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Abstract. We propose to use MapReduce to quickly test new retrieval
approaches on a cluster of machines by sequentially scanning all docu-
ments. We present a small case study in which we use a cluster of 15 low
cost machines to search a web crawl of 0.5 billion pages showing that
sequential scanning is a viable approach to running large-scale informa-
tion retrieval experiments with little effort. The code is available to other
researchers at: http://mirex.sourceforge.net

1 Introduction

A lot of research in the field of information retrieval aims at improving the quality
of search results. Search quality might for instance be improved by new scoring
functions, new indexing approaches, new query (re-)formulation approaches, etc.
To make a scientific judgment of the quality of a new search approach, it is good
practice to use benchmark test collections, such as those provided by CLEF [10]
and TREC [13]. The following steps typically need to be taken: 1) The researcher
codes the new approach by adapting an existing search system, such as Lemur
[6], Lucene [8], or Terrier [11]; 2) The researcher uses the system to create an
inverted index on the documents from the test collection; 3) The researcher puts
the queries to the experimental search engine and gathers the top X search re-
sults (a common value for CLEF experiments is X = 1000); 4) The researcher
compares the top X to a golden standard by computing standard evaluation
measures such as mean average precision. In our experience, Step 1, actually
coding the new approach, takes by far the most effort and time when conduct-
ing an information retrieval experiment. Coding new retrieval approaches into
existing search engines like Lemur, Lucene and Terrier is a tedious job, even if the
code is maintained by members of the same research team. It requires detailed
knowledge of the existing code of the search engine, or at least, knowledge of the
part of the code that needs to be adapted. Radical new approaches to informa-
tion retrieval, i.e., approaches that need information that is not available from
the search engines inverted index, require reimplementing part of the indexing
functionality. Such radical new approaches are therefore not often evaluated, and
most research is done by small changes to the system.

Of in total 36 CLEF 2009 working note papers that were submitted for the
Multilingual Document Retrieval (Ad Hoc) and Intellectual Property (IP) tracks,
10 papers used Lemur, 10 used Lucene, 3 used Terrier, 1 used all three, 5 did not



mention the engine, and 7 used another engine (Cheshire II, Haircut, Open Text
SearchServer, MG4J, Zettair, JIRS, and MonetDB/HySpirit). In several cases a
standard engine was used, and then a lot of post-processing was done on top,
completely changing the retrieval approach in the end. Post-processing on top of
an existing engine tests the ability of new retrieval approaches to rerank results
from the existing engine, but it does not test the ability of new approaches to
find new information.

In his WSDM keynote lecture, Dean [3] describes how MapReduce [4] is used
at Google for experimental evaluations. New ranking ideas are tested off-line on
human rated query sets similar to the queries from CLEF and TREC. Running
such off-line tests has to be easy for the researchers at Google, possibly at the
expense of the efficiency of the prototype. So, it is okay if it takes hours to run for
instance 10,000 queries, as long as the experimental infrastructure allows for fast
and easy coding of new approaches. A similar experimental setup was followed
by Microsoft at TREC 2009: Craswell et al. [2] use DryadLINQ [15] on a cluster
of 240 machines to run web search experiments. Their setup sequentially scans
all document representations, providing a flexible environment for a wide range
of experiments. The researchers plan to do many more to discover its benefits
and limitations.

The work at Google and Microsoft shows that sequential scanning over large
document collections is a viable approach to experimental information retrieval.
Some of the advantages are:

1. Researchers spend less time on coding and debugging new experimental re-
trieval approaches;

2. It is easy to include new information in the ranking algorithm, even if that
information would not normally be included in the search engine’s inverted
index;

3. Researchers are able to oversee all or most of the code used in the experiment;
4. Large-scale experiments can be done in reasonable time.

We show that indeed sequential scanning is a viable experimental tool, even
if only a few machines are available. In Section 2 we describe the MapReduce
search system. Sections 3 and 4 contain experimental results and concluding
remarks.

2 Sequential Search in MapReduce

MapReduce is a framework for batch processing of large data sets on clusters of
commodity machines [4]. Users of the framework specify a mapper function that
processes a key/value pair to generate a set of intermediate key/value pairs,
and a reducer function that processes intermediate values associated with the
same intermediate key. The pseudo code in Figure 1 outlines our sequential
search implementation. The implementation does a single scan of the documents,
processing all queries in parallel.



mapper (DocId, DocText) =

FOREACH (QueryID, QueryText) IN Queries

Score = experimental score(QueryText, DocText)

IF (Score > 0)

THEN OUTPUT(QueryId, (DocId, Score))

reducer (QueryId, DocIdScorePairs) =

RankedList = ARRAY[1000]

FOREACH (DocId, Score) IN DocIdScorePairs

IF (NOT filled(RankedList) OR

Score > smallest score(RankedList))

THEN ranked insert(RankedList, (DocId, Score))

FOREACH (DocId, Score) IN RankedList

OUTPUT(QueryId, DocId, Score)

Fig. 1. Pseudo code for linear search

The mapper function takes pairs of document identifier and document text
(DocId, DocText). For each pair, it runs all benchmark queries and outputs for
each matching query the query identifier as key, and the pair document identifier
and score as value. In the code, Queries is a global constant per experiment.
The MapReduce framework runs the mappers in parallel on each machine in
the cluster. When the map step finishes, the framework groups the intermediate
output per key, i.e., per QueryId. The reducer function then simply takes the top
1000 results for each query identifier, and outputs those as the final result. The
reducer function is also applied locally on each machine (that is, the reducer is
also used as a combiner [4]), making sure that at most 1000 results have to be
sent between machines after the map phase finishes.

3 Case Study: ClueWeb09

The ClueWeb09 test collection consists of 1 billion web pages in ten languages,
collected in January and February 2009. The dataset is used by several tracks of
the TREC conference [13]. We used the English pages from the collection, about
0.5 billion pages equaling 12.5 TB (2.5 TB compressed). It is hard to handle
collections of the size of ClueWeb09 on a single machine, at least one needs to
have a lot of external storage space. We ran our experiments on a small cluster of
15 machines; each machine costs about e 1000. The cluster runs Hadoop version
0.19.2 out of the box [14].

Time to code the experiment After gaining some experience with Hadoop
by having M.Sc. students doing practical assignments, we wrote the code for
sequential search, and for anchor text extraction in less than a day. Table 1
gives some idea of the size of the source code compared to that of experimental



search systems. Note that this is by no means a fair comparison: The existing
systems are general purpose information retrieval systems including a lot of
functionality, whereas the linear search system only knows a single trick. The
table also ignores the code needed to read the web archive “warc” format used
by ClueWeb09, which consists of another 4 files, 915 lines, and 30 kb of code.1

Still, in order to adapt the systems below, one at least has to figure out what
code to adapt.

Table 1. Size of code base per system

Code base #files #lines size (kb)
MapReduce anchors & search 2 350 13
Terrier 2.2.1 300 59,000 2,000
Lucene 2.9.2 1,370 283,000 9,800
Lemur/Indri 4.11 1,210 540,000 19,500

Time to run the experiment Anchor text extraction on all English doc-
uments of ClueWeb09 takes about 11 hours on our cluster. The anchor text
representation contains text for about 87 % of the documents, about 400 GB in
total. A subsequent TREC run using 50 queries on the anchor text representa-
tion takes less than 30 minutes. Our linear search system implements a fairly
simple language model with a length prior without stemming or stop words. It
achieves expected precision at 5, 10 and 20 documents retrieved of respectively
0.42, 0.39, and 0.35 (MTC method), similar to the best runs at TREC 2009 [1].

Figure 2 shows how the system scales when processing up to 5,000 queries,
using random sets of queries from the TREC 2009 Million Query track. Reported
times are full Hadoop job times including job setup and job cleanup averaged
over three trials. Processing time increases only slightly if more queries are pro-
cessed. Whereas the average processing time per query is about 35 seconds per
query for 50 queries, it goes down to only 1.6 second per query for 5,000 queries.
For comparison, the graph shows the performance of “Lemur-one-node”, i.e.,
Lemur version 4.11 running on one fourteenth of the anchor text representation
on a single machine. A distributed version of Lemur searching the full full anchor
text representation would not do faster: It would be as fast as the slowest node,
it would need to send results from each node to the master, and to merge the
results. Lemur-one-node takes 3.3 seconds per query on average for 50 queries,
and 0.44 seconds on average for 5,000 queries. The processing times for Lemur
were measured after flushing the file system cache. Although Lemur cannot pro-
cess queries in parallel, the system’s performance benefits from receiving many
queries. Lemur’s performance scales sublinearly because it caches intermediate
results. Still, at 5,000 queries Lemur-one-node is only 3.6 times faster than the
MapReduce system. For experiments at this scale, the benefits of the full, dis-
tributed Lemur are probably negligible.
1 The warc reader was kindly provided by Mark J. Hoy, Carnegie Mellon University.
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Fig. 2. Processing time for query set sizes

We also tried to index all anchor text data on a single machine and run a
fraction of the queries on each of the 14 machines. Unfortunately, Lemur crashed
when trying to index all data, and we did not pursue this approach any further.

On (not) computing global statistics Our language modeling approach
does not use smoothing, so it does not need global statistics to compute IDF-
like (inverse document frequency) weights. Global statistics can be incorporated
by doing one initial pass over the corpus to collect global statistics for all queries
[2]. Post-hoc experiments using standard approaches like linear interpolation
smoothing, Dirichlet prior smoothing, and Okapi’s BM25 [9] show that these
approaches – that do use global statistics – consistently perform equally or worse
than our simple weighting approach. Presumably, on document collections of this
scale, IDF-like weighting is unnecessary.

Related work The idea to use sequential scanning of documents on many
machines in parallel is certainly not new. Salton and Buckley [12] analyzed such
a method for the Connection Machine, a multi-processor parallel computing
machine. We also know of at least one researcher who used sequential scanning
over ten years ago for his thesis [5]. Without high-level programming paradigms
like MapReduce, however, efficiently implementing sequential scanning is not
a trivial task, and without a cluster of machines the approach does not scale
to large collections. A similar approach using MapReduce was taken by Lin [7],
who used Hadoop MapReduce for computing pairwise document similarities. Our
implementation resembles Lin’s brute force algorithm that also scans document
representations linearly. Our approach is simpler because our preprocessing step
does not divide the collection into blocks, nor does it compute document vectors.

4 Conclusion

A faster turnaround of the experimental cycle can be achieved by making cod-
ing of experimental systems easier. Faster coding means one is able to do more



experiments, and more experiments means more improvement of retrieval per-
formance. We implemented a full experimental retrieval system with little effort
using Hadoop MapReduce. Using 15 machines to search a web crawl of 0.5 billion
pages, the proposed MapReduce approach is less than 10 times slower than a
single node of a distributed inverted index search system on a set of 50 queries.
If more queries are processed per experiment, the processing times of the two
systems get even more close. The code used in our experiment is open source
and available to other researchers at: http://mirex.sourceforge.net
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