Score Region Algebra:
Building a Transparent XML-IR Database

Vojkan Mihajlovic Henk Ernst Blok

Djoerd Hiemstra Peter M.G. Apers

CTIT, University of Twente
P.O. Box 217, 7500AE Enschede, The Netherlands
{v.mihajlovic, h.e.blok, d.hiemstra, p.m.g.apersi@utwente.nl

ABSTRACT

A unified database framework that will enable better com-
prehension of ranked XML retrieval is still a challenge in the
XML database field. We propose a logical algebra, named
score region algebra, that enables transparent specification
of information retrieval (IR) models for XML databases.
The transparency is achieved by a possibility to instanti-
ate various retrieval models, using abstract score functions
within algebra operators, while logical query plan and op-
erator definitions remain unchanged. Our algebra opera-
tors model three important aspects of XML retrieval: el-
ement relevance score computation, element score propa-
gation, and element score combination. To illustrate the
usefulness of our algebra we instantiate four different, well
known IR scoring models, and combine them with different
score propagation and combination functions. We imple-
mented the algebra operators in a prototype system on top
of a low-level database kernel. The evaluation of the system
is performed on a collection of IEEE articles in XML format
provided by INEX. We argue that state of the art XML IR
models can be transparently implemented using our score
region algebra framework on top of any low-level physical
database engine or existing RDBMS, allowing a more sys-
tematic investigation of retrieval model behavior.

Categories and Subject Descriptors: H.2.3 [Languages]:
Query languages; H.3.3 [Information search and retrievall:
Retrieval models;

General Terms: Performance, Design, Experimentation,
Verification, Theory.

Keywords: information retrieval, databases, structured
documents, XML, region algebra.

1. INTRODUCTION

XML was initially developed as a standard for storing, car-
rying and exchanging data. With the rapid growth of data
stored in XML format, ranked information retrieval (IR)
from XML collections becomes a vital requirement. Several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM'’ 05, October 31-November 5, 2005, Bremen, Germany.

Copyright 2005 ACM 1-59593-140-6/05/0010 ...$5.00.

systems have been developed in recent years that address
this requirement.

1.1 From flat file to XML IR

An important class of XML IR systems is based on tradi-
tional (flat file) information retrieval methods (e.g., [21, 23,
28]) that represent a document as a “bag of words” [22] and
where in most cases inverted file structures provide the basis
for implementing a retrieval system. Although these systems
are faster and simpler than any DBMS, they have important
drawbacks when XML IR is being considered. Out of many
properties of traditional IR systems, we discuss only the fol-
lowing four:

e traditional IR systems lack the notion of data inde-
pendence [12]: any change in what constitutes a doc-
ument, or any change in document structure or used
retrieval model, will lead to system developers needing
to change major parts of the retrieval system

e traditional IR systems are developed for a simple query
language, consisting in most cases of a set of terms

e most traditional IR systems are retrieval model spe-
cific, i.e., the retrieval model (or a small class of similar
retrieval models) is hard-coded in the system

e traditional IR systems are developed for a specific stor-
age structure, in most cases inverted files.

Although the concept of data independence was not a too
big hurdle for the development of flat-file IR [19, 36], we
argue that it is important for the development of XML IR.
Unlike in the vast majority of flat file IR systems, where doc-
uments were the only units in which the user would search
for information or which user would obtain as answer from
the system, in XML IR the main focus is on nested XML el-
ements. Furthermore, the notion of document is blurred as
the whole collection of XML documents can be considered
as one huge XML document with an artificial root element.

In XML IR, the user can specify not only his information
need, but also where to search for information. This leads
to the introduction of the specification of search elements
in query languages used for the ranked retrieval on XML.
Most of the XML IR query languages use the W3C query
languages (XQuery [3] or XPath [8]) as a starting point and
extend them with IR-like search expressions. Typical exam-
ples are full-text search extension of XQuery [1], Narrowed
Extended XPath (NEXI) [33], and an extension of XQL, one
of the predecessors of XPath, named XIRQL [13].

Furthermore, hierarchical organization of XML documents
enables the distinction between search elements and answer

elements in XML IR, where both element types are not pre-
defined as in flat file IR (documents). Search elements are
elements where the user searches for specific information,
while answer elements are elements that the user would like
to obtain as an answer to a query. We illustrate an infor-
mation retrieval search over XML documents for the user
information need: ”I would like to find sections addressing
language models in an article that has an abstract discussing
information retrieval or a probabilistic database”. This in-
formation need can be expressed in NEXI [33] (which uses a
subset of XPath and extends XPath with an about function
for ranked retrieval and is adopted as an official query lan-
guage in the INitiative for the Evaluation of XML Retrieval
(INEX) [15]) as:

//article[about(.//abs, information retrieval)
or about(.//abs, probabilistic database)]
//sec[about (., language model)]

The example above introduces several additional query ca-
pabilities that are not recognized in flat file retrieval:

e The search for information can be performed in ar-
bitrary part of the XML document (or collection of
XML documents) denoted with tags, termed search el-
ements. In our example, search elements are ‘article’,
‘abs’ and ‘sec’.

e The search element is not necessarily an answer ele-
ment at the same time. Only ‘sec’ is a search and
answer element at the same time in the example query
(denoted with “.%).

e The user can perform searches in different XML ele-
ments and later combine them to get the answer ele-
ment. In our example information search is performed
in ‘abs’ elements using the terms “information retrieval”
and “probabilistic database” which are combined in an
OR expression.

The central part of any retrieval system is the retrieval
model used. Although many approaches exist for XML in-
formation retrieval, most of the XML IR approaches are
based on flat file tf.idf-like approaches [15]. For XML IR,
the retrieval model has to incorporate additional aspects.
We identify three aspects that a flexible XML retrieval sys-
tem should provide to support XML-IR queries like the one
above:

e element relevance score computation,
e element score combination, and
e clement score propagation.

We use the term element score to denote the value that
describes the estimated relevance of an element.

The first two aspects are inherited from the flat file IR
model, although the second aspect can also denote the com-
bination of scores for different search elements (see Sec-
tion 2.1). The third one, sometimes called “augmentation”
is XML specific and is recognized in the work of Fuhr and
GroBjohann [13] and Grabs and Shek [18], where the au-
thors specified weighting factors for upwards propagation of
scores in an XML tree representation. However, we think
that the concept of downwards propagation should also be
considered as, e.g., in our example we have to propagate rel-
evance scores from the ‘article’ element to the ‘sec’ answer
element.

1.2 Towards the database approach

Besides numerous query languages, different physical im-
plementations for ranked retrieval on XML have been pro-
posed, ranging from modified inverted file structures [17, 28]
to full database implementations [11, 16]. For each indexing
structure chosen for physical implementation, special algo-
rithms need to be derived to enable fast execution of XML
IR primitives. Whatever the primitives are, these algorithms
will be dependent on XML storage structure.

Therefore, besides the adaptation of traditional IR sys-
tems, we can identify the other class of XML IR systems
based on relational database technology. XML-IR database
systems use well established database operators and thirty
years’ experience in relational database management sys-
tems (RDBMS). RDBMS can be either enriched with an
IR-like front end (loosely-coupled) [29] or tightly-coupled
with IR search primitives [11, 13, 14], as recognized in [35].
Although relational systems are prevalent in the manipula-
tion of documents structured as relations, they have diffi-
culty handling nested structures such as XML. This is es-
pecially the case with handling containment relations (i.e.,
containment joins [24]), which are one of the basic operations
used in information retrieval. That is why most of XML-IR
database systems have so far been loosely-coupled systems.
Recently, numerous enhancements have been proposed for
handling containment relations, such as the staircase join
[20] and the multipredicate merge join [37], proving that re-
lational technology can handle efficiently queries over XML
data, including the containment queries.

The main characteristic of the database approach is a
strong separation between conceptual, logical and physical
levels [34]. By using different data models at each of those
levels, data abstraction is provided. For XML-IR systems,
following this separation in levels gives another, additional
advantage over flat file IR systems: by choosing the ap-
propriate level of abstraction for each database level, the
development of scoring techniques, handling structural in-
formation, is simplified, and kept transparent for the rest
of the system design, making it flexible with respect to the
query language and physical implementation used. Further-
more, the reasoning that can be made at the logical level
can be useful for query rewriting and optimization. Using
knowledge about the size of the operands and the cost for
the execution of different operators at the physical level we
are able to generate different logical query plans, speeding
up the execution and lowering the memory requirements for
query execution at the physical level.

Therefore, we identify the logical level as the central level
that should provide the transparency considering XML-IR
database systems. Unlike in the approach of Amer-Yahia
et al. [1], we want to integrate relevance score computa-
tions within the algebra. In [1] authors aimed to support
a full-text search extension to XQuery (based on full-text
query specification [6]), assuming that the scoring method
is retrieval model implementation dependent, abstracting in
that way from the problems of the XML IR database inte-
gration and of element score propagation and combination.
Our approach is closer to the approach of Fuhr et al. [13, 14],
where the authors developed an XML IR path-based algebra
and an XML IR query language named XIRQL. Unlike Fuhr
et al., we base our algebra on containment relations among
XML elements and not on the paths to XML elements, fol-
lowing the region algebra approaches [2, 5, 9, 31].

The basic idea behind region algebra approaches is the
representation of text documents as a set of regions (some-
times termed extents [5]), where each region is defined by its
start and end positions. The aim of the region algebra ap-
proaches is modeling search in (semi-)structured documents
using containment and set operators, The earliest region al-
gebra approaches were a PAT system presented in [31], and
the work of Burkowski [5] and Clarke et al. [9]. These ap-
proaches were later extended to support new operators, such
as positional inclusion and direct inclusion, by Navarro and
Baeza-Yates [2] and Consens and Milo [10].

To model three basic XML IR aspects, namely element rel-
evance score computation, element score propagation, and
element score combination, at the logical level of a database,
we extended the original region algebra approaches with
scoring operators and termed this new algebra Score Region
Algebra (SRA). The overall goal of the score region algebra
is to transparently model different aspects of query formu-
lation and search and answer element specification, and to
support different retrieval models with different parameter
specification applied to XML.

1.3 Outline

This paper is organized as follows. In the next section,
we specify score region algebra used to define a framework
for flexible and transparent XML ranked retrieval and il-
lustrate how different retrieval models can be instantiated
in score region algebra based on identified retrieval aspects.
We present the experimental setup, including a description
of our prototype system, and the evaluation results in Sec-
tion 3. The paper is concluded with a short discussion and
directions for future research.

2. TRANSPARENT LOGICAL ALGEBRA

In Section 2.1 we specify in more detail the three key
aspects of XML IR. Next, in Section 2.2 we present four re-
trieval models that we use. In Section 2.3 we define our score
region algebra (SRA) for use at the logical level of databases
to enable transparent specification of retrieval models.

2.1 Three aspects of XML IR

In XML IR query processing, three key aspects are iden-
tified: element relevance score computation, element score
combination, and element score propagation. To discuss
these aspects, we first identify the three basic entities in
a typical NEXI query expression. Recall our example query
from Section 1:

//article[about(.//abs, information retrieval)
or about(.//abs, probabilistic database)]
//sec[about (., language model)]

terms In our example query, we can identify six different
query terms: ‘information’; ‘retrieval’, ‘probabilistic’,
‘database’; ‘language’, and ‘model’.

answer elements We can distinguish three different struc-
tural constraints® (i.e., element or tag name specifi-
cations): ‘article’, ‘abs’, and ‘sec’. According to the

'Here we assume a strict interpretation of structural constraints,
although element names can be considered as a hint for the re-
trieval system. See, e.g., vague content-and-structure (VCAS)
queries in INEX [15].

NEXIT specification, the answer element is the last ele-
ment that has an about predicate specified, i.e., in our
example the ‘sec’ element.

search elements All other elements which are not answer
elements are called search elements. Within the search
elements, we distinguish two different kinds: the low-
est element inside an about, i.e., the last element in
the about path expression, and other elements. There
exists one special case where the lowest search element
inside an about is ¢.’, that refers to the search element
that directly precede the about clause. Thus, it can
happen that the search element is the answer element
at the same time (e.g., the 'sec’ element in our example

query).

In our example query, the search elements are: ‘arti-
cle’, ‘abs’, and ‘sec’. The lowest search elements inside

abouts are ‘abs’ and ‘., i.e., ‘sec’.

211 Element (relevance) score computation

The first task in XML ranked retrieval is to produce the
relevance score for all nodes in the XML collection match-
ing the lowest search element in each about. Following the
NEXI specification, we consider each term in isolation per
lowest search element in the respective about clauses. In
this section, we describe how to compute a score per search
element-term pair. The combination of these scores is dis-
cussed in the next section.

In the example query, relevance scores have to be deter-
mined for the ‘abs’ elements with respect to the four terms:
‘information’, ‘retrieval’, ‘probabilistic’, and ‘database’. For
the ‘sec’ element we have to compute scores for two terms:
‘language’ and ‘model’. By employing a retrieval formula
that specifies the relevance of an XML element given a query
term (see, e.g., Equation 1 in Section 2.2), we can compute
the ‘abs’ and ‘sec’ element relevance scores per term.

2.1.2 Element score combination

As about clauses can have more than one query term typ-
ically and as scores are computed on a per term basis, those
scores have to be combined on a per lowest search element
basis. Depending on the preferred behavior, this can be seen
as an OR or an AND combination. In our example query,
the first two about clauses contain two terms each. We can
interpret this either as ‘abs’ should be about ‘information’
AND ‘retrieval’ or ‘abs’ should be about ‘information’ OR
‘retrieval’. It is up to the implementer of a specific model to
make a choice, unless the user explicitly specified AND or
OR in the NEXI expression. Additionally, NEXI allows for
explicit specification of AND and OR combination of about
path expressions, as can be seen in our example query.

In a NEXI path expression that expresses an ancestor-
descendant relationship, in case of consecutive search ele-
ments, the ancestor search element can have multiple match-
ing descendant search elements. Propagating scores between
ancestors and descendants is called score propagation. This
aspect is discussed in the next section.

2.1.3 Element score propagation

Although it might seem unnecessary in our example as we
have used it until now, the necessity of the propagation to
the common ancestor element can be seen in the case of the
following, different NEXI query:

//article[about(.//abs, information retrieval) and
about(.//kwd, probabilistic database)]

To perform an AND-like combination of ‘abs’ (abstract) and
‘kwd’ (keyword) elements in this case, we need to propagate
the scores to the common ancestor ‘article’ element.

We can define the element score propagation as the trans-
lation of scores to the ancestor or descendant elements where
these scores can be combined based on the type of combi-
nation explicitly specified in NEXI. We can distinguish be-
tween two types of score propagation: upwards and down-
wards score propagation. For our original example query,
the score should be propagated upwards from ‘abs’ to ‘arti-
cle’ elements that matches the upwards score propagation.
This scenario happens if the NEXI predicate has logically
combined multiple abouts, as in our NEXI query example
from Section 1:

//article[about(.//abs, information retrieval) or
(.//abs, probabilistic database)]

The second scenario is when the about clause contains at
least one element selection. In the example with two element
selections in the about:

//article[about(.//sec//p, information retrieval)]

scores need to be propagated from ‘p’ (paragraph) elements
to ‘sec’ (section) elements and then to ‘article’ elements.

In the case of downwards propagation scores should be
propagated from search elements to the contained search or
answer elements. In our example in Section 1, the scores are
propagated from the search elements ‘article’ to the ‘sec’ el-
ements which are answer elements. If the ‘sec’ element is
not the answer element, i.e., if we have //sec//p[about(.,
language model)] instead of //seclabout(., language model)]
in our query example, the scores should be further propa-
gated downwards from ‘sec’ to ‘p’ elements.

2.2 Retrieval models

In this section we describe four state of the art retrieval
models to test the transparency of our approach: statisti-
cal language models [22], where we use two types, language
models with and without smoothing, the Okapi (INQUERY)
model [7, 30], the tf.idf model [32], and the Garden Point
XML (GPX) model [16]?.

In these approaches, the relevance score of a document
is based on the fact that documents that contain more oc-
currences of a term, i.e., have higher term frequency, are
more important to the user. Additionally, to incorporate
the significance of a term for ranked retrieval, these mod-
els also include background statistics. Background statistics
are based on a number of terms in the whole collection, i.e.,
collection frequency, or number of documents containing a
term, i.e., document frequency.

Language model In the language model approach
(with smoothing), the relevance score of the document (doc)
given the query terms (tms, i = 1,2,...,n, tm; € ¢q) can be
computed as:

where n is the number of terms (tm;) in the query (gq),
te(tms, doc) denote the number of occurrences of a term tm;

2Although this is not a well known retrieval model we have chosen
it as it is among the most effective ones presented at INEX 2004
workshop: http://inex.is.informatik.uni-duisburg.de:2004.

in the document doc, len(doc) is the length of the document
(i.e., the number of terms it contains), and X is a smoothing
parameter (ranging from 0 to 1) that specifies the relative
influence of the foreground and background statistics in the
final document ranking score computation. The language
model approach without smoothing is just a special case of
language modeling approach where A\ = 1.

Okapi The Okapi (INQUERY) retrieval model is based
on the BM25 algorithm [30]:

n

Z(l N —dc(tm;i) + 0.5

S(d
(doclq) = de(tm;) 4+ 0.5

(k1 + 1) - te(tmy, doc)

k(1 — b) + blentdocdy 4 te(tm,, doc)

where N is the total number of documents in the collec-
tion, dc(tm;) is the number of documents in the collection
that contain term tm;, avdl is the average document length,
te(tms, q) is the number of terms ¢m; in the query ¢, and
k1 (between 1.0 and 2.0), k3 (between 0 and 1000), and b
(=~ 0.75) are constants.

In the INQUERY system, several functions are imple-
mented to combine the scores of single term relevance score
computations, such as sum, multiplication, probabilistic in-
terpretation (see [7]).

tf.idf For the tf.idf approach, we used the basic tf.idf
formula specified in [32]:

(k3 +1) - te(tmi, q)
ks + te(tmi, q)

) (2)

N

S(d te(tm;, d n———
(doclg) = Z e{tmi, doc) - dec(tm;, doc)

i=1
The parameters of the formula are the same as in Equa-
tions 1 and 2.
GPX Finally, the basic formula in the GPX approach
defines the relevance score of the document with respect to
the query terms as>:

2L te(t)
A 12 c(tmg, el) (4)

te(tmy, col)

®3)

S(doclq) =

where A is the parameter with a value between 3 and 10.
In the next section, after introducing score region algebra,
we explain how these IR models can be applied to SRA.

2.3 Score Region Algebra

The application of the idea of text regions to XML docu-
ments is straightforward. Each XML document can be seen
as a sequence of tokens, e.g., start tags, end tags, terms,
etc., where each token can be indexed to model the XML
tree structure (see, e.g. [26]), represented as a set of text
regions. To be able to represent XML properly, the defi-
nition of a region in score region algebra is richer than in
previous region algebra approaches. In the specification of
our SRA data model we distinguish between different node
types in XML documents in order to provide a uniform plat-
form for defining the region algebra operators. Furthermore,
we enrich the original model with a region score attribute
and introduce a number of operators for score manipulation.
The logical data model of SRA is based on region sets, where
each region is defined below.

DEFINITION 1. The SRA data model is defined on the do-
main R which represents a set of region tuples. Region tu-
pler (r € R), r = (s,e,n,t,p), is defined by these five

3Note that the original formula defines score computation for leaf
XML elements (el) instead of documents [16].

Table 1: Score region algebra operators.

[Operator | Operator definition
On=name,t=type (R) rlr € RAn=mnameAt = type}
Tonum (R1) rijr1 € Ri Adra € C Aty = term Are2 <11 An2 onum}, where o € {=,<,>,<,>}
R1 O R2 rilr1 € Ri Adra € Ro Ara <11}
R1 C R2 ri|lr1 € Ri Adra € Ro ATy <12}
R1 Jp Ro r1 € R1 A (s,e,n,t) :== (s1,e1,n1,t1) At1 = node A ta = term Ap := fo5(r1, Ra

R1 » Ro

r1 € R1 A (s,e,n,t) :== (s1,e1,n1,t1

)
)

)
At1 = node Ata =node Ap:= fp(r1, R2)

R1 Mp Ro

r1 € Ri Ar2 € Rp A(s1,e1,n1,t1) = (s2,e2,n2,t2) A (s,e,n,t) := (s1,e1,n1,t1) Ap:=p1 ®p2}

R Up Ro

r
r

R; 4 R2 rlr1 € R1 A (s,e,n,t) := (s1,e1,n1,t1) At1 = node Ata = node Ap := fq(r1, R2)
r
T

r1 € Ri Ara € Ro A ((s,e,n,t) := (s1,e1,n1,t1) V (s,e,n,t) := (s2,e2,n2,t2)) Ap:=p1 Dp2}

attributes: region start attribute - s, region end attribute -
e , region name attribute - n, region type attribute - t, and
region score attribute - p. Region start and end attributes
must satisfy ordering constraints (e; > s;). If < denotes the
equivalence r; < r; & s; < s; < e; < ej, we can state that
for two arbitrary regions in SRA it is either rs < r;, ri =1rj,
orr; < ri. Furthermore, each region in the SRA data model
1S unique.

The semantics of region start and region end attributes
are the same as in other region algebra approaches: they
denote the bounds of a region. The region name attribute
is used to denote node names, content words, element at-
tribute names, element attribute values, etc. To distinguish
between different name “roles” in XML we used the region
type attribute. We use node for the element node in XML,
text for the text node, term for the term present in a text
node, etc. Finally, the region score information item is used
to specify the relevance score of a region with respect to a
given query.

The aim of SRA is to supports ranked retrieval as a part
of the algebra, and not as a side-effect, which distinguishes
it from other region algebra proposals that include ranked
retrieval (e.g., [5]). The basic SRA operators are defined in
Table 1. In the specification of region algebra operators we
use R; (i = 1,2,...) to denote the region sets, their corre-
sponding non-capitals to denote regions in these region sets
(r:), and corresponding indexed non-capitals to denote re-
gion attributes (s;, ei, ni, ti,p;). With C' we denote the set
of all regions in the collection and with Root we denote the
(artificial) root element for the whole collection.

The operators in SRA take one or two region sets as
operands and produce a region set as result. The first four
operators enable Boolean selection of regions based on their
attributes or containment relations. The selection opera-
tor, o, has two variants. The first one (0n=name,t=type(R))
specifies the selection based on name and type attributes®.
The second selection operator selects regions that contain a
term region in which content (casted to a number) is equal,
greater or equal, less or equal, greater or less than the num-
ber specified (num). The last two operators select regions
based on their containment relations, i.e., regions that con-
tain other regions (1), or regions that are contained in other
regions (C).

The other five operators specify score manipulation among
regions. To enable the instantiation of different retrieval
models, they are defined using three abstract scoring func-
tions: f4, f», and f4, and two abstract operators: ® and

4Leaving the selection criterion for one of the attributes unspeci-
fied corresponds to a wild-card, i.e., 04—y o4e Will select all regions
that have an XML element node type, regardless of their name
attribute.

@. These abstract functions and abstract operators model
three aspects of XML IR. They are specified based on auxil-
iary functions that count the number of regions in the region
set R, denoted with |R|, compute the size of the region r:
size(r) = e — s — 1, and compute the average size of the
regions with the region name n in the collection, denoted
with avg_size(n).

2.3.1 Element (relevance) score computation

Operator), models element relevance score computation,
i.e., the concept that the search elements (regions in the first
operand) should contain the term (region). Therefore, the
function f5(r1, R2), applied to a region 71 and region set
R2, should result in the numeric value that specifies the rel-
evance of the region (element) r1 given the term regions in
R that it contains. Following the specification of four mod-
els in the previous section, we have four specifications of this
abstract function. We assume that the default score value
for element and term regions in all models is 1.0, except for
the basic GPX model where element regions have the default
score value of 0.0.

The language model (LM) can be instantiated based on
Equation 1 and auxiliary functions as:

| Ra|

ZTQGRQ |ro<ry P2
size(Root)

FEM(r1, Re) = p1- (A +(1 =2) ()

size(r1)
For a language model without smoothing, the relevance score
computation function is specified using the same equations
where A\ = 1.

In the Okapi system we simplify the Equation 2 by remov-
ing the third fraction in the sum as it is based on a size of the
query and is not supported in other models. The complex
function f5 is specified as:

fgkapi(rlyR2) =p1-
{reCln=n}—|{reCln=n1A3ro € RoArag <r1}|+0.5
{reCln=n1A3ro € RoArg <71}/ +0.5

(kl + 1) : ZrzeRQ\r2<r1 P2

ln‘

’ size(r (6)
kl((l - b) + baug-siiet'))il)) + Z’Fg ERg|ro <71 p2
For the tf.idf approach we have :
SEAAE G Ry) = p1 - Z P2
ro€Rg|ro <]
{r € C|ln =mn1}|
(7)

-ln
{r € Cln=mn1 A3rs € Ra Ara <711}

The element relevance score computation in GPX model
is specified based on Equation 4 as:

Z7'261?2\7'2<7“1 P2 (8)

FSFX(r1, Ra) = p1 op
| Rz

In our experiments we use two variants of the GPX model,
one where op is implemented as ‘4’ with the default element
region score 0, referred to as basic model (denoted with “*’
in Table 2), and the other where op is implemented as
with the default element region score 1 (see Section 3.2).

¢

2.3.2 Element score propagation

The operators » and <« specify propagation of scores to
the containing or contained elements, respectively. Thus,
the functions fy (r1, R2) and f4(r1, R2) specify whether the
propagation is performed with or without normalization,
if the score values of contained or containing elements are
summed, averaged or maximized, etc.

For the basic language modeling approach with and with-
out smoothing, as well as for the basic tf.idf and Okapi
model, we use the same approach. We employ a weighted
sum normalized by the size of regions in the first operand for
modeling upwards element score propagation. The simple
sum of scores is used for downwards element score propaga-
tion. This choice was made because these functions showed
good results in our experiments [27].

E'PQERQ\T2<T'1 p2 - size(r2)
size(r1)
f.idf i
fEM,t id ,Okapl(r17 R2) =1 Z po (10)

ro€Rg|ro <11

However, for basic GPX model (denoted with ‘*’ in Ta-
ble 2) we employ different computations for element score

propagation:
KL R) =pr+ Y. pe (11)
ro€Rg|r1 <T2

fTXrL R) =pr+ Y. pe (12)

ro€Rg|ro<r1

LM, tf.idf,Okapi
> (

r1,R2) =p1 - 9)

We also tried Equation 9 and Equations 10 for additional
GPX runs with default element region score 1, as well as
sum instead of weighted sum for upwards score propagation
in other models, defined similar to Equation 10 (see Sec-
tion 3.2).

2.3.3 Element score combination

The abstract operator ® specifies how scores are combined
in an AND expression, denoted in SRA by M, while the
operator @ defines score combination in an OR expression,
denoted in SRA with L,. In our basic retrieval models for
basic experimental series, we make different choices for each
model. For the basic language model, following [22] and
[27], we use the instantiation where ® is implemented as a
product and & is implemented as a sum. Based on ‘fuzzy’
specification of tf.idf model in [25], in our basic tf.idf model
® is modeled as min and @ is modeled as max. Following
[7], in the Okapi (INQUERY) model we define these two
abstract operators as follows:

p1 @ p2 = p1-p2 (13)
p1®p2=1—(1—p1)- (1 -p2) (14)
Due to a somewhat different specification of the GPX

model with respect to other models (see Equations 4 and
8), we instantiate ® as well as @ as:

p1 + p2 ifpr=0Vp2=0
P1®P2 = p1Dp2 = (15)
A - (p1 +p2) otherwise

Although this formula in combination with formula in Equa-
tion 8 results in a retrieval model that is slightly different
than the one given in Equation 4, it follows the semantics
of the model which is to boost the scores for regions that
contain more query terms.

Furthermore, we experimented with different implemen-
tations of score combination functions for each of the score
computation functions as can be seen in Section 3.2.

3. EXPERIMENTS

In this section, we describe our prototype system, the
XML document collection, and the query set we used to
demonstrate the functionality of our approach (Section 3.1).
Next, in Section 3.2, we show and discuss the results of our
experimental runs.

3.1 Setup

To demonstrate the usefulness of our approach, we have
built a prototype system and evaluated it against a well-
known document collection and query set. Following good
practice in database systems design, we setup our prototype
following a typical three-layered architecture [34]:

Conceptual layer This layer takes a NEXI query expres-
sion as input, puts it through a filter to standard-
ize/samitize5 it, and produces an SRA expression to
be fed into the next layer.

Logical layer This layer takes an SRA expression as in-
put. Like the previous layer, it does some filtering and
standardization and transforms it into an expression
for input to the next layer. Due to a modular setup,
changing retrieval models is straightforward: one just
plugs in a different transformation module. Building
a new module, to capture yet another retrieval model
to experiment with, takes less than half an hour.

Physical layer For the physical implementation we use a
low-level physical DB engine - MonetDB [4]°. The
score region algebra operators are implemented as a set
of procedures in Monet Interpreter Language (MIL).

Not many XML document collections exist that also come
with TR queries and user assessments to evaluate the re-
trieval effectiveness of a system. We use the most well known
collection, provided by the INEX initiative. This collection
consists of IEEE journal papers in XML format. Each year
a new set of so-called topics is constructed by the partici-
pants of the INEX workshop series. Those topics contain a
NEXI query expression and a textual description of the so-
called information need of the user, i.e., an explanation of
what kind of answers should be considered as good results
for that query. Every participant runs the queries on their
system.

By pooling and manual reviewing by the participants the
results are assessed, i.e., checked whether they are good an-
swers or not. These assessments are then aggregated by the

5 . . .
In our case the standardization consists of removing the ’’ char-

acters denoting phrases, ‘+’ modifiers for query terms and terms
with ‘-> modifiers, denoting important and unimportant terms.
Note that our system can handle phrases and term modifiers [27]
though we left it out as it goes beyond the scope of this paper.

S At the same time we developed the PostgreSQL implementation
but we used the MonetDB implementation for our experiments
since it was faster and less resource demanding.

Table 2: Experimental series.

Series || Score computation (f5) | Propagation (fp) [Combination (®) [Combination (¢) | mean average prec. |

1 LM, A=1 weighted sum product sum 0.1261
I LM, A=1 sum sum sum 0.1216
11 LM, A=0.5 weighted sum product sum 0.2247
I1e LM, A=0.5 sum product sum 0.2367
iy LM, A=0.5 weighted sum sum sum 0.1201
111 Okapi, k1 = 1.5, b=0.75 weighted sum product prob. sum 0.1351
111 Okapi, k1 = 1.5, b=0.75 sum sum sum 0.2358
TI1® Okapi, k1 = 1.5, b=0.75 weighted sum sum sum 0.2578
v tf.idf weighted sum min max 0.1425
Ive tf.idf sum product prob. sum 0.1594
vb tf.idf sum sum sum 0.1561
\% GPX* N=5 sum* exp. sum exp. sum 0.2782
A% GPX, N =5 sum exp. sum exp. sum 0.2778
Vb GPX, N =5 weighted sum exp. sum exp. sum 0.2519

organization and made available to the participants. Using
a tool provided by the organization, each participant than
can compute how good their system is performing in terms
of precision and recall.

We use the 30 topics and corresponding assessments of
2003 (see [33] and Appendix in [15]) to test our architec-
ture for each of the models described in Section 2. In Sec-
tion 3.2 we present the results of these experiments. We per-
form several experiments using the settings described above.
First of all we ran the system for the basic models and later
we perform experiments with varying score propagation and
combination functions for these models, as described in Sec-
tion 2.3.

3.2 Results

In this section we discuss the results of the experiments
described above using the topics from INEX 2003. In Fig-
ure 1 we show the comparison of recall-precision graphs for
our basic retrieval models (experimental series), aggregated
over all 30 topics. The mean average precision for basic (I to
V) and additional experimental series (denoted with ¢ and
b) is given in the last column of Table 2. The mean average
precision is actually the average precision aggregated over
all topics. To produce recall-precision graphs and compute
mean average precision we use the official INEX tool for the
evaluation (see [15] for details). The highest mean average
precision for each score computation model is given in bold.

As can be seen in the table the results depend a lot on
the function used for relevance score computation. The best
runs for language models with smoothing, Okapi, and GPX
significantly outperform language models without smooth-
ing and tf.idf. However, for language models with smooth-
ing, Okapi, and GPX, mean average precision is quite dif-
ferent for different combinations of score propagation and
combination functions. For example, the mean average pre-
cision decreases with almost 50% if we compare series IT and
IT® for language models and increases for almost 100% in se-
ries ITT and IIT® for Okapi. On the other hand, no matter
what kind of functions for score propagation and score com-
bination we use the mean average precision for tf.idf models
is approximately 0.15 (see series IV, V%, and IV?).

In our experiments the best results are obtained by using
the GPX model. However, the question is whether some of
the other models models for score computation (Okapi or
language models) with the right choice for the score combi-
nation and score propagation functions and the right value
for parameters, A\, k1, and b, can boost the mean average
precision and outperform GPX. Additionally, the effective-

ness of each model can be studied with respect to each topic
in isolation, to determine which retrieval model is the most
appropriate for each topic. This could help us to classify top-
ics based on their features, such as number of query terms,
existence of upwards or downwards score propagation, etc.,
and apply the best retrieval model for each topic type. We
hope to answer these questions in our future research.

0.6
GPX ——
LM(0.5) -
05 | ‘fuzzy’ tf.idf -~
Inquery-like Okapi ------
Nk«»\ LM(1.0) ——
0.4
c 4
RS 4
8 0.3 A
o A
o
0.2
0.1
0
0 0.5 1

Recall

Figure 1: Comparison of recall precision graphs for
basic experimental series.

4. CONCLUSIONS AND FUTURE WORK

Most XML-IR systems adapt and extend existing flat file
IR systems to support the searching of structured XML doc-
uments. Since these approaches are retrieval model specific
and depend on the physical implementation, it is difficult to
adapt them to support different retrieval models. We be-
lieve that existing XML-IR database approaches have to be
made transparent in order to satisfy complex user informa-
tion needs expressed on top of XML collections. We argue
that the right architectural level to achieve this transparency
is the logical level. In that way the system is also flexible
for different aspects of IR search over XML at the concep-
tual level and distinct implementations of storage schemes
and access algorithms at the physical level. By developing
a transparent score region algebra at the logical level of a
flexible three-level database system we are able to support
the application of state of the art IR models to ranked XML

retrieval. Also, it provides us with a uniform framework
where we can compare the effectiveness and study proper-
ties of different XML retrieval models as we have shown in
this paper.

We are planning to further investigate the usefulness of
the transparent logical algebra by applying different models
to XML IR and to study the properties of score region al-
gebra operators with respect to their consistency in ranking
and their efficiency. We are also concerned with the mod-
eling of term modifiers ("+’ and ’—’), explicit term and ele-
ment weights, and phrases in score region algebra (see, e.g.,
[27]). Furthermore, we aim to better understand stemming
and synonyms for terms, and vague treatment of search and
answer elements throughout the instantiation of retrieval
models in the SRA. Finally, we aim to investigate which
combination of scoring functions in score region algebra op-
erators is more appropriate for different topic types, such as
topics with same search and answer elements, queries with-
out upward or downward propagation, etc. This will guide
us to a more effective and efficient, transparent XML-IR
database system.

5. REFERENCES

[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.
TeXQuery: A Full-Text Search Extension to XQuery. In
Proceedings of the 13th WWW Conference, 2004.

[2] R. Baeza-Yates and G. Navarro. Proximal Nodes: A Model
to Query Document Databases by Content and Structure.
In ACM TOIS 15 (4), volume 15, 1997.

[3] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu,

J. Robie, and J. Simeon. XQuery 1.0: An XML Query
Language. Technical report, W3C, 2002.

[4] P. Boncz. Monet: a Next Generation Database Kernel for
Query Intensive Applications. PhD thesis, CWI, 2002.

[5] F.J. Burkowski. Retrieval Activities in a Database
Consisting of Heterogeneous Collections of Structured
Texts. In Proceedings of the 15th ACM SIGIR, 1992.

[6] S. Buxton and M. Rys. XQuery and XPath Full-Text
Requirements. Technical report, W3C, 2003.

[7] J. P. Callan, W. B. Croft, and S. M. Harding. The
INQUERY Retrieval System. In Proceedings of the 3rd
DEXA Conference, 1992.

[8] J. Clark and S. DeRose. XML Path Language XPath
Version 1.0. Technical report, W3C, 1999.

[9] C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An
Algebra for Structured Text Search and a Framework for
its Implementation. The Computer Journal, 38(1), 1995.

[10] M. Consens and T. Milo. Algebras for Querying Text
Regions. In Proceedings of the ACM PODS, 1995.

[11] D. Florescu and I. Manolescu. Integrating Keyword Search
into XML Query Processing. In Proceedings of the 9th
WWW Conference, 2000.

[12] N. Fuhr. Models for Integrated Information Retrieval and
Database Systems. I[EEE Data Engineering Bulletin, 19(1),
1996.

[13] N. Fuhr and K. Gro8johann. XIRQL: A Query Language
for Information Retrieval in XML Documents. In
Proceedings of the 24th ACM SIGIR, 2001.

[14] N. Fuhr and K. Groijohann. XIRQL: An XML Query
Language Based on Information Retrieval Concepts. ACM
TOIS, 22(2), 2004.

[15] N. Fuhr, M. Lalmas, and S. Malik, editors. Proceedings of
the 2nd INEX Workshop, ERCIM Publications, 2004.

[16] S. Geva. GPX - Gardens Point XML Information Retrieval
at INEX 2004. In Proceedings of the 8rd INEX Workshop,
LNCS 3493, Springer, 2005.

[17] N. Goévert, M. Abolhassani, N. Fuhr, and K. Grof}johan.
Content-oriented XML Retrieval with HyRex. In

(18]

19]

20]

(21]

(22]

(23]

[24]

[25]

[26]

27]

28]

[29]

(30]

(31]

32]

(33]

(34]

(35]

(36]

(37)

Proceedings of the 1st INEX Workshop, ERCIM
Publications, 2003.

T. Grabs and H.-J. Shek. Generating Vector Spaces
On-the-fly for Flexible XML Retrieval. In Proceedings of
the XML and Information Retrieval Workshop at 25th
ACM SIGIR, 2002.

D.A. Grossman and O. Frieder. Information retrieval:
algorithms and heuristics. The Kluwer international series
in engineering and computer science. Kluwer Academic,
Boston, 1998. ISBN 0-7923-8271-4.

T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts.
In Proceedings of the 30th VLDB Conference, 2004.

L. Guo, S. Feng, C. Botev, and J. Shanmugasundaram.
XRANK: Ranked Keyword Search over XML Documents.
In Proceedings of the 26th ACM SIGMOD, 2003.

D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, Twente, The
Netherlands, 2001.

J. Kamps, M. de Rijke, and B. Sigurbjérnsson. Length
normalization in XML retrieval. In Proceedings of the 27th
ACM SIGIR, 2004.

J. List, V. Mihajlovi¢, A. de Vries, G. Ramirez, and

D. Hiemstra. The TIJAH XML-IR System at INEX 2003.
In Proceedings of the 2nd INEX Workshop, ERCIM
Publications, 2004.

Y. Mass and M. Mandelbrod. Component Ranking and
Automatic Query Refinement for XML Retrieval. In
Proceedings of the 8rd INEX Workshop, LNCS 3493,
Springer, 2005.

V. Mihajlovi¢, D. Hiemstra, H. E. Blok, and P. M. G.
Apers. An XML-IR-DB Sandwich: Is it Better with an
Algebra in Between? In Proceedings of the SIGIR
Workshop on Information Retrieval and Databases
(WIRD’04), 2004.

V. Mihajlovi¢, G. Ramirez, A. P. de Vries, D. Hiemstra,
and H. E. Blok. TIJAH at INEX 2004: Modeling Phrases
and Relevance Feedback. In Proceedings of the 3rd INEX
Workshop, LNCS 38493, Springer, 2005.

P. Ogilvie and J. Callan. Using Language Models for Flat
Text Queries in XML Retrieval. In Proceedings of the 2nd
INEX Workshop, ERCIM Publications, 2004.

J. Pehcevski, J. A. Thom, and A-M. Vercoustre. RMIT
INEX Experiments: XML Retrieval Using Lucy/eXist. In
Proceedings of the 2nd INEX Workshop, ERCIM
Publications, 2004.

S. E. Robertson and S. Walker. Some Simple Effective
Approximations to the 2-Poisson Model for Probabilistic
Weighted Retrieval. In Proceedings of the 17th ACM
SIGIR, 1994.

A. Salminen and F.W. Tompa. PAT Expressions: An
Algebra for Text Search. In Proceedings of COMPLEX,
1992.

G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGrow-Hill, New York, NY, USA,
1st edition, 1983.

A. Trotman and R. A. O’Keefe. The Simplest Query
Language That Could Possibly Work. In Proceedings of the
2nd INEX Workshop, ERCIM Publications, 2004.

D. Tsichritzis and A. Klug. The ANSI/X3/SPARC DBMS
Framework Report of the Study Group on Database
Management Systems. Information systems, 3, 1978.

S. R. Vasanthakumar, J. P. Callan, and W. Bruce Croft.
Integrating INQUERY with an RDBMS to Support Text
Retrieval. IEEE Data Engineering Bulletin, 19(1), 1996.
A.P. de Vries, M.G.L.M. van Doorn, H.M. Blanken, and
P.M.G. Apers. The miRRor MMDBMS Architecture. In
Proceedings of the 25th VLDB Conference, 1999.

C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and

G. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. In Proceedings
of the 20th ACM SIGMOD, 2001.

