Shard Ranking and Cutoff Estimation for
Topically Partitioned Collections

Anagha Kulkarni* Almer S. Tigelaar!

Djoerd Hiemstra! Jamie Callan*

*Language Technologies Institute, School of Computer Science, Carnegie Mellon University
5000 Forbes Avenue,Pittsburgh, PA, USA 15213

iDatabase Group, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
{anaghak,callan}@cs.cmu.edu {a.s.tigelaar,hiemstra} @ cs.utwente.nl

ABSTRACT

Large document collections can be partitioned into topical
shards to facilitate distributed search [19]. In a low-resource
search environment only a few of the shards can be searched
in parallel. Such a search environment faces two intertwined
challenges. First, determining which shards to consult for
a given query: shard ranking. Second, how many shards to
consult from the ranking: cutoff estimation. In this paper
we present a family of three algorithms that address both of
these problems. As a basis we employ a commonly used data
structure, the central sample index (CSI) [29], to represent
the shard contents. Running a query against the CSI yields
a flat document ranking that each of our algorithms trans-
forms into a tree structure. A bottom up traversal of the
tree is used to infer a ranking of shards and also to estimate
a stopping point in this ranking that yields cost-effective
selective distributed search. As compared to a state-of-the-
art shard ranking approach the proposed algorithms provide
substantially higher search efficiency while providing compa-
rable search effectiveness.

Categories and Subject Descriptors

H.3 [INFORMATION STORAGE AND RETRIEVALJ:

Information Search and Retrieval

Keywords

distributed information retrieval, selective search

1. INTRODUCTION

Distributed Information Retrieval (DIR) systems operate
by partitioning the document collection into a number of
smaller collections (shards) which are then searched in par-
allel [7, 8, 23, 24, 26]. This search strategy has become the
de-facto standard in large-scale information retrieval envi-
ronments [3, 4, 5, 27]. When operationalized on a large com-
puting cluster, distributed search provides excellent gains in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’12, October 29-November 2, 2012, Maui, HI, USA.

Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$10.00.

query response time [5, 12]. However, in a resource con-
strained environment where the parallelization opportunities
are limited, processing a query against a large document col-
lection is often inefficient. Kulkarni and Callan [19] proposed
a solution that is based on dividing the collection into topi-
cally clustered partitions: topical shards. They demonstrate
that such an organization of the collection ensures that the
majority of the relevant documents for a given query are
concentrated in a small number of shards', as opposed to
being uniformly distributed across all shards. The skew in
the distribution of relevant documents allows the search to
be restricted to a few shards without incurring loss in search
effectiveness. In this work we study two research problems
that arise when selectively searching a partitioned collec-
tion: which shards to select and how many shards to select,
specifically in the context of topical shards and low-resource
environments.

A shard selection algorithm is responsible for identifying
the partitions that should be consulted for a given query.
The goal is to maximize the search accuracy by identifying
the most relevant shards for the query and to simultaneously
minimize the cost by searching as few shards as possible. A
rich line of work exists for the problem of relevant shard
identification and ranking [2, 10, 15, 16, 29, 32]. However,
the task of estimating the minimum number of shards that
should be searched for a given query has not received much
attention. Most previous work resorts to using fixed cutoff
values on the shard ranking that are query-agnostic [10, 25,
28, 29] or use other query independent criteria, such as, the
load on the system to determine the number of shards that
would process the query [26].

We show that a fixed rank cutoff either over or underes-
timates the minimum number of shards for many queries.
This either wastes computational resources or returns sub
par search results. Neither of these are acceptable choices
for most search environments, but it is especially critical for
search providers with limited computing resources to use a
search strategy that is both efficient and effective.

In this paper we propose a solution that addresses both
of the above problems, shard ranking and rank cutoff es-
timation, simultaneously in order to support cost-effective
search. The task of estimating the minimal shard rank for
a query is inherently dependent on the predicted ranking of
the shards for the query. Solving these problems together

'For each query this could be a different set of shards.

allows for modeling the intrinsic dynamics between the two
components.

All the algorithms studied in this paper assume the avail-
ability of a central sample index (CSI). This is an inverted
index of a small sample of randomly selected documents
from each shard. Running a query (¢q) against this index
yields a ranking of the sample documents (Dgg;). Since
each document is associated with a specific shard, a shard
ranking can be derived from this. The approach of inferring
a shard ranking from D¢ g, is a well established methodol-
ogy that has been used in many other algorithms [28, 29,
32]. However, contrary to existing approaches, we derive a
tree structure from this flat document ranking, using three
different approaches: lexical hierarchical clustering, rank in-
ferring, and connected rank inferring. We traverse through
this tree to produce a final shard ranking and a minimal
cutoff for a given query.

Often the sample used to create the CSI and thus the
shard ranking is a very small portion of the complete collec-
tion. As such, the shard ranking algorithm is offered only a
limited and incomplete view of the collection contents. Short
queries can make the task of shard ranking further challeng-
ing. The intuition behind overlaying a hierarchy on the CSI
document ranking is to capture the relations between the
retrieved documents, in terms of their lexical similarities or
shard memberships, with the goal of gleaning additional in-
formation for shard ranking and rank cutoff estimation.

The details about how we operationalize this intuition
are given in Sections 3 through 5. Before that we position
our work with respect to the existing work in the follow-
ing section. The experimental details are shared in Sec-
tions 6 and 7. The results and our interpretations of the
results are discussed in Section 8. Our conclusions from this
investigation are shared in Section 9.

2. RELATED WORK

It has been well established that the problem of ranking
collections of documents is inherently different from that of
ranking documents and that it deserves its own solutions. As
a result a rich line of research exists for the resource ranking
problem which we review in this section. However, the prob-
lem of determining the shard cutoff has not received much
attention. To the best of our knowledge the cutoff estimator
by Thomas and Shokouhi [32] is the only investigation of
this problem that is query-specific. In the context of Web
search Puppin et al. [26] propose an approach for rank cut-
off estimation that makes the number of contacted shards
dependent on the current system load.

Several of the early works in shard ranking modeled this
task after the well-studied problem of document ranking.
The CORI [10] algorithm proposed an adaptation of the IN-
QUERY [9] document ranking algorithm that viewed each
shard as one large document. Xu and Croft [34] constructed
language models (LMs) from the large documents and com-
puted the Kullback-Leibler divergence between the shard
LMs and the query LM to rank the shards. GIOSS [15] used
term statistics, like the document frequency, in order to es-
timate the number of relevant documents in each shard for
the query. These approaches are examples of a large family
of shard ranking techniques that use content statistics of the
shards to estimate their relevance for a query.

The other source of information, widely used by many
shard ranking algorithms, is the central sample index (CSI)

data structure. The CSI is created by pooling a sample
of documents (Sg) from each shard (R). The ReDDE [29]
algorithm runs the user query against the CSI and assumes
that the top n retrieved documents are relevant. If ng is the
number of documents in n that are mapped to shard R then
a score for each R is computed as O = nr * wr, where the
shard weight wg is the ratio of size of the shard (|R|) and
the size of its sample (|Sgr|). The shard scores 0r are then
normalized to obtain a valid probability distribution used to
rank the shards. CSI creation is query-independent, and is
thus performed only once. The CRCS [28] algorithm uses the
rank information of the top 50 CSI documents to scale the
membership function such that documents at higher ranks
contribute more towards resource scores than those at lower
ranks. CRCS also scales the accumulated resource scores by
their sizes.

SUSHI [32] uses the scores and adjusted ranks of the top
50 CSI documents to fit curves for each resource represented
in these documents. Three types of curves, linear, loga-
rithmic, and exponential are tried. The curve with best fit
is used to interpolate scores for the top m ranks for each
resource. The interpolated points from each resource are
merged into a single ranking and scores are aggregated to
compute a relevance score for the resources. The number
of unique resources present in the top R documents in this
ranking is the predicted rank cutoff for the PQR metric. Em-
pirical evaluatation using standard federated search datasets
demonstrate that SUSHI predicts lower rank cutoffs on av-
erage as compared to a query-agnostic fixed cutoff of 10 and
its precision at rank 10 is comparable to that of the baseline
approach for many of the datasets.

The following three approaches cannot be categorized into
either of the above families. Arguello et al. [2] took a clas-
sification based approach that uses CORI and CSI based
ranking as classifier features. For each resource a binary
classifier is learned that estimates the relevance probability.
Document contents, query category and click-through logs
are also used to define classifier features. The confidence
score assigned for a prediction by each of the classifier is
used to rank the shards. The fixed rank cutoffs of 1-5 are
evaluated and the results demonstrate that the non-content
features together with the conventionally used content fea-
tures yield a robust ranking approach.

The usefulness of a query’s topical category for the task of
shard ranking was also noted by Ipeirotis and Gravano [16].
In fact, their approach organizes the shards into a topical
hierarchy which is created using samples of shard contents.
This hierarchy is static and query independent. The hierar-
chical shard selection is performed by evaluating the query
against all of the shards at a particular level in the hier-
archy using one of the flat shard ranking algorithms like
CORI. The top scored shard at this level is then selected to
be searched and the sub-tree rooted at that node is further
explored. The experimental results show that this hierarchi-
cal shard ranking approach enables higher average precision
as compared to the flat shard ranking technique.

Puppin et al. [25] use query logs to organize collections and
to perform shard selection. They construct a contingency
matrix from the queries observed in the query log and the
documents returned for each of them. Co-clustering of this
matrix provides document clusters and query clusters. The
former are the partitions of the collection and the latter
are used for shard selection. The experimental results show

that a collection of about 6 million documents is partitioned
into 18 shards using the proposed approach. One of the
shards contains 52% of the collection documents which could
not be clustered using the proposed technique. The results
show that the proposed approach supports higher precision
at early ranks (5, 10 and 20) than CORL

In the context of geographically partitioned multi-site
Web search Cambazoglu et al. [11] present an approach for
query forwarding that uses training queries to infer the up-
per bounds on document scores for a given query at each of
the non-local indexes. These bounds are then used to pre-
dict if a non-local index would contribute any document to
the top k results for the query which in turn determines if
the query is forwarded to that non-local index.

Peer-to-peer information retrieval is another line of related
research where the task is to find a subset of peers that a
query should be forwarded to. However, there is commonly
either no central mediator or a light one that only suggests
appropriate peers for a given query, but does not participate
in the actual retrieval process. Each peer could be said to
hold an index shard.

In networks where each peer holds a local index and is con-
nected to a limited number of neighboring peers, the query
is typically flooded: the querying peer sends it to its neigh-
bors, and those neighbors send it to theirs, et cetera [1].
Since this does not scale, the forwarding has to be bounded,
there is a fixed search horizon that results in a variable cut-
off. Whilst this works well for popular queries with prolific
results, it fares poorly for long tail queries. Query routing
is complicated further by the fact that peers are not nat-
urally topically clustered [31]. Hence, clustering peers by
content [14, 20] is a possible solution as it has been shown
to make query processing more efficient [6].

A topical cluster of cooperative peers is similar to a top-
ical shard. However, no mechanism exists to dynamically
determine the number of peer clusters to contact for a given
query in this set-up, for example: Bawa et al. [6] proposed
a heuristic cutoff equal to a quarter of the number of topi-
cal clusters. Furthermore, clustering mechanism may fail to
discover the structure of the document distribution and may
not work well for unpopular topics. Klampanos et al. [17]
proposed replicating popular documents and using relevance
feedback to dynamically alter cluster centroids.

3. TOPICAL SHARDS: RANKING AND
CUTOFF ESTIMATION

When large document collections are divided into multiple
smaller shards the resulting search environment offers sev-
eral advantages, such as, distributed and parallel computing,
higher fault tolerance, and easier load balancing. Randomly
partitioning the collection into shards and then searching
all of them in parallel is a well-established search strategy.
However, Kulkarni and Callan [19] reason that if the col-
lection is instead divided into topically focused shards, only
a few of them need to be searched for each query®. They
show that this substantially reduces the query processing
cost while maintaining search accuracy. Although topical
partitions may not support even load-balancing, their lower
total search cost makes them an appropriate solution for

2Verticals and groups of peers with similar content can also
be regarded as instances of topical shards.

low-resource search environments that must support large
collections.

The topically homogeneous partitions have certain unique
properties that can be exploited at query time. The distri-
bution of relevant documents across shards is highly skewed
for the majority of queries when shards are topically orga-
nized [19]®. Secondly, many shard ranking algorithms, in-
cluding ours, rely on a small subset of documents sampled
from each shard to sufficiently represent its contents. This
objective is harder to achieve when the shards are created
using random partitioning. Sampling from topically focused
shards is less likely to result in under or over-sampling er-
rors, which in turn improves shard ranking effectiveness.

Motivated by these observations we propose three algo-
rithms that address both shard ranking and cutoff estima-
tion for topically sharded search environments. Later we
also test the adaptability of the proposed algorithms by eval-
uating them on datasets that were not partitioned using the
approach proposed by Kulkarni and Callan.

4. Sampling-based Hierarchical
Relevance Estimation (SHiRE)

We propose a family of three shard ranking algorithms
that share two characteristics: their use of a central sample
index (CSI), and their approach to shard ranking that cre-
ates a hierarchy from the CSI documents retrieved for the
query. What distinguishes these algorithms is the function
they use to transform the flat CSI document ranking for a
query into a tree structure.

In this work we construct the CSI from a small sample of
randomly selected documents from each shard. We choose
to use the CSI to represent the shard contents for two main
reasons. Firstly, it is a time-tested approach that has been
demonstrated to be highly effective by several previous stud-
ies [2, 29, 32]. Secondly, the CSI typically has a small mem-
ory footprint leading to an efficient shard ranking process.
Also, note that the CSI creation happens during an offline
phase that is not repeated for each query.

Each of the SHIiRE algorithms starts with scoring the
query against the CSI to obtain a ranking of the sampled
documents (D¢ ;). The information contained in this rank-
ing, such as, the rank of each document, the retrieval scores,
and the shards represented by each of the retrieved sample
documents, is used by each of the algorithms in a unique
way to construct a query-specific hierarchy where the re-
trieved documents are at the leaf nodes. Note that the set
of documents organized into a hierarchy for each query is
quite small (D, < CSI <« C, where C is the complete
collection). The constructed hierarchy is traversed bottom-
up starting at the leaf node that represents the top ranked
CSI document for the query, until the root node is reached.
Each step up reveals new leaf documents which ‘vote’ for
the shards they represent. However, the votes are exponen-
tially decayed at each level in this traversal. A document d
revealed at step U in the traversal contributes a vote toward
its parent shard as follows:

Vote(d) = Vax B™Y (1)

where V; is either the document score assigned by the re-
trieval model or is a unit weight, and B is the base of the

3For random partitioning the distribution of relevant docu-
ments across shards would be close to uniform.

(S3) (S3) (S5) (S85)

Figure 1: Lexical SHIiRE. CSI ranking:
D1, D2, D3, D4. Dashed arrows represent the
path followed by the bottom-up traversal starting
at D1. Numbers besides the leaf nodes specify the
order of revelation of the documents. Parent shards
specified in the brackets.

exponential function. The resulting votes are accumulated
for each of the shards and are interpreted as their estimated
relevance scores which are then used to obtain a ranking of
the shards for the query.

By anchoring the tree traversal at the top ranked CSI
document these algorithms assert that the shard represented
by the first document in the CSI ranking is likely to be the
most relevant shard for the query. The process of dampening
the votes at each step models the intuition that longer path
lengths from the anchor node implies less similarity with it
which further implies lower likelihood of relevance to the
query (cluster hypothesis [33]). If a tree is very shallow, few
shards would accumulate a zero relevance score, whereas a
very deep tree will result in many shards with zero scores.

4.1 Lexical SHIiRE (Lex-S)

The Lez-S algorithm organizes the CSI documents re-
trieved for a query into a hierarchy based on their lexical
similarities. Such a hierarchy provides equal voting rights to
all documents that are similar (attached to the same node
in the tree) irrespective of their CSI ranking.

As a first step the Lex-S algorithm represents each of the
CSI documents retrieved for the query as a vector of tf-idf
weights for the unique terms. The Manhattan distance met-
ric is used to compute pairwise lexical similarities between
the document vectors and Ward’s method for agglomera-
tive clustering constructs the hierarchy (complexity: O(n?)
where n is the number of CSI documents retrieved for the
query, ranging between between 1700-2000 documents in
this work). Such a hierarchy for a toy example consisting of
four CSI documents retrieved for a query is shown in Fig-
ure 1. Dn represents the document at rank n in the CSI
results.

The ranking of shards is derived by traversing up this tree,
starting from the leaf node for the first document in the CSI
ranking (D1). For the toy example in Figure 1 the next
step would reach the internal node I1 and thus reveal the
document D2. D4 would be observed next and D3 would
be found the last. If Vp; is the vote that D1 ascribes to
its parent shard then D1 will contribute: Vpj * B_U7 where
U=1 is the number of steps traversed up the hierarchy, and
B is the base of the exponential decay function. Similarly,
D2, D4 and D3 will contribute: Vpy * B72, Vb3 * Bi3, and,
Vpa * B™* respectively, to their parent shards. The shard
53 will accumulate votes from documents D4 and D1, and
shard S5 will accumulate votes from documents D2 and D3.
The resulting score would be used to rank shards S3 and S5.

(S3) (S5) (S5) (S3)

Figure 2: Rank SHIiRE. CSI ranking: D1, D2, D3, DA4.
Dashed arrows represent the path followed by the
bottom-up traversal starting at D1. Numbers be-
sides the leaf nodes specify the order of revelation
of the documents. Parent shards specified in the
brackets.

4.2 Rank SHIiRE (Rank-S)

The Rank-S algorithm uses the rank information of the
documents retrieved from CSI for the query to construct
the hierarchy. We use a left-branching binary tree to encode
the rank information since it provides a convenient struc-
ture that retains the CSI ranking during bottom-up traver-
sal. It also facilitates a tree traversal based shard rank in-
ference, which is a common characteristic of this family of
algorithms. As shown in the tree representation of the toy
example (Figure 2) the first CSI document is at the deepest
node in this left-branching binary tree and the height of this
tree is one less than the number of documents retrieved from
the CSI for the query.

The procedure for inferring a shard ranking from this tree
is similar to that used by Lex-S except for a regularization
enforced on the vote assigned by the single top ranked CSI
document. If the shard represented by the top ranked CSI
document does not earn any other votes from the subsequent
documents at the top m ranks then the vote of the top doc-
ument is ignored. Recall that by anchoring the traversal at
the top ranked document we allow it to assign the biggest
vote. The regularization puts a check on the ability of the
top ranked document to vote by requiring evidence of sup-
port from the subsequent ranks. If the shard represented
by the top ranked document is also represented by at least
10% of the ranks in the top 30 CSI documents for the query
then its vote is accumulated. We chose these values for the
two parameters based on preliminary experiments. A more
thorough study of the effects of these parameters is needed.

The simplicity of this algorithm makes it the most efficient
algorithm of this family. This approach is most similar in
spirit to the CRCS(e) ranking method [28]. However, other
CSI based shard ranking methods, like ReDDE, can also be
easily transformed to work with a left-branching binary tree
of CSI documents where the votes are not decayed during the
bottom-up traversal. As such, the computational complexity
of Rank-S is very similar to that of ReDDE.

4.3 Connected SHIiRE (Conn-S)

The Conn-S algorithm uses the connections between the
retrieved CSI documents, specifically their shard member-
ship, to guide the construction of the hierarchy. The top
ranked CSI document is the deepest node in the hierarchy.
The next document in the CSI ranking is either attached
at the same level as the previous node, or it prompts cre-
ation of another level depending upon whether it belongs to
the same shard as the previous document. As per the clus-
ter hypothesis, for topical shards, documents from the same

(S3) (S5) (S5) (S3)

Figure 3: Connected SHiRE. CSI ranking:
D1,D2,D3,D4. Dashed arrows represent the path
followed by the bottom-up traversal starting at D1.
Numbers besides the leaf nodes specify the order of
revelation of the documents. Parent shards specified
in the brackets.

1M
10
9l * Optimal Cutoff
Fixed Cutoff=1 (Over est=0%, Under est=42%)
8r — — — Fixed Cutoff=3 (Over est=82%, Under est=9%) | *
- — - — - Fixed Cutoff=5 (Over est=94%, Under est=4%)
% r -« Fixed Cutoff=10 (Over est=99%, Under est=1%)
[¢]
< 6 el
=
&
5 Bh—mmmm e —
g
o 4 ek
- —- - - — e — —
2 BRI
1
0
0 20 40 60 80 100 120 140 150

Queries

Figure 4: Minimal versus fixed shard rank cutoffs
for ReDDE. Dataset: Gov2. Metric: P@10.

shard are likely to be relevant to the same information need.
Placing such documents at the same internal node provides
them equal voting rights.

In the toy example (Figure 3) document D1 belongs to a
different shard as D2, which is why a new internal node is
created as D2 is observed. In contrast, D2 and D3 belong to
the same shard, and thus D3 attaches to the same node as
D2. Finally, D4 leads to a creation of another internal node
because it belongs to a different shard (S3) than D3 (S5).
This continues until every document in the CSI ranking is
processed. A CSI ranking that does not place any pair of
documents from the same shard in consecutive ranks results
in a left-branching binary tree using this method. A shard
ranking is estimated from the resulting hierarchy using the
same approach as that used by Lex-S: bottom-up traversal
with exponential decays at each level.

5. SHARD RANK CUTOFF ESTIMATION

Once a ranking of shards is obtained for the query using
one of the SHiRE algorithms, the next step is estimating the
minimal rank cutoff in this ranking. A minimal rank cutoff
is the smallest rank in a given shard ranking that provides
search accuracy on par with exhaustive search. Notice that
the minimal cutoff is specific to a shard ranking. Two differ-
ent shard rankings for the same query could have different
minimal cutoff values. The cutoff also depends on the eval-
uation metric under consideration.

Figure 4 plots the minimal rank cutoffs for 150 evaluation
queries used with one of the datasets in this paper. The

Table 1: Datasets

Size | #Doc | #Voc Avg
Dataset (#Shards) (GB) (K) (M) | Doc Len
CWO09-CatB (100) 1500 | 50220 96 918
Gov2 (50) 400 | 25205 39 918
TREC123-BySrc (100) 3.2 1078 0.9 420
TREC4-Kmeans (100) 2.0 567 0.6 480

Table 2: Query Sets

Avg Avgl Num

Qry Qry| #Rel Docs Rel

Dataset (#Queries) | Set Len| / Qry| Grades
CW09-CatB (98) 0910:1-100] 2.1] 80 (£ 49) 5
Gov2 (149) 701-850 3.1 179 (£ 149) 3
TREC123-BySre (50)| 51-100 3.4| 546 (£ 375) 2
TREC4-Kmeans (50)| 201-250 9.1 130 (& 115) 2

minimal rank cutoffs were computed for precision at rank
10 metric (P@10). The straight lines represent the com-
monly used query-agnostic fixed rank cutoffs. This figure
illustrates that the minimal shard rank cutoffs (represented
by asterisks) exhibit high variability across queries. A fixed
cutoff leads to an under or overestimation error for many
queries. A small fixed value, such as 1, would lead to a poor
search accuracy for 42% of the queries in this example, while
a larger fixed value of 10, would lead to an unwarranted in-
crease in the search cost for 99% of the queries.

The SHiRE algorithms facilitate estimation of a query-
specific minimal cutoff. Recall that the bottom-up traversal
is accompanied by exponential decay of votes for each of the
algorithms. This has the effect of driving the votes to zero
as the traversal progresses which in turn drives the relevance
scores, which are simply the accumulated votes, to zero for
shards that are represented only higher up in the tree. Our
hypothesis is that in the resulting shard ranking the point
at which a shard’s estimated relevance score converges to
zero is often close to the minimal cutoff for the query. We
use this rank cutoff estimator for each of the three SHiRE
algorithms and interpret a shard’s relevance score of 0.0001
as having converged to zero.

6. DATASETS

For a thorough evaluation of our algorithms we employ
four datasets that provide a range of sizes and character-
istics. The first two datasets described below (CW09-CatB
and Gov2) are the main datasets that we use throughout the
evaluation section. We use the other two datasets (TREC4-
Kmeans and TREC123-BySrc) as supplementary datasets
for their historic value and to test the adaptability of our
approaches to different partitioning environments.

The two main datasets were partitioned into topical
shards using a sample-based clustering technique proposed
by Kulkarni and Callan [19]. This technique learns the shard
definitions from a small randomly sampled subset of the col-
lection. The remaining documents are then projected onto
the topical spaces using the learned definitions.

The CW09-CatB dataset is a subset of the ClueWeb09
dataset. It consists of the first 50 million English Web pages
of ClueWeb09. We divided this dataset into 100 topical
shards obtaining an average shard size of 0.5 million, as

specified by Kulkarni and Callan [19]. The Gov2 TREC
corpus [13] consists of 25 million documents from the US
government domains, such as .gov and .us, and also from
certain government related websites. This dataset was par-
titioned into 50 shards using the above topical shard creation
technique.

Although they are now considered small and outdated,
TREC4-Kmeans and TREC123-BySrc are two of the most
widely used datasets in distributed information retrieval re-
search. TREC4-Kmeans was created by clustering the docu-
ments from the Text Research Collection, Volumes 2 and 3*
into 100 clusters [34]. TREC123-BySrc dataset was created
by dividing the Text Research Collection, Volumes 1, 2 and
3, into 100 partitions based on the source of the documents.

The summary statistics of these datasets are given in Ta-
ble 1. The evaluation queries that were used with these
datasets are summarized in Table 2. For CW09-CatB there
are two queries and for Gov2 there is one query for which
there are no relevant search results. These were not in-
cluded conforming to the official TREC evaluations. Note
that the CW09-CatB and Gov2 queries were judged on a
5-point and 3-point relevance scales, respectively, while the
older datasets provide only binary relevance judgments.

7. EXPERIMENTAL SETUP

For efficient and convenient access to the document col-
lections, each dataset was converted to an Indri® index.
The documents were pre-processed before indexing to re-
move stopwords and reduce morphological variants using the
Krovetz stemmer [18].

A central sample index (CSI) was created for each dataset
using simple random sampling. From each shard 4% of the
documents were sampled for the CSI. The choice of the sam-
ple size was guided by preliminary experiments that were
performed to estimate the size of a small but effective sam-
ple. For each dataset the same CSI was used by all the shard
ranking methods. Global statistics were assumed to be avail-
able to all the shards. As a result, the scores of the docu-
ments retrieved from different shards are comparable and
the merging of documents is straightforward. A language
modeling and inference network based retrieval model, In-
dri [21], was used for all the document retrieval tasks. The
full-dependence model query representation [22], that en-
codes term co-occurrence information, was used for all the
experiments.

For the comparative analysis of the different shard ranking
approaches we use the following standard evaluation met-
rics: precision at rank 10, rank 30 (P@{10,30}), normalized
discounted cumulative gain at rank 10 (ndeg@10), and the
mean-average-precision (MAP) metric to measure the aver-
age search accuracy over all the queries. In order to compare
the search efficiency enabled by each of the approaches we
define a cost metric. The total amount of work required
to process a query against a collection is typically propor-
tional to the number of documents that match the query®.
The volume of index data transferred and processed for a
query (the dominant cost) as well as the computational cost

“http://trec.nist.gov/data/docs_eng.html
®http://www.lemurproject.org/indri/

SEvery document that contains at least one of the query
terms is considered as a matched document for the query.

of the query, both, are functions of the number of matched
documents. We define the cost metric as follows:

9 ST | p,|
g=1 t=1 t
Q] @

where @ is the set of evaluation queries, T, is the number
of top shards searched for the query ¢, and Ds, is the set
of matched documents in shard S at rank ¢ in the predicted
shard ranking for query g. Note that 7T; would be a fixed
value for each query in case of ReDDE. For the SHiRE al-
gorithms 7j; would be a query-specific value provided by the
rank cutoff estimator.

The choice of this cost metric is especially well-suited for
low-resource search environments, where the operational re-
quirements place an upper bound on the amount of work
permitted per query. Similar cost metrics have been used in
other research by Moffat et al. [23] and Strohman et al. [30].
Most real-world search systems use query optimization tech-
niques to improve query processing efficiency. The actual
average search cost would typically be lower than the one
computed above.

8. RESULTS AND DISCUSSION

Tables 3 and 4 report the search accuracy and cost results
for the Gov2 and CW09-CatB datasets. The SHiRE algo-
rithms with dynamic shard rank cutoff estimation are com-
pared with two previously proposed shard rankers: ReDDE
and SUSHI. Several different parameterizations were tested
and the setting that provided the best trade-off in terms
of search accuracy and processing cost was chosen for each
algorithm. For ReDDE the parameter under consideration
is the fixed shard rank cutoff (T) and for the SHiRE al-
gorithms it is the base for the exponential decay function
(B). The chosen values for these parameters are provided
in the first column of the tables. The sensitivity of SHiRE
algorithms to different parameterizations is analyzed later
in Section 8.1. The differences in the search accuracies of
ReDDE and the proposed approaches were tested for statis-
tical significance using the paired T-test and were found to
be not significant (p < 0.01). The last column in both tables
compares each algorithm’s query processing efficiency with
that of ReDDE.

We observe that all the three SHiRE algorithms support
a more efficient search than ReDDE. The average number of
documents processed per query is smaller for the SHiRE al-
gorithms while the search effectiveness is on par with that of
ReDDE. The Rank-S algorithm cuts the search cost by 27%
for Gov2 and by nearly half for CW09-CatB. The savings in
cost offered by Lex-S and Conn-S are bigger for the larger
collection. This is a desirable property for low-resource
search environments. Providing cost-effective search, even
when working with large collections, is one of the challenges
in such search environments.

The shard rank cutoff estimator used by SUSHI optimizes
its prediction for a particular precision metric (Section 2).
The PQ10 and P@30 values reported for SUSHI are thus
from separate runs and the remaining values are an aver-
age over those two runs. For the Gov2 dataset SUSHI is
as efficient as the Lex-S algorithm. However, the corre-
sponding search accuracy for SUSHI is substantially lower
than ReDDE. For the CW09-CatB dataset, although the
search accuracy results for SUSHI are comparable to other

cost =

Table 3: Search accuracy and cost results for Gov2. Exhaustive search performance: P@Q10=0.58, P@30=0.52,
MAP=0.32, ndcg@10=0.49, Cost=3.62M V denotes significantly worse value than that with ReDDE (p < 0.01).

P@10 | P@30 | MAP | ndcg@10 Cost | Costareax —
(million) | CostreppE
ReDDE (T=3) 0.57 0.51 0.29 0.48 0.83 -
SUSHI v0.51 | v0.41 | v0.23 v0.41 0.77 -T%
Lex-S (B=10) 0.56 0.49 0.27 0.46 0.78 -7%
Rank-S (B=10) 0.58 0.52 0.29 0.48 0.61 -27%
Conn-S (B=10) 0.58 0.52 0.31 0.48 0.81 -2%
Table 4: Search accuracy and cost results for CW09-CatB. Exhaustive search performance: P@10=0.27,
P@30=0.26, MAP=0.18, ndcg@10=0.21, Cost=>5.37M.
P@10 | P@30 | MAP | ndcg@10 Cost | Costartax —
(million) CostreDDE
ReDDE (T=3) 0.29 0.28 0.17 0.21 0.47 -
SUSHI 0.29 0.26 0.16 0.21 0.54 15%
Lex-S (B=50) 0.29 0.26 0.15 0.22 0.39 -17%
Rank-S (B=50) 0.30 0.26 0.16 0.21 0.25 -47%
Conn-S (B=50) 0.28 0.26 0.16 0.20 0.31 -34%
1m ‘ ‘ ‘ x10 1m ‘ ‘ ‘ x10
—=—Pe10 —=—Pe@10
——P@30 ——P@30
L —8—ndcg@10 2.5 L ——ndcg@10 2.5
08 —k— MAP 0.8 —k— MAP
—4— Cost 1o —4— Cost 12
Cmmm— 5 = = = = = ®m = & 06} 1
o ————————— 158
041 1 041 1
1 11
k S ——— . —.
2
o 0 o 0
2510 20 30 40 50 60 70 80 90 100 2510 20 30 40 50 60 70 80 90 100

Base of the Exponential Decay Function (B)

Figure 5: Sensitivity of Rank-S algorithm to param-
eter B. Dataset: Gov2

approaches the corresponding cost is much higher than all
the other approaches. Overall SUSHI struggles to provide a
cost-effective search setup and as such is a weaker baseline
than ReDDE. In the remainder of the paper we compare the
SHIiRE algorithms only with the ReDDE algorithm.

We also note that almost all the shard rankers support
efficient search that is just as effective as the exhaustive
search. This is especially true for precision at early ranks.
For both datasets, recall that the shards were created by
partitioning the collection’s documents into topical shards
(Section 6). We see that all the ranking approaches benefit
from the characteristic property of topical shards: a skewed
distribution of relevant documents across shards (Section 3).
These result trends are in agreement with observations made
by Kulkarni and Callan [19].

Notice that even for ndcg@10, a metric that is sensitive to
both the position and the relevance level of the documents in
the results list, nearly all of the rankers are able to provide
comparable values to those with exhaustive search. This
is especially remarkable for the CW09-CatB dataset which
offers 5 levels of graded relevance.

When comparing the SHIiRE algorithms to each other we

Base of the Exponential Decay Function (B)

Figure 6: Sensitivity of Rank-S algorithm to param-
eter B. Dataset: CW09-CatB.

see that the Rank-S approach provides the largest reduction
in cost for both datasets. The computational complexity
of the Lex-S algorithm is much higher than the other two
SHiRE algorithms. The transformation of the CSI results
into a hierarchy requires agglomerative clustering of the re-
sults in case of Lex-S, whereas this transformation is trivial
for Rank-S and Conn-S. Based on the above observations we
recommend the SHIiRE algorithms (especially Rank-S) over
ReDDE for topically partitioned collections.

8.1 Sensitivity of SHIiRE algorithms to
parameter B

We experimented with a range of base values (B) for the
exponential decay function (Equation 1) in order to analyze
its influence on the performance of the SHiRE algorithms.
Figures 5 and 6 present the results for the Rank-S algorithm
with both datasets. The results for each of the precision
metrics are fairly stable over a range of B values. We see
more variation in the values for the cost metric. A small base
value allows for more search budget (in terms of shard rank
cutoff). As a result, the corresponding search cost increases
as the base value decreases.

1001

Il under
[lequal
«» 80f [Jover
9
o
3
O 60
k]
(]
g
£ 4o
[
2
(]
o
20y
0 ReDDE Lex-S Rank-S Conn-S
(T=3) (B=10) (B=10) (B=10)
Figure 7: Shard rank cutoff estimation errors.

Dataset: Gov2. Metric: P@10.

1001

Il under
[_lequal
» 80f [Jover
2
@
=]
O 60
k]
Q
g
£ 40
o
2
(1)
o
20
0 ReDDE Lex-S Rank-S Conn-S
(T=3) (B=50) (B=50) (B=50)
Figure 8: Shard rank cutoff estimation errors.

Dataset: CW09-CatB. Metric: P@10.

We see similar trends for the Conn-S and Lex-S algo-
rithms. However, for the latter the cost is much higher for
smaller base values. Often the hierarchy learned from the
CSI results of a query for the Lex-S algorithm is more flat
than it is for the Rank-S and Conn-S algorithms. As a result,
the votes accumulated at each level in the tree, decay at a
much slower rate for the Lex-S algorithm. This results in a
higher shard rank cutoff estimates and ultimately to higher
search costs. Overall, these results demonstrate that the
SHIiRE algorithms are not highly sensitive to the parameter
B and that we see consistent trends that are intuitive.

8.2 Shard Rank Cutoff Estimation

In this section we analyze the effectiveness of the SHiRE
algorithms at predicting the minimal shard rank cutoff. We
categorize the cutoff estimates into: under, equal and over
estimates, based on comparison with the minimal rank cut-
off. The equal category has a tolerance of +1. An estimate
that is off by +1 or -1 from the minimal value would be
counted as an accurate estimate for this analysis. Recall
that the minimal cutoff value for a query is specific to a
metric. In these results the metric is P@Q10. We see similar
trends for the other metrics.

Figures 7 and 8 plot the distribution of the estimation
errors for the Gov2 and CW09-CatB datasets, respectively.

Table 5: Confusion matrix for shard rank cutoff esti-
mation for Rank-S (B=10). Dataset: Gov2. Metric:
P@10. Queries: 149. Cutoff averages: optimal=1.8
(£1.9), predicted=2.3 (+1.0).

Predicted

1 2 3 4 5 >5

1 34 37 26 5 2 0

= 2 0 7 12 0 0 0
g 3 0 4 5 2 0 0
2 4 0 2 il 3| O 0
© 5 1 1 0 0 0 0
>5 1 2 3 1 0 0

Table 6: Confusion matrix for shard rank cutoff esti-
mation for Rank-S (B=50). Dataset: CWO09-CatB.
Metric: P@10. Queries: 98. Cutoff averages: opti-
mal=3.1 (+9.3), predicted=1.8 (+0.6).

Predicted

1 2 3 4 5 >5

1 22 4 8 0 0 0

= 2 0 2 1 0 0 0
E 3 2 4 0 0 0 0
2 4 0 30 0 O 0
© 5 O 1 0 0 0 0
>5 0 5 0 0 0 0

We see that the over estimation errors are more frequent
than the under estimation errors for nearly all the predic-
tors. A fixed rank cutoff leads to over-estimation for the
majority of the queries in case of ReDDE. This explains
the large search costs associated with this search algorithm.
All of the SHIiRE algorithms lead to fewer prediction errors
than ReDDE. However, Rank-S is most successful at pre-
dicting the minimal cutoff values (accuracy 71% and 81%,
respectively for Gov2 and CW09-CatB) which explains its
cost-effective search performance in Tables 3 and 4.

The above analysis provides a high-level validation of the
minimal cutoff estimator’s efficacy. For a more thorough un-
derstanding we study the magnitude of the cutoff prediction
errors for the Rank-S algorithm. The confusion matrices in
Tables 5 and 6 present these values for the Gov2 and CW09-
CatB datasets, respectively. We see that the distribution of
minimal rank cutoffs is highly skewed toward low cutoff val-
ues, specifically 1, for both datasets. This is mainly caused
by the topical partitioning of the collection.

If we tolerate an estimation error of magnitude +1 then
the Rank-S estimator is accurate for 71% of the queries for
the Gov2 dataset and for 81% of the queries for CW09-CatB.
For ReDDE with a fixed cutoff (T) of 3 these numbers are
36% and 15% for Gov2 and CW09-CatB, respectively. The
query-specific cutoff estimates by Rank-S are at least twice
as accurate as the query-agnostic fixed cutoff.

Tables 5 and 6 show that for many queries the magni-
tude of the estimation error is not large for either datasets.
However, for Gov2 we see a higher rate of over-estimation
errors (22%), especially for the minimal cutoff of 1, than for
CWO09-CatB (8%). On the other hand, under-estimation er-
rors occur for a larger percentage of queries (11%) for CW09-
CatB than for Gov2 (7%). The prediction accuracy is es-
pecially low for the higher values of minimal cutoffs. Also,
the magnitude of these errors is relatively higher. These er-
rors primarily stem from the bias of the Rank-S algorithm

Table 7: Search accuracy and cost results for
TREC123-BySrc. For ReDDE the top 25 shards
(T) were searched for each query. For SHiRE al-
gorithms the exponential base value of 3 (B) was
used. Exhaustive search performance: P@10=0.48,
P@30=0.47, MAP=0.21, Cost=0.15M, V¥ denotes
significantly worse precision than ReDDE (p < 0.01)

P@10 | P@30 | MAP Cost | Costartax —

(million) | CostreppE

(%)

ReDDE 0.48 0.46 0.14 0.06 -
Lex-S 0.52 0.46 0.13 0.05 -24%
Rank-S 0.46 | v0.40 | v0.07 0.02 -73%
Conn-S 0.50 0.42 | v0.08 0.02 -T1%

Table 8: Search accuracy and cost results for
TREC4-Kmeans. For ReDDE the top 20 shards
(T) were searched for each query. For SHIiRE al-
gorithms the exponential base value of 3 (B) was
used. Exhaustive search performance: P@10=0.46,
P@30=0.35, MAP=0.21, Cost=0.19M.

P@10 | P@30 | MAP Cost | Costartax —

(million) | CostreppE

(%)

ReDDE 0.45 0.34 0.19 0.09 -
Lex-S 0.45 0.33 0.15 0.05 -46%
Rank-S 0.40 0.32 0.16 0.02 -80%
Conn-S 0.41 0.33 0.16 0.02 -TT%

toward smaller cutoff predictions, especially when parame-
terized with higher B values.

Overall, this query-specific rank cutoff estimator takes a
step in the right direction and offers substantial improve-
ments over the query-agnostic fixed cutoff approach. How-
ever, the above analysis also reveals the areas in which the
estimator could be improved.

8.3 Additional Datasets

In this section we test the adaptability of the proposed
shard rankers. We experiment with datasets that have not
been topically partitioned using the technique proposed by
Kulkarni and Callan [19]. We use the TREC123-BySrc and
TREC4-Kmeans datasets described in Section 6. These
datasets differ from those used in the previous sections on
several dimensions, such as: size, average number of rele-
vant documents per query, and topical shard homogeneity.
The results for both datasets are given in Tables 7 and 8.
As with the first two datasets, the differences in precision
values of ReDDE and the SHiRE algorithms were tested for
significance using the paired T-test (p < 0.01).

The prominent deviation from the trends seen until now is
the low performance of the Rank-S algorithm. Although it
provides substantial savings in search cost for both datasets,
the corresponding search effectiveness is not comparable to
the baseline performance. Instead, the Lex-S algorithm sup-
ports a more cost-effective partial search for these datasets.
This trend reveals one of the weaknesses of Rank-S: its
strong bias for predicting small rank cutoffs. At the same
time it brings to light the strength of the Lex-S algorithm:
its ability to support a more varied cutoff prediction range.

From these analysis we can conclude that the family of
SHiRE algorithms together provide a search approach that

has reasonable adaptability and is cost-effective for different
search needs.

9. CONCLUSIONS

We presented three SHiRE shard ranking algorithms:
Lex-S, Rank-S and Conn-S, that transform a flat CSI doc-
ument ranking into a tree structure in order to encode ad-
ditional information about the documents and the shards.
The constructed hierarchy is also employed for estimating
a query-specific minimal shard rank cutoff. The presented
algorithms are one of the few approaches to dynamically pre-
dict query-specific shard rank cutoffs. The joint formulation
of the two inter-dependent problems of shard ranking and
cutoff estimation is an additional contribution of this work.

We tested the proposed algorithms on two large datasets
that were both partitioned into topical shards. The search
accuracy of the SHIiRE algorithms is on par with a strong
baseline and also with exhaustive search, while the search
cost is substantially lower than both. The Rank-S algorithm
is the most efficient search method for large topically parti-
tioned collections. It reduced the search cost by a quarter
for one of the datasets and by nearly a half for the larger
dataset. Rank-S also supports query-specific minimal cutoff
estimation that is at least twice as accurate as the best fixed
cutoff value for topical shards.

Experiments with two supplementary datasets demon-
strated that the conservative nature of the Rank-S cutoff
estimator that enables very efficient search can be a detri-
ment for smaller and topically less focused collections. How-
ever, Lex-S provides an attractive solution that is efficient
and yet effective as compared to the baseline. Overall, the
family of SHiRE algorithms offers cost-effective solutions for
different search requirements.

10. ACKNOWLEDGMENTS

This work was in part supported by the National Science
Foundation (NSF) grant IIS-0916553 and by the Nether-
lands Organisation for Scientific Research (NWO) under
project 639.022.809. Any opinions, findings, conclusions and
recommendations expressed in this paper are the authors’
and do not necessarily reflect those of the sponsors.

11. REFERENCES

[1] K. Aberer and M. Hauswirth. An overview on
peer-to-peer information systems. In Proceedings of the
Workshop on Distributed Data and Structures, 2002.

[2] J. Arguello, J. Callan, and F. Diaz. Classification
based resource selection. In Proceeding of the ACM
Conference on Information and Knowledge
Management, pages 1277-1286, 2009.

[3] R. Baeza-Yates, C. Castillo, F. Junqueira,

V. Plachouras, and F. Silvestri. Challenges on
distributed Web retrieval. In The International
Conference on Data Engineering, pages 6-20, 2007.

[4] R. Baeza-Yates, V. Murdock, and C. Hauff. Efficiency
trade-offs in two-tier Web search systems. In
Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 163-170, Boston, MA, USA, 2009.

[5] L. A. Barroso, J. Dean, and U. Holzle. Web search for
a planet: The Google cluster architecture. IEEE
Micro, 23(2):22-28, 2003.

(6]

[11]

[15]

[16]

[17]

18]

M. Bawa, G. S. Manku, and P. Raghavan. SETS:
Search enhanced by topic segmentation. In
Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 306—313, July 2003.

B. Cahoon, K. S. McKinley, and Z. Lu. Evaluating the
performance of distributed architectures for
information retrieval using a variety of workloads.
ACM Trans. Inf. Syst., 18(1):1-43, Jan. 2000.

J. Callan. Distributed information retrieval. In
Advances in Information Retrieval, pages 127-150.
Kluwer Academic Publishers, 2000.

J. Callan, W. B. Croft, and S. M. Harding. The
INQUERY retrieval system. In Proceedings of the
International Conference on Database and Expert
Systems Applications, pages 78-83, 1992.

J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 21-28, NY, USA, 1995.

B. B. Cambazoglu, E. Varol, E. Kayaaslan,

C. Aykanat, and R. Baeza-Yates. Query forwarding in
geographically distributed search engines. In
Proceedings of the ACM SIGIR conference on
Research and development in information retrieval,
pages 90-97, NY, USA, 2010.

A. Chowdhury and G. Pass. Operational requirements
for scalable search systems. In Proceedings of the ACM
Conference on Information and Knowledge
Management, pages 435442, USA, 2003.

C. Clarke, N. Craswell, and 1. Soboroff. Overview of
the TREC 2004 Terabyte track. In Proceedings of the
2004 Text Retrieval Conference, 2004.

A. Crespo and H. Garcia-Molina. Semantic overlay
networks for P2P systems. In Proceedings of the
Agents and Peer-to-Peer Computing, pages 1-13,
Heidelberg, DE, July 2004. Springer.

L. Gravano, H. Garcia-Molina, and A. Tomasic.
GIOSS: Text-source discovery over the internet. ACM
Transactions on Database Systems, 24:229-264, 1999.
P. G. Ipeirotis and L. Gravano. Distributed search
over the hidden Web: Hierarchical database sampling
and selection. In Proceedings of Conference on Very
Large Data Bases, pages 394-405, 2002.

I. Klampanos and J. M. Jose. An evaluation of a
cluster-based architecture for peer-to-peer information
retrieval. In Proceedings of Database and Expert
Systems Applications, pages 380-391, Sept. 2007.

R. Krovetz. Viewing morphology as an inference
process. In Proceedings of the ACM SIGIR Conference
on Research and Development in Information
Retrieval, pages 191-202, NY, USA, 1993.

A. Kulkarni and J. Callan. Document allocation
policies for selective searching of distributed indexes.
In Proceedings of the ACM Conference on Information
and Knowledge Management, pages 449458, 2010.

J. Lu and J. Callan. Content-based peer-to-peer
network overlay for full-text federated search. In
Proceedings of RIAO, Conference Adaptivity,
Personalization and Fusion of Heterogeneous
Information, 2007.

(21]

(22]

23]

(24]

(25]

(30]

(31]

(32]

D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Information Processing and Management,
40(5):735-750, 2004.

D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Proceedings of the
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 472479,
NY, USA, 2005.

A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates.
A pipelined architecture for distributed text query
evaluation. Information Retrieval, 10(3):205-231,
2007.

S. Orlando, R. Perego, and F. Silvestri. Design of a
parallel and distributed web search engine. In
Proceedings of Parallel Computing Conference, pages
197-204. College Press, 2001.

D. Puppin, F. Silvestri, and D. Laforenza.
Query-driven document partitioning and collection
selection. In Proceedings of the Conference on Scalable
Information Systems, page 34, NY, USA, 2006.

D. Puppin, F. Silvestri, R. Perego, and

R. Baeza-Yates. Tuning the capacity of search engines:
Load-driven routing and incremental caching to
reduce and balance the load. ACM Transactions on
Information Systems, 28(2):5:1-5:36, June 2010.

K. M. Risvik, Y. Aasheim, and M. Lidal. Multi-tier
architecture for Web search engines. Web Congress,
Latin American, 0:132, 2003.

M. Shokouhi. Central-rank-based collection selection
in uncooperative distributed information retrieval. In
The European Conference on Information Retrieval,
Rome, Italy, 2007.

L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In
Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 298-305, NY, USA, 2003.

T. Strohman, H. Turtle, and W. B. Croft.
Optimization strategies for complex queries. In
Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 219-225, NY, USA, 2005.

T. Suel, C. Mathur, J.-w. Wu, J. Zhang, A. Delis,

M. Kharrazi, X. Long, and K. Shanmugasundaram.
ODISSEA: A peer-to-peer architecture for scalable
Web search and information retrieval. In Proceedings
of the Workshop on the Web and Databases, pages
67-72, June 2003.

P. Thomas and M. Shokouhi. SUSHI: Scoring scaled
samples for server selection. In Proceedings of the
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 419-426,
NY, USA, 2009.

C. J. van Rijsbergen. Information Retrieval.
Butterworths, 1979.

J. Xu and W. B. Croft. Cluster-based language models
for distributed retrieval. In Proceedings of the ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 254-261, NY, USA, 1999.

	Introduction
	Related Work
	Topical Shards: Ranking and Cutoff Estimation
	Sampling-based HierarchicalRelevance Estimation (SHiRE)
	Lexical SHiRE (Lex-S)
	Rank SHiRE (Rank-S)
	Connected SHiRE (Conn-S)

	Shard Rank Cutoff Estimation
	Datasets
	Experimental Setup
	Results and Discussion
	Sensitivity of SHiRE algorithms to parameter B
	Shard Rank Cutoff Estimation
	Additional Datasets

	Conclusions
	Acknowledgments
	References

