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ABSTRACT
In this paper we present the extension of our prototype
three-level database system (TIJAH) developed for struc-
tured information retrieval. The extension is aimed at mod-
eling vague search on XML elements. All three levels (con-
ceptual, logical, and physical) of the TIJAH system are
enhanced to support vague search concepts. The vague
search is implemented as vague selection of XML elements
using XML element name expansion lists and rewriting tech-
niques. We test the performance of retrieval models us-
ing automatically generated expansion lists and compared
them with models that use manual ones. The goal is to find
the best approach for structured information retrieval with
vague structural constraints on element names expressed in
the query.

1. INTRODUCTION
Due to the fact that more and more documents on the web

that come in the structured format, such as XML, informa-
tion retrieval community begins to realize the importance of
document component retrieval and structured querying. To
exploit structured retrieval, information retrieval like query
languages are enriched with the ability to state structural
constraints in the query (e.g., [1, 4, 5, 19]). The question is
how these constraints should be treated when answering a
query: as strict constraints that must be satisfied or just as
users suggestions on where to search for information.

Similarly, as the user gives only a number of terms as hints
for searching within a document, XML elements specified
within the query need not be considered as a strict require-
ment but as a hint for structural search. Therefore, when
formulating a query the user can state that the search (sup-
port) element or answer (target) element should be treated
as a hint or as a constraint in the retrieval process. We
use the term search element for elements in which the user
would like to find some information and the target element
for elements that the user would like to see as an answer to
his query.

The motivation for vague search is found in the discussion
raised during the 2004 INitiative for Evaluation of XML re-
trieval (INEX) workshop and the tasks that are set for the
year 20051. INEX 2005 ad-hoc track introduced a number of
subtasks for both content-and-structure (CAS) and content-
only (CO). For the CAS task, the goal was to test whether
the structural constraints should be followed strictly or not,
and if not, to what degree they should be freely interpreted.

1http://inex.is.informatik.uni-duisburg.de:2005/.

The idea is that the structural constraints should be consid-
ered as hints, and by each scenario different degree of vague-
ness for structural constraints should be tested. Therefore,
the CAS task is divided into four scenarios:

• SSCAS that assumes strict matching between the struc-
tural conditions stated in the query and path leading
to the search and answer elements.

• SVCAS where the structural conditions of search (sup-
port) elements need not to be strictly satisfied.

• VSCAS in which the answer (target) elements can be
interpreted vaguely, i.e., the answer element need not
to be the one specified in the query.

• VVCAS where all the structural constraints can be
interpreted vaguely.

On the other hand, for the CO task we address the sub-
task termed as content-only plus structure (CO+S or COS),
formed by adding structural constraints to a set of terms
in CO query. Here, structural constraints are also inter-
preted vaguely, but without explicit separation among dif-
ferent sub-tasks. These queries are used to check whether
the structural information can help in the searching process
and in what way.

To support these different types of vague search scenarios
expressed in user queries

• we introduced vague element search as a concept

• we allow terms to cross the structural boundaries stated
in the query

The vague element search (selection) can be treated simi-
larly as a query expansion on terms in traditional IR. For ex-
ample, if a user searches for the term ‘conclusion’, he might
also be satisfied with terms ‘decision’, ‘determination’, ‘ter-
mination’, or ‘ending’ in the answer. In structured docu-
ments, if a user asks for ‘car’ elements, he would probably
not mind getting ‘auto’ or ‘vehicle’ elements as an answer.
Furthermore, he might also agree with the answers: ‘van’,
‘sports-car’, or ‘convertible’.

While the list of possible synonyms, hypernyms, and hy-
ponyms for terms can be considered as relatively static over
time (e.g., WordNet [15]) and the degree of similarity can
be pre-specified, in the case of element name expansion the
problem is more complex and dynamic. Besides the terms
that have the same or similar meaning, like the ones given
above, it can happen that element names follow different
naming pattern. Thus, elements might have complex ele-
ment names such as: ‘sports car’, ‘vehicles list’, etc.. Ab-



breviations could also be used, such as for section elements
in INEX IEEE collection [10]: ‘sec’, ‘ss1’, ‘ss2’, ‘ss3’.

Additionally, if a user asks for elements denoting one con-
cept it might not be wrong if the answer is an element from
a similar concept. Plenty of such examples can be identified
in INEX; e.g., if a user asks for sections as answer elements,
like in the INEX 2005 CAS query 235
//article[about(.//abs, "data mining")]

//sec[about(., "frequent itemsets")]

he might be satisfied with paragraphs, abstracts, or even
short articles (summaries) given as an answer. Furthermore,
the list of element names can be larger in semantically richer
and heterogeneous XML collection and it can evolve over
time with the introduction of the new XML collections.

The problem of element name matching is studied in the
research area of schema matching and numerous techniques
exist that try to resolve this problem (see [3, 18] for sur-
vey)2. However, we decided to simplify the vague element
name search task and use the results from INEX 2004 assess-
ments to find the expanded element names (see the following
section for more details).

Throughout the paper we discuss the application of our
TIJAH system for vague search in XML documents. Vague
search is modeled using the concept of vague XML element
selection and rewriting techniques. The TIJAH system [12,
13, 14] is developed as a transparent XML-IR three-level
database system for structured information retrieval, con-
sisting of conceptual, logical, and physical levels. The orig-
inal TIJAH system can handle queries with the strict selec-
tion of XML elements, specified in the NEXI query language
[19] and can reason about textual information. In this pa-
per we extend the TIJAH system toward handling vague
specification of XML elements in the query (similar to [5]).

Additionally, we employ two rewriting techniques at con-
ceptual level that are used for extending the search on terms
not only to the search elements deeper in the XML tree,
but also to the higher-level elements that are used in the
query formulation. We define two techniques for rewriting
the original query as described in Section 2.

In this paper we aim to test whether we can automatically
derive expansion lists that can be used to improve the vague
search and to compare them them with rewriting techniques.
For that we need a test collection with a real set of vague
queries. Although queries specified in INEX ad-hoc CAS
and COS tasks are declared as vague, it is not clear whether
every structural condition is vague in them. Furthermore,
due to the content of the collection, i.e., homogeneous col-
lection of scientific articles, the XML markup is mostly used
to represent document structure (article, title, abstract, sec-
tions paragraphs, etc.). Therefore, the vagueness that can
be expressed in INEX queries is mostly ‘structural’ vague-
ness (similarity between different structural elements of a
document), and not the ‘semantic’ one (similarity between
different concepts in different documents), which would be
better suitable for our experimental setup. Even though
INEX 2005 CAS and COS queries are not ideal for what we
are aiming at and due to that we lack other suitable col-
lections, we decided to make the fresh test our approach on
INEX test collection.

2Note that the schema matching approaches are concerned with
matching the exact relations among elements besides element
name matching but due to the complexity of the problem we
start our research by trying to understand the elementary prob-
lems such as element name matching.

The following section explains the extensions introduced
in the TIJAH system to model vague XML element spec-
ification and rewriting techniques. Experimental setup is
presented in Section 3. We conclude with the discussion
of experiments performed using INEX 2004 and 2005 collec-
tions in Section 4 and with conclusions and future directions
in Section 5.

2. VAGUENESS IN USER QUERIES
This section details the motivation and the implementa-

tion of vague search in our three-level database framework.
We explain the extensions at each level, conceptual, logical,
and physical, aimed for vague search on elements and for
rewriting the queries.

2.1 Vague search in NEXI
Instead of extending our conceptual parser for rewriting

content-and-structure (CAS) and content-only plus struc-
ture (COS) queries into variants with strict or vague spec-
ification of target and support elements and as the vague
element specification should be expressed by the (expert)
user we derive our own vague queries. Our vague queries
are denoted with SS, VS, SV, VV in front of the CAS and
COS query types, e.g., SVCAS, VSCAS, and VVCAS (SS-
CAS is equal to CAS in our case). Besides the vague selec-
tion of elements we model vagueness using query rewriting
techniques.

2.1.1 Vague element selection
To express vague element selection we decided to extend

the NEXI grammar with one extra symbol ‘∼’. The ‘tilde’
symbol is used in front of the element name in the query
specification, denoting that the element name does not have
to be strictly matched in the query evaluation. As we de-
cided to simplify the vague element name search task, in-
stead of more advanced schema matching techniques used
to find the expanded element names, we use the results
from INEX 2004 assessments. The list of expanded element
names is defined based on the list of element names assessed
as relevant in INEX 2004 assessments process. The lists
that we use, termed element name expansion lists are the
following:

• One manually specifies set of lists with the default
score 0.55 (based on 2004 experiments) denoted as
manual55, given in Table 13. The list is formed by
selecting the most frequent highly and marginaly ex-
haustive elements and adding the most frequently used
INEX query elements, such as sec (section), p (para-
graph), abs (abstract), to the expansion lists of each
element where they are not present and for which they
seem to be a reasonable expansion element name.

• Seven automatically generated lists out of assessments
with exhaustivity (E) and specificity (S) greater or
equal to marginally (1), fairly (2), or highly (3) exhaus-
tive or specific: hh (E > 2, S > 2), hf (E > 2, S > 1),
fh (E > 1, S > 2), ff (E > 1, S > 1), fm (E >

1, S > 0), mf (E > 0, S > 1), mm (E > 0, S > 0).

3Other elements in INEX IEEE collection are not included in
Table 1 as they were not present as target elements in the 2004
topic set.



Table 1: Manual element name expansion list based on

INEX 2004 assessments.

El. name Expanded element names

abs abs, fm, kwd, vt, p, sec, article, bdy, ref

article article, bdy, sec, abs, fm, bm, bib, bibl,
bb, p, ref

atl atl, st, fgc

bb bb, bm, bibl, bib, atl, art

bdy bdy, article, sec, abs, p, ref

bib bib, bm, bb, atl, art

fig fig, sec, st, p, fgc, st, atl

fm fm, sec, abs, kwd, vt, p, article, bdy, ref

kwd kwd, abs, fm, st, fgc, atl

p p, vt, abs, sec, fm, article, bdy, st

sec sec, abs, fm, vt, p, article, bdy, bm, app

st st, atl, fgc

tig tig, bb

vt vt, p, sec, bm, fig

The default score is based on a number of relevant el-
ements of that specific name, normalized by a total
number of relevant elements4, for all distinct target
elements. The lists containd from xx to xx original
element names (with the mean of xx), and each list
contained on average xx expanded element names.

2.1.2 Query rewriting techniques
We also model vague node selection using two query rewrit-

ing techniques that we used previous years for INEX [12,
14]. These rewriting techniques treat structural constraints
as strict but add a new about clause that searches for the
same terms in as in the original query but in different ele-
ments. The rewriting is done at conceptual level.

In the first rewriting approach (rw I), all terms that are
in different about clauses in the same predicate expression,
and are not at the top level (i.e., not in about(., term)

expression), are added to an extra top-level about clause in
the same predicate expression.

The second approach (rw II), is an extension of the first
one, where not only the terms from non top-level abouts are
added to the new about, but also all the terms from the
other predicate5, if there exists any, are added to the top-
level about in each predicate.

2.2 Introducing complex selection operator for
vague node selection

The logical level of the TIJAH system is based on Score
Region Algebra - SRA (see [13] for more details). The data
model consists of a set of regions, each defined by region
start (s) and region end (e) positions, region type (t), re-
gion name (n), and region score (p). The basic operators
on regions are given in Table 2, where r1 ≺ r2 ≡ r1.s >

r2.s ∧ r1.e < r2.e. The first four define the selection of re-
gions based on: region name and type - σn=name,t=type(R),
numeric value assigned to a region - σ�num(R1), and con-
tainment relation among regions - R1 = R2 and R1 < R2.
Operator R1 = R2 selects regions from R1 that contain re-

4We had to manually edit the vt (vitae) expansion list using the
manual55 run as the distribution of assessments for vt elements
significantly degraded the performance of our 2004 runs.
5Note that the NEXI syntax allows only two predicates with the
about clauses to be specified in one query [19].

gions from R2, and R1 < R2 selects regions from R1 that
are contained in the regions from R2.

The =p operator is used for computing scores based on
the containment relation among two regions (R1 and R2)
and retrieval models specified using function f=(r1, R2) (see
Section 3). The two operators, I and J, specify score prop-
agation to the containing or contained regions respectively.
Operators up and tp specify score combination in an AND
and OR like combination of regions at the logical level.

The vague node selection at the conceptual level (NEXI)
is translated into complex vague node selection operator at
the logical level. However, the vague node selection opera-
tor in score region algebra has more expressive power than
the simple NEXI extension at the conceptual level. It allows
much finer specification of search and answer elements than
a simple vague ‘∼’ node name specification. The vague node
selection operator in SRA is defined as a union of all XML el-
ement regions that match the names of the ‘expanded name
regions’ within the element name expansion list. By default
all ‘expanded regions’ are down-weighted by a predefined
factor. The definition of the operator is given in the last
row of Table 2.

In the definition of σ
expansion(class)
n=name,t=type (R1), expansion(class)

is a set that contains the expansions for all the region names
in one expansion class, where expansion list for each region
name is denoted as expansion(class, name) (with cardinal-
ity n):

expansion(class,name) := {(ex n1, ex w1), (ex n2, ex w2),

..., (ex nn, ex wn)}
Here ex ni is a expanded element name and ex wi is a real
number in the range [0, 1] denoting the down-weight factor.

The operator σ
expansion(class)
n=name,t=type (R1) assigns name (ex n) and

score (ex w) values to the region name (n) and score (p)
based on the name and score values in the expansion list
expansion(class, name).

The simple selection operator in basic score region algebra
operator set σn=name,t=type(R) can be considered as a com-
plex selection operator where the expansion(class, name)
set contains only the name element with ex w = 1.0. Note
that the complex selection operator can also be expressed
using the basic SRA selection operator and scaling operator
(R ~ w denotes that the score of regions in the region set R

should be multiplied by w, i.e., p := p · w) as follows:
σ

expansion(class)
n=name,t=type (R) :=

(σn=ex n1,t=type(R) ~ ex w1) tp (σn=ex n2,t=type(R) ~ ex w2)

tp ... tp (σn=ex nn,t=type(R) ~ ex wn) (1)

As our NEXI extension does not allow explicit specifica-
tion of the ‘expanded regions’ list we pre-defined the ‘ex-
panded regions’ set and pre-specified the default value for
weight. For such a purpose we used manually predefined
lists in Table 1 and seven automatically generated lists from
INEX 2004 assessments and combine them with the INEX
equivalence classes given in Table 3 [10]. In this way we also
kept the framework fairly simple.

The strict (SS) runs discussed in Section 4 use equivalence
classes defined for INEX IEEE collection [10], depicted in
Table 3 and termed eq class, as these represent the default
setup in INEX. For the vague selection we used the fusion of
equivalence classes and our INEX 2004 expansion element
name lists given in Table 1 and in seven automatically ex-
tracted lists. This is done in such way that every expanded
element name in these lists that has the equivalent name in



Table 2: Score region algebra operators.
Operator Operator definition

σn=name,t=type(R) {r|r ∈ R ∧ r.n = name ∧ r.t = type}
σ�num(R1) {r1|r1 ∈ R1 ∧ ∃r2 ∈ C ∧ r2.t = term ∧ r2 ≺ r1 ∧ r2.n � num}, where � ∈ {=, <,>,≤,≥}
R1 = R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ r2 ≺ r1}
R1 < R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ r1 ≺ r2}
R1 =p R2 {(r1.s, r1.e, r1.n, r1.t, f=(r1, R2))|r1 ∈ R1 ∧ r1.t = node}
R1 I R2 {(r1.s, r1.e, r1.n, r1.t, fI(r1, R2))|r1 ∈ R1 ∧ r1.t = node}
R1 J R2 {(r1.s, r1.e, r1.n, r1.t, fJ(r1, R2))|r1 ∈ R1 ∧ r1.t = node}
R1 up R2 {(r1.s, r1.e, r1.n, r1.t, p1 ⊗ p2)|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (r1.s, r1.e, r1.n, r1.t) = (r2.s, r2.e, r2.n, r2.t)}
R1 tp R2 {(r.s, r.e, r.n, r.t, p1 ⊕ p2)|r ∈ R1 ∨ r ∈ R2}

σ
expansion(class)
n=name,t=type (R1) {(r1.s, r1.e, r1.n, r1.t, r.p)|r1 ∈ R1 ∧ r1.t = type ∧ (r1.n, r.p) ∈ expansion(class,name)}

Table 3: Equivalence classes for INEX IEEE collection.
El. name Equivalent names

h h, h1, h1a, h2, h2a, h3, h4

list list, dl, l1, l2, l3, l4, l5, l6, l7, l8,
la, lb, lc, ld, le, numeric-list,
numeric-rbrace, bullet-list

p p, ilrj, p1, p2, p3, ip1, ip2, ip3, ip4,
ip5, item-none

sec sec, ss1, ss2, ss3

the eq class name part is also expanded with the eq class

equivalent names for name. These expansions are termed
manual55 and xx for other seven lists, where x ∈ {h, f, m},
as explained in the previous section.

Therefore, the eq class selection on section elements can

be expressed as σ
expansion(eq class)
n=‘sec’,t=node (R), and vague node se-

lection ∼sec, using highly exhaustive and highly specific
elements, can be transformed into the next SRA operation

σ
expansion(hh)
n=‘sec’,t=node(R). In such a way we can transparently de-

fine the set of expanded nodes and their respective weights
and use them for vague node selection in a vague element
name selection retrieval scenarios.

2.3 The implementation of vague selection op-
erator

At the physical level, since we are working with the known
INEX IEEE data collection, and as we used static INEX
equivalence element name lists and expansion element name
list based on INEX 2004 assessments, we decided to replicate
the lists and store them as tables at the physical level, i.e., in
MonetDB [2]. Thus, we have eight tables with (entity name,
expansion name, expansion weight) for manual55 and xx

lists, and one (entity name, equivalent name)6 for eq class

list. The complex selection operator is then implemented as
an additional MIL (MonetDB Interpreter Language) func-
tion to functions implementing other operators [14], based
on the definition given in the previous section, that uses data
from these tables.

For example, the vague name selection operator on region
table R and the ‘expansion regions’ table S for the uni class

element names, in the relational algebra can be defined as:

πr.s,r.e,r.n,r.t,s.weight(σs.n=name(S) 1s.n=r.n (σr.t=node(R)))

3. EXPERIMENTAL SETUP
Below, after introducing the retrieval models instantiated

in score region algebra operators and metrics reported in the

6In the experiments we do not store weights for equivalent
region names as we assume that their default weight is 1.0.

paper, we illustrate our approaches for INEX CAS and COS
(sub)tasks.

3.1 Retrieval models
We base the instantiation of retrieval models on language

models [6] since they showed good performance in our pre-
vious experimental runs [14]. For the relevance score com-
putation on regions we use Equation 2, where Root is the
root region of the collection and size(r) := r.e − r.s − 1.

fLM
=

(r1, R2) = r1.p(λ

P

r2∈R2|r2≺r1
r2.p

size(r1)
+ (1 − λ)

|R2|

size(Root)
) (2)

For upwards score propagation and downwards score prop-
agation we employ Equation 3 and Equation 4.

fI(r1, R2) = r1.p ·
X

r2∈R2|r1≺r2

r2.p (3)

fJ(r1, R2) = r1.p ·
X

r2∈R2|r2≺r1

r2.p (4)

Abstract operators ⊗ and ⊕ in score combination operators,
up and tp, are implemented as product and sum.

3.2 Metrics
For the evaluation of our 2004 and 2005 runs we use some

of the official INEX 2004 and 2005 metrics, and precision at
selected recall points. For the 2004 runs we use inex eval,
with both strict and generalized quantization, and we report
a set-based overlap (aka O-overlap out of four overlap types
distinguished in [16]). The inex eval is based on the concept
termed expected search length [17], and it uses three levels
of exhaustivity and specificity: marginal, fair, and high [11].
Additionally, following the idea that even the simple metrics
can give enough evidence for the evaluation of XML retrieval
[7, 16], we report precision at three recall points: 10, 25, and
50.

The official INEX metrics for 2005 ad-hoc track are based
on extended Cumulative Gain (xCG) metrics [9]. The offi-
cial metrics are: normalized xCG (nxCG), effort-precision/gain-
recall (ep/gr), and extended Q and R [8]. We report the
evaluation results of our 2005 runs using nxCG at recall
points 10, 25, and 50, as it can be compared to the precision
at the low recall points. nxCG actually measures the gain
a user has accumulated up to the specific rank, compared
to the gain he could have accumulated if the ranking was
ideal. The evaluation can be done either with the gener-
alized or with the strict quantization. We also report the
ep/gr MAP. ep/gr measures the user effort in inspecting
the retrieved elements with respect to his effort in case the
ranking was ideal, which resembles the inex eval measure.
We use only VVCAS and COS.Thorough assessments as we
wanted to test the approaches on the same assessments set
and without going into discussion over the overlap issue.



3.3 Vague CAS and COS queries
Since we decided to extend the NEXI syntax with the

vague selection we had to manually rewrite the queries for
each CAS and COS scenario except the SSCAS and SSCOS.
For example, the (SS)CAS query 225:
//article[about(.//fm//atl, "digital libraries")]

//sec[about(.,"information retrieval")]

is rewritten into three variants:
• SVCAS:

//article[about(.//∼fm//∼atl, "digital libraries")]

//sec[about(.,"information retrieval")]

• VSCAS:
//article[about(.//fm//atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

• VVCAS:
//article[about(.//∼fm//∼atl, "digital libraries")]

//∼sec[about(.,"information retrieval")]

We do not consider the ‘article’ element as a vague element
in case it is not the target element or it is not the element
in which the about search should be performed, as in these
cases the ‘article’ element just serves as a focusing element
for deeper search in the XML tree.

3.4 Query rewriting
As we explained in Section 2, we use two techniques for

query rewriting. According to the first one we add the terms
from the about clause that are not in the top-level element
to the top level element. For example, for INEX 2005 topic
240:
//article[about(.//(abs|kwd), quality control measure)]

//sec[about(.//p, software quality)]

the rewritten query using rw I is:
//article[about(.//(abs|kwd), quality control measure)

and about(., quality control measure)]
//sec[about(.//p, software quality) and
about(., software quality)]

Similarly, for the second rewriting technique (rw II), as
it is an extension of the rw I technique, we use the rw I
rewriting rule and also interchange terms from the other
about clauses. Thus, for the same topic we have:
//article[about(.//(abs|kwd), quality control measure)

and about(., quality control measure) and
about(., software quality)]
//sec[about(.//p, software quality) and
about(., software quality) and
about(., quality control measure)]

As can be seen in the next section we run these queries in
isolation or in combination with the vague element selection
queries.

4. DISCUSSION
In this section we discuss the results of experimenting

with the vague element selection and rewriting techniques
on INEX 2004 and 2005 collections. We start with estimat-
ing the best expansion lists and continue with rw I and rw
II experiments and their comparison and combination with
the vague selection. The result values given in bold in Ta-
bles 4 to 12 represent the highest scores (precision or MAP)
in the column.

4.1 Estimating the best element name expan-
sion lists

In this set of experiments we test whether automatically
generated runs are comparable with the manual run and

which of them is the best. As can be seen in Tables 4
to 6, except for the generalized inex eval MAP, all auto-
matic runs are comparable and outperform the manual one
in many cases, especially when looking at 2004 runs and pre-
cision at 25 and 50 for 2005 runs. Although we did not put
much effort in specifying the expansion lists for our manual
run, we think it is a good representative for what element
names the expert user would accept in the results lists

Out of automatic runs, the one that uses all relevant ele-
ments in INEX 2004 assessments set (mm) seems to be the
most effective. This is particularly the case for the early
precision and overall MAP when using generalized quanti-
zation. Furthermore, this run shows constantly good results
across different measures. This can be viewed as an indi-
cator that the user really appreciates the wider set of ele-
ment names in the expansion lists and that the only prob-
lem is how to estimate better their importance, i.e., down-
weighting factor. Therefore, we selected mm and manual55
runs for our further experiments.

4.2 Comparing vague element selection and
query rewriting

Here we test if we can improve the effectiveness when re-
placing strict queries with vague ones and when using rewrit-
ing techniques. Tables 7 to 9 show that both the rewriting
techniques and the vague element search help. The improve-
ments are significant and they can go up to more than 100%
(e.g., for the “manual55, VV” run with generalized quan-
tization presented in Table 9). Looking at the rewriting
techniques, the rw II shows overall better scores, especially
for the early precision as can be seen in Table 8, and it has
higher MAP values.

Clearly, the vague element selection has higher MAP val-
ues than the rewriting techniques, but in all CAS experi-
ments it has lower precision at low recall points. This can
indicate that the rewriting techniques might be used as a
precision tool, while the vague element selection can be con-
sidered as a recall tool. Looking at different vague scenarios,
namely SV, VS, and VV, and except for some early preci-
sion scores (see Table 8), VV runs seem to have the best
performance. Therefore, “mm, VV” and “manual55, VV”
runs are used in combination with the rewriting techniques
for further experiments.

4.3 Combining vague element selection and
query rewriting

The third set of experiments confirms our assumption
about the rewriting techniques as a precision and vague el-
ement search as a recall tool. As can be seen in Tables 10
to 12 in most of the cases the combination of the rw I and
rw II rewriting techniques and manual and automatic vague
element search improves early precision. However, not in all
cases we managed to save the MAP values, especially for the
rw I combinations as can be seen in Table 12.

5. CONCLUSIONS AND FUTURE WORK
Throughout the paper we show that the TIJAH database

system is flexible enough to incorporate new advanced search
techniques, such as vague element selection and query rewrit-
ing. We have shown that rewriting techniques and vague el-
ement selection are viable solutions for vague search in XML
documents. While query rewriting techniques are more suit-
able for obtaining higher precision at low recall points, vague



Table 4: INEX 2004 CAS experiments with different expansion classes evaluated using inex eval and precision at

different recall points.
Strict Generalized

Exp. class Pr@10 Pr@25 Pr@50 MAP Pr@10 Pr@25 Pr@50 MAP Overlap

ff 0.0192 0.0169 0.0138 0.08133 0.0769 0.0615 0.0477 0.05787 44%
fh 0.0192 0.0185 0.0138 0.08200 0.0846 0.0646 0.0485 0.05573 43%
fm 0.0192 0.0185 0.0138 0.08270 0.0769 0.0631 0.0477 0.05772 45%
hf 0.0192 0.0169 0.0138 0.08214 0.0885 0.0615 0.0485 0.05839 44%
hh 0.0192 0.0185 0.0138 0.08064 0.0808 0.0631 0.0485 0.05563 43%
mf 0.0192 0.0185 0.0138 0.08157 0.0846 0.0631 0.0469 0.05712 44%
mm 0.0192 0.0185 0.0138 0.08330 0.0846 0.0615 0.0462 0.05798 45%
manual55 0.0154 0.0108 0.0100 0.08202 0.0692 0.0462 0.0362 0.06230 60%

Table 5: INEX 2005 CAS experiments with different expansion classes evaluated using nxCG at different recall points

and ep/gr.
Strict Generalized

Exp. class nxCG[10] nxCG[25] nxCG[50] MAP nxCG[10] nxCG[25] nxCG[50] MAP

ff 0.1333 0.1578 0.1511 0.01066 0.2711 0.2702 0.2534 0.06895
fh 0.1444 0.1578 0.1556 0.01081 0.2736 0.2736 0.2537 0.06666
fm 0.0778 0.1578 0.1511 0.01037 0.2723 0.2699 0.2543 0.07027
hf 0.0889 0.1622 0.1511 0.01067 0.2760 0.2742 0.2517 0.06870
hh 0.1444 0.1622 0.1556 0.01073 0.2767 0.2726 0.2520 0.06693
mf 0.1444 0.1578 0.1533 0.01094 0.2687 0.2685 0.2492 0.06824
mm 0.1444 0.1578 0.1556 0.01085 0.2811 0.2728 0.2529 0.07062
manual55 0.1444 0.1444 0.1467 0.01056 0.2545 0.2553 0.2428 0.07296

Table 6: INEX 2005 COS experiments with different expansion classes evaluated using nxCG at different recall points

and ep/gr.
Strict Generalized

Exp. class nxCG[10] nxCG[25] nxCG[50] MAP nxCG[10] nxCG[25] nxCG[50] MAP

ff 0.0765 0.0877 0.0865 0.00219 0.2822 0.2564 0.2261 0.05907
fh 0.0765 0.0783 0.0830 0.00218 0.2765 0.2492 0.2202 0.05956
fm 0.0765 0.0854 0.0877 0.00180 0.2855 0.2541 0.2213 0.05783
hf 0.0765 0.0854 0.0877 0.00191 0.2869 0.2522 0.2197 0.05750
hh 0.0765 0.0830 0.0842 0.00218 0.2881 0.2495 0.2230 0.05831
mf 0.0765 0.0759 0.0830 0.00218 0.2849 0.2479 0.2238 0.05998
mm 0.0765 0.0830 0.0854 0.00218 0.2912 0.2580 0.2258 0.06060
manual55 0.0824 0.0759 0.0689 0.00218 0.2851 0.2585 0.2315 0.06872

Table 7: INEX 2004 CAS experiments with different vague scenarios and rewriting techniques evaluated using inex eval

and precision at different recall points.
Strict Generalized

Exp. class Pr@10 Pr@25 Pr@50 MAP Pr@10 Pr@25 Pr@50 MAP Overlap

eq class 0.0192 0.0185 0.0138 0.07117 0.0692 0.0615 0.0462 0.03746 25%
rw I 0.0269 0.0215 0.0162 0.07241 0.0846 0.0692 0.0469 0.03968 26%
rw II 0.0269 0.0215 0.0162 0.07909 0.0846 0.0692 0.0469 0.04485 27%
mm, SV 0.0192 0.0185 0.0138 0.07154 0.0808 0.0615 0.0492 0.03781 24%
manual55, SV 0.0192 0.0185 0.0138 0.07131 0.0769 0.0615 0.0492 0.03716 24%
mm, VS 0.0192 0.0185 0.0138 0.08078 0.0654 0.0554 0.0408 0.05730 45%
manual55, VS 0.0077 0.0077 0.0085 0.07709 0.0385 0.0354 0.0292 0.06233 59%
mm, VV 0.0192 0.0185 0.0138 0.08330 0.0846 0.0615 0.0462 0.05798 45%
manual55, VV 0.0154 0.0108 0.0100 0.08202 0.0692 0.0462 0.0362 0.06230 60%

Table 8: INEX 2005 CAS experiments with different vague scenarios and rewriting techniques evaluated using nxCG

at different recall points and ep/gr.
Strict Generalized

Exp. class nxCG[10] nxCG[25] nxCG[50] MAP nxCG[10] nxCG[25] nxCG[50] MAP

eq class 0.1000 0.1022 0.0867 0.00581 0.2799 0.2851 0.2644 0.05033
rw I 0.1000 0.1200 0.1022 0.00609 0.2687 0.2834 0.2645 0.04670
rw II 0.1889 0.1289 0.1022 0.00777 0.3030 0.2977 0.2679 0.05476
mm, SV 0.0889 0.1067 0.0911 0.00609 0.2865 0.2882 0.2626 0.05219
manual55, SV 0.1000 0.1022 0.0844 0.00609 0.3066 0.2853 0.2419 0.05291
mm, VS 0.1333 0.1533 0.1511 0.01012 0.2672 0.2658 0.2524 0.06749
manual55, VS 0.1444 0.1222 0.1400 0.00975 0.2316 0.2417 0.2391 0.06720
mm, VV 0.1444 0.1578 0.1556 0.01085 0.2811 0.2728 0.2529 0.07062
manual55, VV 0.1444 0.1444 0.1467 0.01056 0.2545 0.2553 0.2428 0.07296



Table 9: INEX 2005 COS experiments with different vague scenarios and rewriting techniques evaluated using nxCG

at different recall points and ep/gr.
Strict Generalized

Exp. class nxCG[10] nxCG[25] nxCG[50] MAP nxCG[10] nxCG[25] nxCG[50] MAP

eq class 0.0471 0.0559 0.0559 0.00153 0.2677 0.2258 0.1787 0.03205
rw I 0.0588 0.0748 0.0595 0.00161 0.2715 0.2430 0.1894 0.03323
rw II 0.0588 0.0677 0.0571 0.00158 0.2872 0.2467 0.1898 0.03409
mm, SV 0.0471 0.0559 0.0559 0.00153 0.2772 0.2333 0.1951 0.03657
manual55, SV 0.0471 0.0559 0.0559 0.00152 0.2727 0.2349 0.1972 0.03650
mm, VS 0.0765 0.0854 0.0854 0.00213 0.2827 0.2499 0.2042 0.04283
manual55, VS 0.0824 0.0807 0.0689 0.00215 0.2751 0.2410 0.2060 0.04587
mm, VV 0.0765 0.0830 0.0854 0.00218 0.2912 0.2580 0.2258 0.06060
manual55, VV 0.0824 0.0759 0.0689 0.00218 0.2851 0.2585 0.2315 0.06872

Table 10: INEX 2004 CAS experiments on combining vague search and rewriting techniques evaluated using inex eval

and precision at different recall points.
Strict Generalized

Exp. class Pr@10 Pr@25 Pr@50 MAP Pr@10 Pr@25 Pr@50 MAP Overlap

rw I 0.0269 0.0215 0.0162 0.07241 0.0846 0.0692 0.0469 0.03968 26%
rw II 0.0269 0.0215 0.0162 0.07909 0.0846 0.0692 0.0469 0.04485 27%
mm, VV 0.0192 0.0185 0.0138 0.08330 0.0846 0.0615 0.0462 0.05798 45%
manual55, VV 0.0154 0.0108 0.0100 0.08202 0.0692 0.0462 0.0362 0.06230 60%
mm, VV + rw I 0.0269 0.0215 0.0162 0.08062 0.0846 0.0677 0.0462 0.05993 46%
manual55, VV + rw I 0.0115 0.0092 0.0092 0.07411 0.0423 0.0308 0.0269 0.06563 61%
mm, VV + rw II 0.0269 0.0215 0.0162 0.08494 0.0846 0.0677 0.0462 0.06571 52%
manual55, VV + rw II 0.0115 0.0092 0.0092 0.07958 0.0423 0.0308 0.0269 0.07372 60%

Table 11: INEX 2005 CAS experiments on combining vague search and rewriting techniques evaluated using nxCG

at different recall points and ep/gr.
Strict Generalized

Exp. class nxCG[10] nxCG[25] nxCG[50] MAP nxCG[10] nxCG[25] nxCG[50] MAP

rw I 0.1000 0.1200 0.1022 0.00609 0.2687 0.2834 0.2645 0.04670
rw II 0.1889 0.1289 0.1022 0.00777 0.3030 0.2977 0.2679 0.05476
mm, VV 0.1444 0.1578 0.1556 0.01085 0.2811 0.2728 0.2529 0.07062
manual55, VV 0.1444 0.1444 0.1467 0.01056 0.2545 0.2553 0.2428 0.07296
mm, VV + rw I 0.1778 0.1711 0.1622 0.00904 0.2734 0.2641 0.2603 0.05899
manual55, VV + rw I 0.1667 0.1622 0.1489 0.00926 0.2427 0.2691 0.2469 0.06872
mm, VV + rw II 0.2000 0.1378 0.1089 0.01129 0.3092 0.2815 0.2366 0.05760
manual55, VV + rw II 0.1889 0.1333 0.1111 0.01113 0.3005 0.2943 0.2556 0.06896

Table 12: INEX 2005 COS experiments on combining vague search and rewriting techniques evaluated using nxCG

at different recall points and ep/gr.
Strict Generalized

Exp. class nxCG[10] nxCG[25] nxCG[50] MAP nxCG[10] nxCG[25] nxCG[50] MAP

rw I 0.0588 0.0748 0.0595 0.00161 0.2715 0.2430 0.1894 0.03323
rw II 0.0588 0.0677 0.0571 0.00158 0.2872 0.2467 0.1898 0.03409
mm, VV 0.0765 0.0830 0.0854 0.00218 0.2912 0.2580 0.2258 0.06060
manual55, VV 0.0824 0.0759 0.0689 0.00218 0.2851 0.2585 0.2315 0.06872
mm, VV + rw I 0.0882 0.0901 0.0818 0.00215 0.2929 0.2686 0.2262 0.06168
manual55, VV + rw I 0.0824 0.0930 0.0871 0.00216 0.3040 0.2676 0.2395 0.07168
mm, VV + rw II 0.0765 0.0759 0.0748 0.00213 0.2873 0.2492 0.2168 0.05878
manual55, VV + rw II 0.0824 0.0954 0.0836 0.00219 0.2956 0.2688 0.2262 0.06891



element selection yields higher average precision. Further-
more, we show that automatically generated runs give com-
parable results to manually generated ones. Finally, the
combination of vague selection and rewriting techniques ap-
proaches can boost the early precision, but it can also have
negative influence on mean average precision.

The continuation of the work presented in this paper in-
clude the experimental evaluation of different scenarios for
search in structured documents: the vague element search
with different assignments of non-uniform down-weighting
factors, e.g., using the value of exhaustivity and specificity
in the assessments to derive more accurate down-weighting
factors, or better chosen manual element name expansion
lists, and their combination with rewriting techniques. For
that, and for more realistic experimental setup we would
need a new large (heterogeneous) collection of structured
documents, with more semantical information esspecially in
element names(e.g., Wikipedia, Lonely Planet).

6. ACKNOWLEDGMENTS
Many thanks to the Netherlands Organisation for Scien-

tific Research (NWO) for funding the research described in
this paper (grant number 612.061.210).

7. REFERENCES
[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.

TeXQuery: A Full-Text Search Extension to XQuery.
In Proceedings of the 13th WWW Conference, 2004.

[2] P. Boncz. Monet: a Next Generation Database Kernel
for Query Intensive Applications. PhD thesis, CWI,
2002.

[3] A. Doan and A.Y. Halevy. Semantic Integration
Research in the Database Community. AI Magazine,
26:83–94, 2005.

[4] D. Florescu and I. Manolescu. Integrating Keyword
Search into XML Query Processing. In Proceedings of
the 9th International WWW Conference, 2000.

[5] N. Fuhr and K. Großjohann. XIRQL: An XML Query
Language Based on Information Retrieval Concepts.
ACM Transactions on Information Systems,
22(2):313–356, 2004.

[6] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, Twente,
The Netherlands, 2001.

[7] D. Hiemstra and V. Mihajlović. The simplest
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