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ABSTRACT

Efficient, flexible, and scalable integration of full text infor-
mation retrieval (IR) in a DBMS is not a trivial case. This
holds in particular for query optimization in such a con-
text. To facilitate the bulk-oriented behavior of database
query processing, a priori knowledge of how to limit the
data efficiently prior to query evaluation is very valuable
at optimization time. The usually imprecise nature of IR
querying provides an extra opportunity to limit the data by
a trade-off with the quality of the answer. In this paper
we present a mathematically derived model to predict the
quality implications of neglecting information before query
execution. In particular we investigate the possibility to
predict the retrieval quality for a document collection for
which no training information is available, which is usually
the case in practice. Instead, we construct a model that can
be trained on other document collections for which the nec-
essary quality information is available, or can be obtained
quite easily. We validate our model for several document
collections and present the experimental results. These re-
sults show that our model performs quite well, even for the
case were we did not train it on the test collection itself.
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1. INTRODUCTION

In the field of information retrieval (IR), not only the need
exists for a system with high precision and recall values,
i.e. high retrieval quality (concerning the information need
of a user), but also with a low response time. However, in
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general, the less time we spend on analyzing our document
collections, the worse our precision and recall values will
be. The past years database research has shown interest in
applying database technology in new domains. The seamless
integration of IR functionality in a DBMS is one of these new
directions. Though integration of IR in a DBMS obviously
has several advantages, certain problems still need to be
solved. Query optimization, i.e. finding the most efficient
way to process a query, is one of these areas. The work
presented in this paper is positioned in this area.

In the field of database technology, trade-offs between dif-
ferent parameters, such as query optimization cost and re-
sponse time, is a cornerstone of research [27]. For example,
query optimizers do not search for an optimal query plan
but for a good query plan that can be found quickly.

We take a ‘database approach’ to information retrieval
17, 11, 12, Iq, @3], i.e., we do not tie our retrieval model
onto a physical data structure, but specify a retrieval model
in a declarative way. The information need of a user is repre-
sented as an IR query (using natural language), which con-
sists of a set of keywords entered by a user. In our system,
this keyword set is modeled as a unary database relation,
which is used as a parameter in a database query expres-
sion that represents the actual retrieval request. Terms ex-
tracted from documents to be indexed are represented as a
binary relation COLL(doc, term), in which term is a term
that appears in document doc. At database construction
time, two relations with statistics are derived from this re-
lation: TF(doc, term, tf), containing the term frequency
per unique document-term pair, and DF (term, df), contain-
ing the document frequency per term.

To answer an IR query, tuples of the TF and DF relations
are evaluated. Evaluating the relations completely slows
down responsiveness. Neglecting parts of the DF relation,
and correspondingly of the TF relation, will improve the re-
sponse time but will decrease the quality of the output of
a query. Given the imprecise nature of IR queries, insight
in the trade-off between response time and quality is useful
in building IR systems but also for the user. The user can
set threshold values for these parameters, which is a way to
express what quality or response time is acceptable. For ex-
ample, on the one hand, a user may tell an IR system that



the user wants an answer within x time units for a query.
The system in its turn can tell the user what quality the
user may expect if the response time should be within x
time units. On the other hand, the user may also specify to
the system what quality is acceptable for him/her.

This paper is devoted to the quantitative aspects of the
trade-off between response time and output quality in the
context of information retrieval. We present the results how
to extrapolate the properties of the trade-off obtained on a
certain data set, to another data set which was not involved
in the ‘training’ of the trade-off parameters.

Our approach is based on the following three principles.
Firstly, we are interested in top-N queries, a very common
form of IR queries. Therefore, we adopt the precision as the
basis for our quality notion. To be more precise, we use the
average precision, since this metric also includes positional
information and not just whether a certain fraction of the
top-N is relevant. We do not use recall as our quality metric,
since it is too much dependent on N. Note that the recall can
always be increased up to 100% by choosing N large enough.
Secondly, we choose the terms with highest document fre-
quencies to be the part we neglect during query processing,
instead of just a random subset of the data. These terms
are considered to be the least discriminative and also provide
the numerically least significant per-term contribution to the
score of a document in our score function. This means that
these terms usually have the least significant impact on the
final ranking of an arbitrary document. Furthermore, these
terms occupy the most space in the TF relation, so ignoring
these terms delivers the largest cost reduction. To be more
precise, our model uses the fraction of terms with lower doc-
ument frequencies (i.e., the terms that are not ignored) as
its main steering variable. We refer to [2, [l]] for a more elab-
orate description of the underlying fragmenting approach.
And, thirdly, we do not try to estimate the quality behav-
ior for each particular query but the quality behavior of the
system in general. Therefore, we based our model on the
mean of the average precision over a set of queries, instead
of just the average precision for a single query.

Given these three choices, we first constructed a model for
the simple case. This model can be trained, using the least
mean square (LMS) method, on the same collection as one
wants to predict the quality for. We call this model, the first
order model. Next, we present a generalized, second order,
model that uses the LMS method on the trained parameters
of the first order model of a set of training collection to
estimate the parameters for the first order model of the test
collection. This estimated first order model allows us to
predict the quality behavior for that test collection.

This brings us to the main reason for our interest in the
cost-quality trade-off in general and its application in inte-
grating IR seamlessly into a database environment [I7, L1,
19, 10, 05]. In database query processing, one prefers to
work set-at-a-time instead of element-at-a-time. Therefore,
traditional IR top-N optimization [23, B, @, 9] techniques
are sometimes not easy to incorporate in a DBMS [2]. The
ability to predict during query optimization which parts of
the data set can be ignored — given the knowledge of the
related quality implications — would therefore be very in-
teresting. In practice one usually has no significant quality
information available for the entire data set, say the docu-
ment collection statistics in a web search engine. However,
for a small (sub)set one might be able to get good relevance

judgments given a certain set of representative queries (for
instance: the Web TREC plus accompanying queries and
relevance judgments). So, it would be useful if one could
use this well-documented data set to train a quality model
and then transfer the obtained properties to the general case.
Our second order model provides precisely these generaliza-
tion properties.

Furthermore, we are not just interested in transparently
integrating an IR system in a DBMS, but in a parallel main-
memory DBMS, to investigate the presumed advantages of
such a system for IR, and multi-media retrieval in general.
Main-memory processing requires the data to be fragmented
in advance at data base design time. Therefore, we impose
the even higher restriction that we want to be able to model
the cost-quality trade-off without detailed knowledge of the
actual data. We assume the availability of only limited in-
formation, such as the cardinality of certain relations in our
database.

In the IR-field, some research has been done on the re-
trieval cost-effectiveness trade-off [L6, [], B2]. However, we
go somewhat further by generalizing quality properties ob-
tained on a given set of collections to another collection, as
described above. In database research, the area of proba-
bilistic top-N query optimization [I3] closely resembles the
basic idea presented in this paper, with the restriction that
in that research only the optimization and query evaluation
algorithm are probabilistic in a certain sense but the answers
are still deterministic. As holds for all database query op-
timization in general, top-N optimization [6, [4, §] tries to
prune the search space as quickly as possible. In probabilis-
tic query optimization, one tries to guess which parts of the
search space are highly unlikely to be of importance to the fi-
nal answer, so one can ignore these parts as soon as possible.
In traditional database probabilistic top-N optimization, a
so called restart of the query processing is required when one
detects that the search space has been limited too much. In
the IR case, we cannot really detect that the search space
has been limited too much, since the absolute correctness
of the outcome of a query is not defined. We can only try
to estimate what the quality implications are of limiting the
search space.

2. DEFINITIONS

In this section, we introduce a whole series of mathemati-
cal definitions to allow better formalization of the approach
later on.

Figure [ contains the definitions of the set of collections C,
denoted by their respective names. To facilitate the discus-
sion of the training and testing of our model in the remainder
of this paper we also introduce the notion of a C*" and a
C''. How these subsets are constructed is described below.

Since we are interested in fragmenting our database we
introduce the fragmenting coefficient f. We limit the pos-
sible values of f to those in F', though in theory one could
take any 0 < f < 1. For convenience sake, we introduce the
following terminology:

DEFINITION 1. An f fragmented collection ¢ is a collec-
tion for which only the f-100% of the terms with lowest doc-
ument frequency are taken into consideration during query
evaluation (i.e. ranking).

For each collection ¢ € C (f fragmented, where applica-
ble), we define several statistics and data structures (Figure



c = {FR94,CR,FBIS,FT,LATIMES}, c€C (1)
ctrain  C  C, a set of training collections (2)
clest C C, a set of test collections (3)
F = {0.9,0.925,0.94,0.95, 0.96, 0.97, 0.98, 0.985,
0.99,0.995,0.999} (4)
f € F (5)

Figure 1: Dataset and fragmenting definitions

tei = a term in collection ¢ (6)
Te = {terstezstess oy teis-oostng}y, ne =[Te|  (7)
dej = a document in collection ¢, dc; C Te (8)
D, = {dei,de2,des, -5 dejy ooy deipg} (9)
Tye = {tei,tea,tes, vy teiy-oosteme} C Te, (10)
where me = f - ne = | Tye|
tf i = term frequency for term t.; in document d.;(11)
TF. = {tfo;lie{l,... ,nchgje{l,... |Del}} (12)
tf cij
ntf i = et (13)
I Syt i
df .; = [{(tei,d)|tci € d € D} (14)
DFC = {dfciIVtci S Tc} (15)
df . ne
ndf,; = i where 7. = Y df (16)
© i=1

Figure 2: Collection statistic definitions

B) We distinguish n. unique terms after stemming and stop-
ping (Expr. [ and []). Note, that we have numbered the
terms on ascending document frequency, which we can do
without loss of generality (also see Expr. [[4). In an f frag-
mented collection ¢, we only use the m. = fn. first terms
(Expr. [[J). We model documents as the set of their unique
terms (Expr. B and {). For each unique document term
pair, we administer the number of times that that term oc-
curs in that particular document (Expr. [[1] and [[J). We also
compute a normalized version (Expr. [J) within the [0, 1]
range to facilitate a mathematically better founded score
function (see below). For each term, we store the num-
ber of documents it occurs in (Expr. [4 and [[§). As for
the term frequency, we also introduce a normalized version
of the document frequency (Expr. [[@). As mentioned, we
numbered the terms on ascending document frequency, so:
df op1 2> df .5, Vi € {1,... ,n. — 1}. Next to data sets we
also need queries (Figure B).

Q Cc T (17)
Q = {Q € Q}, the set of TREC topics/queries (18)
Qtrain C  Q, the set of training queries (19)
Qfest C  Q, the set of test queries (20)

Figure 3: Query related definitions

For convenience sake, we model our queries as sets, though
in reality the queries can contain multiple occurrences of the
same term. However, not modeling the queries with this
capability will not be a problem given our context. Again,
we already distinguish the notion of training and test queries
but defer the actual construction of these query sets to the
experimental sections below.

Since we need some sub expressions of the score function
used in our system (sometimes also known as ranking func-
tion), we have listed the relevant definitions in Figure J.

ntf ;s
Scij = 1+ ndfcz (21)
55(Q) = 3 log (seiy), where V = {ilte; € Q} (22)
eV
Sefi (Q) = Z log (scij), where V = {ilte; € Q Ai < m (R3)
i€V
Pei = ndf (24)
nc
Escij = Z Scij * Pei (25)
i=1
Escrij = Z Scij " Pei (26)
i=1
Escfij
nEsqrij = —— (27)
cfij EScij

Figure 4: Ranking related definitions

Expression is the score contribution of a term ¢ for a
document j, as used by our system to rank the documents.
The score contribution is motivated by the use of language
models for information retrieval, a recently developed ap-
proach to information retrieval that performs among the
best approaches in experimental evaluations [24, 21]. Ex-
pression PZ defines the score of a document given a query
@ by summing the logarithm of s.;; for each i. The re-
sulting algorithm is a member of the family of tf - idf term
weighting algorithms, which are used in many approaches
to ranked retrieval [25]. For the relation between language
modeling algorithms and the traditional tf - idf term weight-
ing algorithms, we refer to [20]. Expression B3 the variant
of the score function used in a fragmented case. For several
reasons we need a notion of the probability that a certain
term is term ¢ (Expression P4). The main reason to choose
the probability this way follows directly from the Zipfian be-
havior of natural language [28]. Based on this probability,
we can define the estimated values in expression Z3 and E@.
Expression E7 is a normalized version of expression Zg. The
use of these expressions is clarified in more detail below.

Finally, Figure @ shows the quality metrics we use.

ap.(Q) = average precision for query @ on collection ¢ &28)

apcf(Q)

average precision for query @ on f fragmented(29)

collection ¢ € C

> ap(Q)

map, = Qeglg‘ (30)
Z ap.;(Q)

map.y = eee 0] (31)

nmap.; = %Ij;cf (32)

Figure 5: Quality metric definitions

We base our aggregated quality measure on the average
precision. For those less familiar with IR terminology: the
average precision measure is a single value that is deter-
mined for each query. The measure corresponds with a user
who walks down a ranked list of documents and will only
stop after the user has found a certain number of relevant
documents. The measure is the average of the precision
calculated at the rank of each relevant document retrieved.
Relevant documents that are not retrieved are assigned a



precision value of zero. For example, if three relevant docu-
ments exist in the collection and they are retrieved at rank
4, 9, and 20, the average precision would be computed as
A5t 091 (1),

Since we are not interested in the quality behavior of just
a query in particular, we aggregate over a set of queries (Ex-
pressions and B1)). Furthermore, we are only interested
in relative changes in this aggregated quality measure, so we
use a normalized variant (Expression BJ).

Besides these model related definitions, we introduce the
denotation Z for the estimated counterpart of a certain vari-
able or parameter . The main reason for introducing this
denotation is the fact that we estimate several parameters
and variables in the remainder of this paper, so we need
the proper means to distinguish between the actual param-
eter/variable and its estimated counterpart. We use this
denotation recursively. For example, the estimated value of
an (already) estimated value T is written as 7.

To provide a good notion of the error of the models we
also define a relative error measure.

DEFINITION 2. The relative error ez of an estimalfed value

T of a variable or parameter x is defined as: ez = **
The advantage of this metric is that it can be pushed through
the normalization of a relative entity such as nmap.;.

3. FIRST ORDER APPROACH

In this section, we construct a model to predict nmap ., for a
given collection C that is f fragmented. We train the model
using a given set of queries Q"*". Once the model has been
trained, we test its accurateness on a set of test queries Q"'

3.1 Model

As stated above, we are interested in predicting nmap,;
when we know the value of f. Since we do not have any
illusion in solving the general problem of information re-
trieval, i.e. ranking documents perfectly, our only lead is
taking a closer look at our ranking method. Of course, no
ranking method is perfect, neither is the one we use. How-
ever, since a state of the art ranking performs clearly better
than just a random ordering of some documents, it clearly
does something in the right direction.

The ap.;(Q) for an arbitrary query @ can only change if,
as a consequence of decreasing f, a document that correctly
appears in the top-N swaps places with a document that
should not have been retrieved. In a more formal manner, let
us assume we have two documents j; and j2 with document
scores S¢j, and s, , respectively, such that sqj, (Q) > s¢, (Q),
for an arbitrary query ). The problem of interest then boils
down to the question what should happen to f to make
Sefis (Q) < Sefi, (Q), for that same query Q. Trying to come
up with an analytical solution for this question appears to
be very difficult. However, the main player in the ranking
is the score contribution of each individual term ¢ for an
arbitrary document j, sc;;. The remainder of this paper
demonstrates that taking sc;; as the basis for estimating
nmap,, works out quite well, and in contrast with using
Scf; is analytically manageable.

Since we are not interested in actual sc;; values but only
in its general behavior for ‘average’ queries and how it de-
grades for decreasing f we use nEs.yr;; instead. By taking
the expected value instead of the actual value, we abstract
from the special effects of just a particular query, likewise we

take the mean of the ap,;(Q), i.e. map,;. Dividing by Esc;;
normalizes the range between 0 and 1 abstracting from the
actual numerical range. Similarly, we normalize our quality
measure as well, resulting in nmap., as the actual quality
measure instead of ap;(Q).

Now, let us assume any change in nEs.s;; proportionally
effects nmap,;, in other words:

Ne,0 + Ne,inBscpiy = nmap.y (33)

This leaves us with the question what the influence of f
is on nEscfi;. The remainder of this subsection concerns
the actual construction of this model for nmap,, with f as
explaining variable.

We start with assuming that the df .; values are distributed
according to Zipf [2§]. We also assumed that the terms are
ordered ascendingly on their frequency, so: df .; < df .-
The ‘official’ Zipf’s law assumes a descending order on fre-
quency. Combining this information into one formula gives:
df ;i = 7257 where ac is the ‘constant’ in Zipf’s law, for a
certain collection ¢. Using expression this formula and the
fact that a sum over many small steps can be approximated
by an integral we can now rewrite definition B@:

Mme

me .
Escfij = E Scij * Pei = / Scij * ndfm. di
=1 K

i—1

e Qe .
= -— tf .. di. 4
/_1 e g A (30

Similarly, we can rewrite definition E3:
Ne
Escij = E Scij * Peci
=1

e Gc .
~ ZZl m + ntfcij di (35)

Next, we substitute expressions and BY in definition E7:

i
—  ntf,, di
- — 1 . cij
nBscrij = “me (it Lm - (36)

Gc .
/i:l =it + nif ;; di
Since we do not want to do expensive database accesses, we
do not know the value of each ntf ;. Furthermore, for our
quality model we are only interested in the global change of
the document scores, not in the change in scores of any spe-
cific document. Therefore, the normalized term frequency
nitf.;; might be approximated by ., which is the average
normalized term frequency of the document-term pairs in
the database. Given this assumption expression reduces
to:

/mc A i di
o1 (n—14+ 1)1 Ye

/nc e 4 di
L (m—itDr.

This effectively reduces our variant of tf - idf weighting to a
variant of idf weighting, which was motivated by a Zipf-like
distribution in [26]. Although we explicitly derive equation
B1 from our language modeling ranking algorithm, we hy-
pothesize that the same approximation holds for any term
weighting algorithm that includes an idf component. Evalu-
ation of the integral parts in expression B7 and some further

nESCfij ~ (37)



rewriting results in:

el c—me+1
nlscrij = %T;;mc _ G og(n N me + 1) —
YeTe  Qclogmne
N N

where: X = v.7ene—veTe+ac logne. Next, we substitute fn.
for m. and simplify the expression a bit, using the knowledge
that n. is quite large, resulting in:

YeTeNe Qe

nEscri; ~ ——f——

fij R ! R

Since, N depends mainly on 7. and n., the second term in
this sum will have negligible influence, reducing the basic

expression to:

log(1— /) = 15° (39)

cTeNe cTc
nEsepi; ~ L F=2X = poof + ¢en (39)
N N
where: @c0 = 15 and .1 = —*g<¢. For convenience
sake, we rewrite expression into the following form:
nBscrij & Ve (Peof +per) (40)
where:
’ TcTe
905,0 R ) ( )
’ Te
1 = —— 42
Pe.1 R (42)

Substituting this rewritten form into expression B3, our re-
lation of interest between nEscyr;; and nmap,;, gives:

Ne,0 + Ne,anbscpi; = nmap,.
= 0e,0 4 Ne1Ve (Peof + ©e1) = nmap,;

= e0 + Ve f & nmap ., (43)

where:
Ye,o0 = Me,o +778,1'cholc,1 (44)
Yei = NeaVePeo (45)

Note that expression 3 nicely fits the general observation
that the less terms (lower f) one takes into account, the
lower the answer quality (lower nmap, ) one should expect.

3.2 Experimental setu

Since our model (expression [IJ) is linear, we can use the
LMS (least mean squares) method to estimate the coeffi-
cients 9,0 and ;1.

The queries we used, are the 50 retrieval queries, also
known as topics in the IR field, from TREC-6. These queries
range in length from 9 up to and including 61 terms with an
average of 27 terms. This query length might seem unrealis-
tically large since queries typically entered by a user consist
of only a few terms. Note however, that many applications
exist in which the user does not enter the actual query that is
actually executed by the retrieval system. Examples of such
situations are: automatic query expansion (used by certain
relevance feedback and thesaurus exploiting techniques), or
searching for similar texts given an example text (one might
think of patent verification).

Since we need a training set O and a test set Q¢
of queries, we constructed two random subsets of Q. Both
subsets were constructed independently from each other by
picking a query from one of the 50 queries in Q with a uni-
form probability of 60%. This, of course, does result in

some overlap between Q™ and Q'**!, but since queries are
drawn from the same ‘virtual’ pool in real world applica-
tion we think this does not inflict a negative impact on the
quality of the results. Also, 50 queries as total query pool
is not very large so the larger the training and test sets, the
less statistical noise we get on the resulting nmap, which is
averaged over these sets.

The experimental training procedure we followed for each
collection ¢ € C is described in Figure B3

Step 1 Produce a ranked top-1000 for each query Q € Q™" on
collection ¢ in the normal manner (i.e. by taking all terms
into account).

Step 2 Compute the average precision ap.(Q) for each of the
queries of the previous step and compute map_ based on
the ap.(Q) values, according to definition BJ.

Step 3 Produce a ranked top-1000 for each query Q € Q™" on
collection ¢ for each f € F.

Step 4 Compute the average precision apcf(Q) corresponding to
each of the results of the previous step and compute map_ ¢
based on the ap.,;(Q) values, according to definition 1.

Step 5 Compute nmap,.; using definition B2.

Step 6 Compute Ec,o and ECJ using the LMS method on ex-
pression [, given the computed nmap_y.

Figure 6: 1™" order training procedure (for a given

collection ¢ € C)

After training our model on a per-collection basis (i.e.
determining v, , and v, ), we tested the model using the
procedure shown in Figure B.3 (again, for each collection
ce).

Step 1 Produce a ranked top-1000 for each query Q € Q™ on
collection ¢ in the normal manner (i.e. by taking all terms
into account).

Step 2 Compute the average precision ap.(Q) for each of the
queries of the previous step and compute map_ based on
the ap.(Q) values, according to definition BJ.

Step 3 Produce a ranked top-1000 for each query Q € Q™ on
collection ¢ for each f € F.

Step 4 Compute the average precision apcf(Q) corresponding to
each of the results of the previous step and compute map_ s
based on the ap.;(Q) values, according to definition 1.

Step 5 Compute nmap.; using definition B2

Step 6 Compute nmap.; for each f € F using expression [3,
given Ec,o and Ec,l'

Step 7 Compute the relative error between nmap,; and nmap, s
values using Definition B.

Figure 7: 1™*

lection ¢ € C)

order test procedure (for a given col-

For the interested reader, we have listed some key statis-
tics of the used document collections in the Appendix, in-
cluding the actual map, values.

3.3 Experimental results

In Figure B.3, we plotted the estimated nmap,; (i.e. mmap..;)
versus the measured nmap,.;. If our model were perfect, the
estimated values would be equal to their corresponding mea-
sured value (mmap,.; = nmap,;). We also included this ideal
line in the plot for reference.
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As one can see, all the data points are nicely grouped
along the ideal line for all collections. This observation is
supported by the relative errors plotted in Figure B-3.
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Note, both the values on the axes in Figure B3 are rela-
tive entities. This means they can range from 0 to 1, and in
practice actually do occupy this entire range indeed. Theo-
retically this is also the case for the ap however in practice
the ap hardly ever exceeds 0.4 for typical tf - idf based re-
trieval systems. Also note that a relative error ewmap,, = €
corresponds to a relative error emgp,, = e.

4. SECOND ORDER APPROACH

In the previous section, we trained the model parameters
on the same collection we wanted to predict the nmap for.
In reality one wants to predict the nmap for a collection for
which one has no relevance judgments available. This means
that it is impossible to measure the nmap in such a case,
taking away the possibility to train on the same collection
as one wants to predict the nmap for.

In other words, one would like to train the model param-
eters on some collection (or even collections) for which the
nmap can be measured, and then use this trained model on
another collection to predict nmap values.

In this section, we use two extra parameters, which also
follow nicely from our theoretical model. These two parame-
ters are used to add a second regression model to predict the
model parameters of the previous model. At a first glance,

this might seem very awkward, but we demonstrate that it
is in fact a quite intuitive approach that also provides quite
reasonable results.

4.1 Model
In a real world situation it is usually impossible to train the
first order model on the same collection ¢ as one wants to
predict the quality for, due to the absence of nmap, and
nmap,,; information on that collection c. So, one would like
to train the model on some other collection ¢’ # c.
Unfortunately, expression [ in Section B appears not to
work in this case. A closer look learns that the estimated
coefficients an and Jc’l differ significantly per collection. It
appears that these coefficients contain collection dependent
information, as is quite obvious from expression {4 and 3.
In these two parameter definitions, we do not know -,
7e,0, and 7c;1. Also, we do not know ¢/, o and ¢, exactly.
But, we know that ¢ o and ¢, ; are mainly determined by
ne and 7. (see expressions ] and f2), so we approximate
the formulas g4 and 3 by:

wo,0 +wo,1 - Te +wWo2 - Ne = Peo (46)
w10+ Wil Te+wi2 Ne = Y1 (47)

This completes the construction of our second order model,
which clearly captures the collection dependencies in .o
and ¥.,1 (and therefore in Ec,o and Ec,l).

Note that the expressions @@ and 7 are linear whereas
the expressions [l and fZ are not. We acknowledge that
this might be a very crude approximation. The main rea-
son to choose this approximation is the practical advantage
in the estimation of the parameters, since we can use the
LMS method. The use of two regression models in a nested
manner is not an uncommon statistical technique given the
type of situation we use it in (see [L§]). However, as approx-
imation this model, of course, has to prove its usefulness in
practice.

Recall from the definitions in Section P that 7. = |TF|
and n. = | T¢|, meaning we only need to perform count op-
erations to get this information. Since this requires practi-
cally no database accesses this fits in our requirement to use
this model during database design and query optimization.
Using these two cheap collection statistics, we can use the
expressions @ and [7, once their own coefficients have been
determined, to estimate Ec,o and %,1-

In the remainder of this section we will demonstrate that
the the two expressions [ and 1] indeed do allow training of
our model on collections ¢ € C™ such that C™"NC*** = ().

4.2 Experimental setup
To evaluate our second order approach we extend our first

order experimental setup as described in Subsection 2. We
now also split up our set of collections C in a set of training
collections C™™ and test collections C***.

Due to the number of parameters to be estimated in our
second order model, we need that |[C*"| > 3. Other-
wise, the system is underdetermined. For the special case
|C™"| = 3 the problem reduces to a system of three equa-
tions with three variables, which either has a unique de-
terministic solution or no solution at all. Since this latter
case might cause trouble, though chances that this will hap-
pen are very low and the LMS method is in fact perfectly
able to determine the solution if one exists, we require that
|Ct'rain| > 3.



To allow the most accurate training we looked only at
cases where |C'**| = 1 leaving 4 collections to train our
model on (which we do need anyway, as we just argued).
Consequently, we have 5 possible ways to divide C in a C!™*"
and C'"', by subsequentially taking each ¢ € C as test col-
lection (C'**" = {c}) and the remaining 4 as training col-
lections (C"™" = C — {c}). For a given partitioning of C
in C™" and C'** that way, we can train, and subsequently
test, our model. Figure -] describes the training procedure
we followed.

Step 1 Perform the first order training procedure (see Figure B2,
Subsection E) to compute Ec.o and EC,I for each collection
ce Ct,mm. '

Step 2 Get 7. and n. for each collection ¢ € C!".

Step 3a Use the results from Step 1 (Ec,o) and Step 2 (7. and
nc) in combination with the LMS method on equation f§
to estimate wWo,0, Wo,1, and wWo,2.

Step 3b Use the results from Step 1 (Ec,l) and Step 2 (7. and
ne) in combination with the LMS method on equation f1
to estimate wWy,0, W1,1, and Wy 2.

Figure 10: 2™? order training procedure (for a given

partitioning of C in C"™" and C'* where |C'**'| = 1)

Figure E4 describes the corresponding test procedure we
fOHOWGd, using the (wo,o, 5071,50,2) and (51,0, w11, 51,2) vec-
tors that were determined according to the procedure de-
scribed in Figure 2.

Step 1 Get 7. and n. for the test collection ¢ € C**,

Step 2a Substitute wp,0, Wo,1, Wo,2, Tc, and n. in expression

to compute Ec,(}'

Step 2b Substitute W10, W1,1, W1,2, T, and n. in expression f1

to compute Ec, 1-

Step 3 Perform the first order test procedure (see Figure B2,
Subsection B:J) for test collection ¢ € C"". However, now
use Ec,o and Ec’l in Step 6 instead of vao and Ecvl, re-
spectively.

Figure 11: 2™7 order test procedure (for a given

partitioning of C in C"™" and C'**' where |C'**!| = 1)

4.3 Experimental results

In Figure B we combined all five test cases, each represented
by their respective test collection. As before, we plotted the
nmap,; vs. nmap,y. We also included the ideal line where
TMAP . = NMAP ..

As expected the point clouds do not group as nicely along
the ideal line as in the first order case (Subsection B-J). How-
ever, as we can see in Figure |, the relative error stays within
25% in most of the cases. We find this quite acceptable,
given the fact we use only very little information in our
model (f, 7c, and n.). Furthermore, we stress on the fact
that the number of training collections is very low from a
statistical point of view.

A closer review of the log files of the first and second order
training and testing runs also learned us that the number of
50 queries in total, is very low as well (recall that we had to
do with these 50 queries for both the training and testing).

5. CONCLUSIONS AND FUTURE WORK
In this paper, we derived a mathematical model to estimate
the expected decrease in retrieval answer quality given that
we use only the fraction f of the terms with the lowest doc-
ument frequencies.
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Figure 12: 2"¢ order model test results, MMap.; Vs.
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We distinguished two major approaches, of which the sec-
ond was an extension of the first. The performed experi-
ments demonstrated that for the first approach, in which
we tested our model on the same collection as we trained its
parameters on, our model predicts the quality implications
of degrading f very well. The second approach attempted to
overcome the major drawback of the first approach. There
we trained the model on different collections than we wanted
to test it on, i.e. predict the quality for. We observed a sig-
nificant increase in the (relative) estimation error, which we
expected beforehand. However, the results are still interest-
ing, since the relative error stayed mostly within the 25%
range.

In the construction of our first order model in Section B,
we assumed any change in nEscs;; to effect nmap,; propor-
tionally (Expression B3). Given the rather good experimen-
tal results obtained with our first order model, we have no
reason to question this assumption on its practical effective-
ness. However, we certain are interested in a more formal



derivation of this relation, so it is certainly a candidate for
future research. Likewise, we have no reason to withdraw
the approximation of ntf ., by a constant ..

But for the approximation of the formulas and 3
(which in fact imply approximations of the Expressions [
and [f[2) by the formulas [ and f7] we are not so certain.
The results of the second order model can be considered
quite reasonable, given the fact that we wanted to use only
very little information, and that it was a first attempt to
predict retrieval quality using a model trained on other col-
lections. However, the results are not that good that we are
willing to accept the approximation blindly. Furthermore,
we did approximate a non-linear mapping by a simple lin-
ear one. Mathematically speaking, such an approximation
has a high chance of miss-fitting the original mapping quite
a bit. So, we certainly think this approximation should be
investigated in more detail in the future.

Furthermore, we want to stress that the statistical sta-
bility of our experiments seemed to have suffered somewhat
from the lack of data. This holds in particular for the ex-
periments we performed for the second order model. We
recommend to repeat these experiments with more and dif-
ferent document collections and more queries. Due to sev-
eral practical reasons, including the limited space we have
in this paper, we are not able to report any results on that
here. However, we are working on evaluation of our models
on the Web TREC datasets (1, 10 and, 100 GB). The cur-
rent queries can also be extended with the topics of other
TREC conferences (we only used the topics of TREC-6).

Finally, we plan to link our quality prediction model to
our cost model that also uses f as one of its main parameters
(also see [M]). This integration would indeed provide a di-
rect trade-off between the executions costs and the retrieval
quality, which we plan to incorporate into our DBMS.

An extended version of this paper is available as [3].
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