated on the peer’s predecessors and successors. Thus, if peer
P40 would fail in our example, all request with key 42 would be routed by the
DHT network to P23 or P54. Also note that, the ASR results are not managed
by the DHT network. Basically, all StreetTiVo peers can retrieve these data, but
only the peers that have recorded the particular TV program can display the
video. The availability of the ASR results is affected by the number of partici-
pants (more participants ⇒ higher availability). However, this is not a crucial
issue, since every StreetTiVo peer is able to run ASR on a missing fragments.

The challenges in integration of XQuery and DHT are:

(i) how a DHT should be exploited by an XQuery processor,
(ii) if and how the DHT functionality should surface in the query language.

LDA LDA

LDA

LDA M
onetD

B
/X

Q
uery

DHT 1

DHT 3

DHT 2

LDA

LDA

Peer 1

M
on

et
D

B
/X

Q
ue

ry

Peer 2

Fig. 5. tight coupling

In MonetDB/XQuery?, we propose to avoid any
additional language extensions, but rather introduce
a new dht// network protocol, accepted in the desti-
nation URI of fn:doc(), fn:put() and execute at. The
generic form of such URIs is dht://dhtid/key, where
dht:// is the network protocol, dht id is the ID of the
DHT network to be used. Such an ID is useful to al-
low a P2P XDBMS to participate in multiple (logical)

10

DHTs simultaneously (see Figure 4). The key is used to store and retrieve values
in the DHT.

In the architecture shown in Figure 4, we run the DHT as a separate pro-
cess called the Local DHT Agent (LDA). Each LDA is is connected to one
DHT dht id. We propose a tight coupling between the DHT network and the
XDBMS [14], in which each DHT peer uses its local XDBMS to store the data
(i.e. XML documents) and the local XDBMS uses its underlying DHT network
to route XQuery queries to remote peers for execution (i.e. pass XRPC requests
to the LDA). A positive side-effect of this tight coupling is that the DBMS gets
access to the information internal to the P2P network. This information (e.g.
peer resources, connectivity) can be exploited in query optimization. To realize
this coupling, we need to extend the DHT API (put() and get()) with one new
method: xrpc (key, q, m, f(ParamList)) : item()*, where f(ParamList) is the
XQuery function that is to be executed on a remote DHT peer determined by
key. The parameters q and m specify XQuery module, in which the function fr

is defined and the location of the module file. With this method, an XRPC call
on a peer p0 to a dht://dhtx/keyy URI is handled as follows:

1. The XRPC request(q, m, f, ParamList) is passed to the Local DHT Agent
ldax

0 of p0, which in turn passes the request to the DHT network dhtx.
2. The DHT dhtx routes the request using the normal DHT routing mechanism

to the peer pi responsible for keyy.
3. When the LDA ldax

i on pi receives such a request, it performs an XRPC call
containing the same request to the MonetDB/XQuery instance on pi.

4. When ldax
i receives the response message, it transports the response back

via dhtx to the query originator p0.

Use Cases. Below we show how two main StreetTiVo functions can be imple-
mented as XQuery module functions, which then can be executed using XRPC
and the tightly coupled DHT semantics.

(i) Collaborator Discovery. In StreetTiVo, every TV program has a unique identi-
fier progID, and for each recorded TV program a recording element is maintained
by the peer responsible for the key hash(progID) with lists of participants and
fragments. If a peer is going to record the TV program “bbc1 20080425 200000”,
it should register the recording at the coordinator of this TV program. This can
be done by the following XRPC call:

import module namespace stv = “streettivo” at “http://example.org/stv.xq”;

let $key := hash(“bbc1 20080425 200000”),
$dst := fn:concat(“dht://dhtx/”, $key)

return execute at {$dst} {stv:register-recording(bbc1, “2008-04-25T20:00:00”, “1H”, “x.example.org”)}

(ii) Distributed Keyword Retrieval. Assume a StreetTiVo user wants to search
in today’s newscast “bbc1 20080425 20-0000”, he/she has recorded, for video
fragments that were about the situation in Tibet, but the ASR results are not
completely available (yet) on his/her local machine. Then the search request
might be sent to other StreetTiVo peers that have recorded the same newscast.

11

The following pseudo-code first retrieves the list of fragments from the coordina-
tor, and then sends a search request to each peer that owns ($frags//owner/@host)
the ASR results of a fragment:

import module namespace stv = “streettivo“ at “http://example.org/stv.xq“;

let $key := hash(“bbc1 20080425 200000“),
$dst := fn:concat(“dht://dhtx/“, $key)
$frags := execute at {$dst} {stv:get-fragments(bbc1, “2008-04-25T20:00:00”}

return for $p in $frags//owner/@host return
execute at {$p} {stv:search(“situation in Tibet”)}

5 Conclusion

In this paper, we have described StreetTiVo, a P2P Information Retrieval sys-
tem that enables near real-time search in video contents by just using existing
hardware in the living rooms to collectively run compute-intensive video analysis
video content analysis tools.

Thanks to its implementation in a high-level declarative database language,
it is straightforward to extend StreetTiVo with other types of functionality. We
plan to complement the current media analysis with image processing techniques
to automatically detect celebrities in news broadcasts or goals in soccer matches.
Maybe even more interesting is that StreetTiVo users can also easily share their
own human made annotations. For example, people usually schedule a recording
several minutes before/after the start/end of the to be recorded TV program,
to prevent missing part of the program. If just one StreetTiVo user has anno-
tated the exact start/end timestamp of the TV program, the information can
be shared in the platform with other StreetTiVo users who have recorded the
same program, and the unnecessary parts of their recordings can be removed
transparently.

6 Acknowledgement

The authors would like to thank Marijn Huijbregts for creating the SHoUT ASR
toolkits, Erwin de Moel for developing the GUI for Windows Vista Media Center,
Henning Rode and Jan Flokstra for their contribution to PF/Tijah, and Niels
Nes, Matthijs Mourits and Roberto Cornacchia for their help in organizing the
digital video recording. MultimediaN is funded by the Dutch government under
contract BSIK 03031.

References

1. Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Sys-
tems. In: CooplS. (2001)

2. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, Decentralized Object Location,
and Routing for Large-Scale Peer-to-Peer Systems. In: Middleware. (2001)

3. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable
Content-Addressable Network. In: SIGCOMM. (2001)

12

4. Stoica, I., et al.: Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. In: SIGCOMM. (2001)

5. Huebsch, R., et al.: Querying the Internet with PIER. In: VLDB. (2003)
6. Rhea, S.C., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling Churn in a DHT. In:

USENIX Annual Technical Conference, General Track. (2004)
7. Rao, W., Song, H., Ma, F.: Querying XML Data over DHT System Using XPeer.

In: GCC. (2004)
8. Bonifati, A., Chang, E.Q., Lakshmanan, A.V.S., Ho, T., Pottinger, R.: HePToX:

marrying XML and heterogeneity in your P2P databases. In: VLDB. (2005)
9. Rhea, S., Godfrey, B., Karp, B., et al.: OpenDHT: a public DHT service and its

uses. In: SIGCOMM. (2005)
10. Huebsch, R., Chun, B.N., et al.: The Architecture of PIER: an Internet-Scale

Query Processor. In: CIDR. (2005)
11. Karnstedt, M., Sattler, K.U., et al.: UniStore: Querying a DHT-based Universal

Storage. Technical report, EPFL (2006)
12. Zhao, B.Y., et al.: Tapestry: A Resilient Global-scale Overlay for Service Deploy-

ment. IEEE J-SAC 22(1) (January 2004)
13. Rhea, S., et al.: Fixing the Embarrassing Slowness of OpenDHT on PlanetLab.

In: USENIX WORLDS’05. (2005)
14. Zhang, Y., Boncz, P.: Integrating XQuery and P2P in MonetDB/XQuery?. In:

EROW. (Januari 2007)
15. Boag, S., et al.: XQuery 1.0: An XML Query Language. W3C Candidate Recom-

mendation 8 June 2006
16. Boncz, P., et al.: MonetDB/XQuery: A Fast XQuery Processor Powered by a

Relational Engine. In: SIGMOD. (June 2006)
17. Zhang, Y., Boncz, P.: XRPC: Interoperable and Efficient Distributed XQuery. In:

VLDB. (September 2007)
18. Zhang, Y., Boncz, P.: Distributed XQuery and updates processing with heteroge-

neous XQuery engines. In: SIGMOD. (2008)
19. Huijbregts, M., Ordelman, R., , de Jong, F.: Annotation of heterogeneous multi-

media content using automatic speech recognition. In: SAMT. (December 2007)
20. Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: PFTijah: text search in an XML

database system. In: OSIR. (August 2006)
21. de Vries, A., Eberman, B., Kovalcin, D.: The design and implementation of an

infrastructure for multimedia digital libraries. In: IDEASapos. (July 1998)
22. Chamberlin, D., et al.: XQuery Update Facility. W3C Working Draft 11 July 2006
23. Onose, N., Siméon, J.: XQuery at your web service. In: WWW. (2004)
24. Re, C., et al.: Distributed XQuery. In: IIWeb. (September 2004)
25. Thiemann, C., Schlenker, M., Severiens, T.: Proposed Specification of a Distributed

XML-Query Network. CoRR cs.DC/0309022 (2003)
26. Mitra, N., Lafon, Y.: SOAP Version 1.2 Part 0: Primer. W3C Recommendation

24 June 2003 http://www.w3.org/TR/2003/REC-soap12-part0-20030624.
27. Fernández, M., et al.: XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C

Recommendation 23 January 2007 http://www.w3.org/TR/xpath-datamodel.
28. Grust, T., Sakr, S., Teubner, J.: XQuery on SQL Hosts. In: VLDB. (2004)
29. List, J., et al.: Tijah: Embracing information retrieval methods in XML databases.

Information Retrieval Journal 8(4) (2005) 547–570
30. O’Keefe, R.A., Trotman, A.: The simplest query language that could possibly

work. In: INEX. (2004)

