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ABSTRACT
Merging search results from different servers is a major prob-
lem in Distributed Information Retrieval. We used Regres-
sion-SVM and Ranking-SVM which would learn a function
that merges results based on information that is readily
available: i.e. the ranks, titles, summaries and URLs con-
tained in the results pages. By not downloading additional
information, such as the full document, we decrease band-
width usage. CORI and Round Robin merging were used as
our baselines; surprisingly, our results show that the SVM-
methods do not improve over those baselines.
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1. INTRODUCTION
Centralized search is limited by its inability to search through
the deep web—pages accessible only after querying an HTML
form, since web crawlers lack the intelligence to adequately
fill in and submit such forms. Another drawback is that
the index needs to be maintained and updated to cope with
both content change and Web growth [1].

With Deep Web content already residing in searchable data-
bases, and in the expectation that the Web will continue its
enormous growth, a promising search paradigm is DIR (Dis-
tributed Information Retrieval) [3]. A DIR system contains
at least one broker and multiple servers, each indexing its
own document collection. The broker serves as a mediator
between the user and the servers. The user sends a query
to the broker, which subsequently selects the servers most
capable of adequately answering the query, and forwards the
query to the selected servers. Each server then retrieves its
most relevant documents and sends a ranked list of results
back to the broker, which merges these into one results list
and presents it to the user. Generally, although the broker

only controls the way in which the servers are selected and
the way their results are merged, it has no control over the
internal functioning of any server.

DIR is a well-established research area with three main areas
of interest: server description, server selection, and results
merging [3]. A server description is often an excerpt of a
server’s index and it is used to estimate the number of dif-
ferent words and word frequencies of the server [4, 11]. In
this way, server selection is done by treating each excerpt as
one very large document, and subsequently applying stan-
dard IR technology to rank and select the top N servers.
Most existing result-merging methods require the server to
supply a document score—otherwise an estimate of the score
is used. These scores are then adapted so that inter-server
document scores can be compared and ranked. However, in
practice, document scores are hardly ever provided by search
servers, or if they are, they cannot be trusted.

In this paper, we propose the use of information from search
result snippets that search servers typically provide: the
document title, its url, and a dynamically generated doc-
ument summary containing the matching query terms. Un-
like in previous work, our broker does not have any excerpt
of any server’s index, nor does it require document scores
to be supplied along with the server’s results. Therefore, we
apply methods that neither rely on estimated indices and
document scores, nor on the download of any additional in-
formation, such as the full document. We use SVM [16]
(Support Vector Machine) to train a function for merging re-
sults based only on evidence contained in the results pages
received from the servers. In addition, the benefit of not
downloading any additional information is decreased band-
width usage.

Outline of paper : Section 2 summarizes key literature about
results merging. Our experiment testbed is explained in
Section 3. Section 4 presents our merging approach, and
the evaluation is discussed in Section 5. Section 6 presents
and discusses our results, and Section 7 gives our conclusion.

2. RELATED WORK

2.1 CORI
CORI [3, 5] has been used by many researchers [7, 9, 8,
13] as a baseline for server selection and results merging.
Query Based Sampling (QBS) [4] is often used to obtain the
server descriptions needed to run the CORI server selection
algorithm which ranks the servers based on the belief-score
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of observing the query’s terms in that particular server.

Once the results pages are obtained from the selected servers,
the document scores given by the distinct servers are nor-
malized and weighted as follows:

w = 1 + 0.4 ∗
s− Smin

Smax − Smin

, (1)

D′ =
D −Dmin

Dmax −Dmin

, (2)

D′′ =
D′ ∗ w

1.4
. (3)

where s is the server’s belief score; Smin and Smax are the
highest and lowest belief scores respectively that CORI could
potentially assign to a server; D is the document score sup-
plied by the server; D′ is the normalized document score;
and D′′ is the weighted document score.

Note that (2) requires cooperation among servers because
Dmaxi

and Dmini
must be provided by the server when it

returns document rankings. Our goal is not to rely on any
form of cooperation, because cooperation can be unreliable
in multi-party environments. In the absence of cooperation,
Dmaxi

is set to the maximum document score returned by
the server and Dmini

is set to the minimum [13].

2.2 Ranking-SVM
Joachims developed an SVM-type called Ranking-SVM [6],
he used it to learn a preferred ranking function from click-
through data. He argued that clickthrough data can be
recorded at very low cost, and that users make a (reason-
ably) informed choice when clicking on a link, instead of
clicking at random. Therefore, clicks are likely to convey
some partial ranking information that can be used to learn
a ranking function.

For example, if a user clicked on results 3 and 5, the pre-
ferred ranking would be: 3,5,1,2,4. In other words, the sys-
tem made some errors: it should have ranked result 3 ahead
of results 1 and 2, and result 5 ahead of results 1, 2 and
4. These five errors, called preference constraints, are de-
duced from the clicks (plus the ranked list) and serve as the
input for the SVMligℎt program that Joachims developed.
The input consists of (labeled) document pairs, where one
document is preferred over the other. The program tries to
learn a ranking function that maximizes the proportion of
correctly-ordered pairs of documents (induced by the learned
ranking function when compared to the preferred rankings).

2.3 Regression-SVM
Several researchers [7, 10, 12] tackled the results merging
problem by learning a regression function that maps server-
specific document scores to centralized document scores—
centralized scores are derived from a central index that con-
tains many sampled documents from all servers. The mo-
tivation behind this approach is that the document scores
produced by all servers are usually incomparable.

Inspired by this approach, we decided that, instead of map-
ping server-specific document scores to centralized document
scores, we could use Regression-SVM to learn a function that
directly determines the “centralized” score of a document,
given its features.

3. TESTBEDS
We used the multi-purpose TREC WT10g [2] collection as a
testbed for our experiments. Our experiments require re-
sult pages from different servers (each indexing different
documents), as well as some server selection mechanisms.
The WT10g corpus was not necessarily created for conduct-
ing DIR experiments. Therefore, we created two different
testbeds containing result pages from different servers. The
following subsections describe our testbeds and present sev-
eral server selection mechanisms.

3.1 Result Page Creation
The PF/Tijah retrieval platform was used to create result
pages for which each result has a rank, title, summary and
URL. PF/Tijah expects its input to be valid XML. There-
fore, the first step was to convert all WT10g data into valid
XML. We used a program that: 1) discarded the HTML
comments, scripts, and all HTML tags except the title and
anchor tags; 2) truncated URLs by removing all ‘/index. . . ’-
endings, such as /index.html; 3) marked ‘sentence-boundaries’
in such a way as to create sentences of about 40 to 160 char-
acters. This was done for the purpose of sentence ranking,
which is used for creating the document summaries [15]; fi-
nally, 4) if a document did not have a title, a title was created
from the first sentence of the document.

The second step was to re-group the web pages by their
IP-address. This resulted in XML documents containing
all web pages from a single server, and we refer to these
newly created documents as ip-grouped documents. We re-
grouped the web pages because we assumed that the pages
that make up a website are highly related to each other and
that they most often reside on the same web server. Since
the web pages in the original WT10g corpus were randomly
distributed over several file chunks, we had to perform this
additional step.

The third step is to create servers and populate them with
the ip-grouped documents. A simple set of rules was used
to create these servers. First, we sorted the ip-grouped doc-
uments by their file size. Then we selected the smallest
ip-grouped document and assigned it to a server only if the
server was empty or if the server’s new size would not exceed
a specified size of X MB. Note that an ip-grouped document
bigger than X MB was not split. We created two testbeds
for our DIR experiments by settingX to 100MB and 500MB.
Splitting the WT10g corpus in chunks of roughly 100MB re-
sulted in 79 servers, whereas splitting in chunks of 500MB
resulted in 15 servers.

In the fourth and final step, we created an index for each
server, and submitted the queries to the servers to obtain the
required result pages. These pages contained a maximum
of 50 results, and a number indicating the total number of
documents found by that server.

3.2 Server Selection
A user is typically only interested in the first N , say 20, re-
sults. This means that querying more than N servers wastes
valuable resources. In addition, it is not efficient to query
a server that will return no relevant results. Therefore, the
broker must select a small number of the most promising
servers.
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A results merging method should produce the best possi-
ble merged-rankings given any (possibly very poor) set of
selected servers. However, we are still far from that ideal.
A random server selection or one based on the server’s re-
trieval performance would probably yield significantly differ-
ent merged-rankings, even in the case where the identical set
of servers were selected, albeit in a different order. A server’s
retrieval performance can be measured by, for instance (4),
the Average Precision (AP) measure [17].

AP =

∑N

i=1
precision(i) ∗ rel(i)

reldocs
. (4)

where precision(i) is the fraction of relevant documents re-
trieved up to and including rank i; rel(i) is a binary function
producing the value 1 when a document at rank i is relevant
and 0 otherwise; and reldocs is the number of relevant doc-
uments in the document collection for this particular query.

Several server selection strategies are briefly described be-
low.

CORI The CORI server selection algorithm—using the complete
(i.e., no QBS) term statistics from each server’s index to
calculate the CORI-belief score.

Merit A strategy that ranks the servers based on the number of
relevant documents in their document collection.

Local-AP A performance-based selection strategy similar to (4),
but where reldocs refers to the number of relevant docu-
ments in the server’s document collection.

Global-AP A performance-based selection strategy similar to
(4), but where reldocs refers to the number of relevant doc-
uments in the combined document collection of all servers.

4. MERGING APPROACHES
We implemented two SVM learning methods: Ranking-SVM
and Regression-SVM.We used Round Robin (RR) and CORI
(which was briefly discussed in Section 2.1) as our merging
baselines. However, CORI-merging requires the belief scores
produced by the CORI-selection schemes; therefore, when-
ever we use other selection schemes, RR is our only baseline.

The remainder of this section elaborates on the RR and SVM
merging approaches.

4.1 Round Robin
Round Robin merging is the simplest merging method and
is defined as follows: given n result lists L1, L2, . . . , Ln, take
the first result r1 from each list Li as the first n results. Then
take the second result r2 from each list as the next n results,
and so on. RR merging produces a list: L1r1, L2r1, . . . , Lnr1,

L1r2, L2r2, . . . , Lnr2, L1r3, L2r3, . . . , Lnr3, etcetera.

Often, the rank of the results is the only feature used when
doing RR merging. However, with information about the
relevant document distributions of the servers, i.e. the server
score, we could first rank the servers. By combining both
the server score and the result rank, RR can pick the next
best result from the next best server, thereby improving its
merging performance.

4.2 Learning
This subsection explains the features and labels of the train-
ing data for both SVM approaches, and how we validated
our models.

4.2.1 Features
Table 1 lists the features used in our experiments. All fea-
tures are grouped into some category and each category
states the number of features between brackets. For exam-
ple, the second group (Server rank) has one feature which
is the score given by one of the four server selection strate-
gies, whereas the final group (Result’s term diversity) has
three features telling us something about the diversity of
the words and characters contained in a given result. The
abbreviations LCS, LWO, and LM denote Longest Common
Substring, Longest Word Order, and Language Model re-
spectively. The letters q, t, s, f, p, and u stand for query,
title, summary, fqdn (Fully Qualified Domain Name), path,
and URL (u = f+p), respectively.

LM(a,b) is a simple language model similarity between a and
b: the term-frequency statistics are taken only from the text
found in b, and a constant of 0.001 is used for smoothing.
We also implemented an LM algorithm that allows partial
matching (denoted by LM-p). An example of partial match-
ing is when the query ‘chair’ matches a piece of text such as
‘wheelchairs.com’.

LCS(a,b) detects the greatest unaltered proportion of string
a that also appears in exactly the same way in b. LWO(a, b)
is almost similar to LCS, but it allows for noise. For exam-
ple, let a denote the text “using ranking SVM in IR” and let
b denote “using Machine Learning techniques for ranking in
IR”. The LCS similarity between a and b is fairly low (0.4),
while the LWO similarity yields a score of 0.8.

For a given server, Dfound denotes the total number of doc-
uments found. Dmin and Dmax denote the minimum and
maximum number of documents respectively found by the
selected servers.

We grouped the features for the purpose of feature selection:
when we trained a model, we tried different combinations of
the feature groups. Note that the result rank feature was
used differently in the two SVM approaches. With the lin-
ear rank score, Ranking-SVM performed extremely poorly,
while it performed much better with the logistic rank score.
For Regression-SVM, the effects of the rank features were
the other way around, although the logistic feature was not
as dramatic for Regression-SVM as the linear feature was
for the Ranking-SVM.

Finally, we also experimented with stemmed and stopped
versions of the final six feature groups. In later sections,
we will append the suffix ‘-ws’ to denote that stemming
and stopping were used, and the suffix ‘-ns’ to denote that
stemming and stopping were not used.

4.2.2 Ranking-SVM
Clicks indicate a preferred ranking that should be learned
by the Ranking-SVM algorithm. However, we do not have
actual click data, so instead we use the TREC relevance
judgments. There are important differences between the
two. Clicks are binary and convey relative relevance that
is based on superficial information supplied by the search
engine (e.g., ranks, titles, summaries, and URLs). WT10g
TREC judgments are ternary and convey absolute relevance:
a team of people have actually read the entire document and

10th Dutch-Belgian Information Retrieval Workshop, 2010

57



Table 1: List of Features

Result rank (1)
1− rank/50 (for Regression-SVM)
1− 1/2 ∗ log(rank) (for Ranking-SVM)

Server rank (1)
the normalized server score

Documents found by server (1)
(Dfound −Dmin) / (Dmax −Dmin)

Server response (1)
LM: q – top10 server results

Digits (20)
number of [1–4]-digit numbers in {q, t, s, f, p}

Path (1)
the amount of ‘/’-characters in p

Language model (4)
LM-p: q – {t, s, f, p}

Longest common substring (4)
LCS: q – {t, s, f, p}

Longest word order (4)
LWO: q – {t, s, f, p}

Result consistency (3)
LM-p: t–s, t–u, s–u

Word statistics (10)
number of words in {q, t, s, f, p}
avg. word length in {q, t, s, f, p}

Result’s term diversity (3)
total distinct terms / total terms
most frequent term’s frequency / total terms
total non-word characters / total characters

rated it as being irrelevant, relevant, or highly relevant.

Furthermore, the assumption that users scan the ranks se-
quentially from top to bottom allows us to further assume
that a higher ranked document that was not clicked is prob-
ably less relevant than a lower, clicked, document. This
is not the case with TREC judgments; our retrieved docu-
ments were not judged in sequential order, so the standard
assumption that unjudged documents are irrelevant might
lead to learning a sub-optimal ranking function when treat-
ing unjudged results as irrelevant. Therefore, we decided to
discard the unjudged results when training an SVM model.

As an example of how we used the TREC judgments to cre-
ate the preference constraints, consider the following rank-
ings where result 2 is irrelevant, results 1 and 5 are rele-
vant, and result 3 is highly relevant. Discarding the un-
judged result, the preferred ranking is: 3,1,5,2. The pref-
erence constraints are 3 ≻ 1, 3 ≻ 2, and 5 ≻ 2. For each
click, Joachims [6] added random additional constraints that
should stabilize the learned ranking. We also added 10% (of
the total results being merged) of additional random con-
straints. In addition, we only chose randomly from the set of
results that were less relevant than the ‘clicked’ document;
however, this is impossible if you only have clickthrough
data.

Finally, we restricted the ranks at which we “observe” the

clicks: we only look for clicks within the top 15% of the
rankings. For example, in a page with 50 results, if ranks 7
and 8 are relevant, we only create the preference constraints
for the result ranked 7tℎ. This restriction led to a substan-
tial gain in the retrieval performance of the learned ranking
function.

4.2.3 Regression-SVM
Using Regression-SVM, we aim to predict the absolute rank
of a given result. This rank should reflect the gathered
knowledge from both the TREC judgments as well as of
the servers’ rankings. However, the TREC judgment should
have a higher impact on the learned ranking function. For
instance, if a highly relevant result (according to the TREC
judgment) was ranked lowest by some search engine, then
we certainly want our learned ranking function to rank that
result somewhere near the top.

Just as with our Ranking-SVM approach, we excluded un-
judged results from our training data in order to avoid un-
necessary noise. We label each training instance simply by
the value obtained when deducting its rank from either fifty
or one hundred, depending on whether the result was irrele-
vant or not, respectively. The resulting label ensures that all
relevant documents (according to the TREC judgments) are
ranked in the top positions, followed by the irrelevant doc-
uments. Also, within each class of (relevant or irrelevant)
documents, the documents are further ordered based on the
original rankings of the search servers.

4.2.4 Validation
Our training data consisted of the result pages for the fifty
odd-numbered queries, taken from a set of N servers. (The
queries were taken from TREC topics 451–550.) The servers
were selected using selection strategy S. We also varied
the set of features F used for training. During training,
we used the default values for the SVM-parameters. Each
combination of N , S, and F yields a different training set
and thus a (potentially) different model. To validate all
these models, and choose the model with the best retrieval
performance, we used 25-fold cross-validation.

Each fold determines the set of queries QT that will be used
for training, and the set QV that will be used for validation.
In particular, we focused our validation on merging results
from the top 3, 4, and 5 servers. For instance, for each fold,
we validated on (QV , 3, S, F ), (QV , 4, S, F ), and (QV ,
5, S, F ), and we recorded the averaged Local-MAP and
Global-MAP as that fold’s validation score.

After cross-validating, we chose the model with the highest
Global-MAP, and the one with the highest Local-MAP; this
was done for both Ranking-SVM and Regression-SVM. In
other words, we selected a total of four models.

5. EVALUATION
We evaluated the different approaches by measuring their
Global-MAP when merging the results of the even-numbered
queries of the top N servers, which were selected following
one of the available server selection strategies.

To test whether the merging methods were significantly (with
p<0.05) better than the RR or CORI merging method, we
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Table 2: Ranking-SVM weights

SVM-0 SVM-1
result rank 3.544 result rank 3.325

LWO-ws(q, t) -0.557 LWO-ns(q, t) -0.443
LWO-ws(q, s) 0.834 LWO-ns(q, s) 1.391
LWO-ws(q, f) 0.198 LWO-ns(q, f) 0.612
LWO-ws(q, p) -0.898 LWO-ns(q, p) 0.162

used a randomization approach [14] with 100,000 random
permutations. Our test statistic was the Global-MAP of
each merging approach.

6. RESULTS
In this section, we present and discuss the performance of
the merging methods: CORI, RR, and the four SVM mod-
els that were chosen by cross-validation. We will start by
discussing the cross-validation results, after which we will
discuss the test results.

6.1 Cross-Validation Results
The Ranking-SVMmodel which has the highest (cross-validated)
Local-MAP was trained on the results pages of the top 3
GAP-selected servers, with the result rank and LWO-ws fea-
tures. We will refer to this model as Ranking-SVM-0.

The Ranking-SVM model with the highest Global-MAP was
trained using the results pages of the top 3 GAP-selected
servers, with the result rank and LWO-ns features. We will
refer to this model as Ranking-SVM-1.

The Regression-SVM model which has the highest Local-
MAP was trained using the results pages of the top 5 GAP-
selected servers, and the following features: result rank,
server rank, LCS-ws, iz-ns. We will refer to this model as
Regression-SVM-0.

The Regression-SVM model with the highest Global-MAP
was trained using the results pages of the top 3 GAP-selected
servers, and the following features: result rank, LCS-ws,
LM-p-ns, iz-ns. We will refer to this model as Regression-
SVM-1.

The learned feature weights of the models can be seen in
Tables 2 and 3. As you can see, the result rank feature is
the most important feature.

6.2 Test Results
Figures 1, 2, and 3 show how the Global-MAP changes as
the number of selected servers increases. Figures 4, 5, and
6 show how the Precision@10 changes as the number of se-
lected servers increases. There is a figure for each server
selection strategy and both collections sizes.

In all six figures, the first row of numbers on the x-axis
denotes the number of selected servers, while the second
row denotes the average number of relevant documents per
query, which is a direct consequence of the server selection
strategy.

Keep in mind that we want to select as few servers as possible
(e.g., to minimize network traffic and computing time), while

Table 3: Regression-SVM weights

SVM-0 SVM-1
result rank 50.000 result rank 49.142
server rank 0.000

LCS-ws(q, t) 0.000 LCS-ws(q, t) -0.314
LCS-ws(q, s) 0.000 LCS-ws(q, s) 0.295
LCS-ws(q, f) 0.002 LCS-ws(q, f) 0.027
LCS-ws(q, p) 0.002 LCS-ws(q, p) -0.009

iz-ns(q, s) 0.000 iz-ns(q, s) 0.062
iz-ns(q, f) 0.000 iz-ns(q, f) -0.072
iz-ns(q, p) 0.000 iz-ns(q, p) 0.044

LM-ns(q, t) 0.132
LM-ns(q, s) 0.139
LM-ns(q, f) -0.169
LM-ns(q, p) 0.831

at the same time, we want the merging performance to be
as high as possible.

When using the LAP and GAP selection strategies, RR is al-
ways significantly better than the SVM models. Sometimes,
the differences between the SVM models are also significant.
When using the CORI selection strategy, from five servers
onwards, both CORI and RR are usually significantly bet-
ter than the SVM models. Keep in mind that when doing
multiple comparisons, we would expect some significant dif-
ferences to actually be false alarms.

6.2.1 CORI selection
Using CORI selection, the retrieval performance of all mod-
els is much lower than with any other selection method, as
can be seen from the Global-MAP figures as well as the
P@10 figures. The performance of both baselines—RR and
CORI-merging—is almost indistinguishable.

Compared to LAP-selection, the first few servers selected
by CORI-selection contain almost twice as many relevant
documents per query on average (the small numbers below
the x-axis), yet none of the merging methods seem able to
exploit this fact. The extremely poor performance of RR
(compared to the other server selection strategies) indicates
that CORI-selection often selects servers that return no rele-
vant results at rank one. Furthermore, since no other merg-
ing method outperforms RR on this data, it suggests that
it is difficult to discriminate between relevant and irrelevant
results, at least in this particular set of results.

6.2.2 GAP selection
Using GAP selection, RR clearly outperforms the other merg-
ing methods. The margin by which RR outperforms the
other models is unexpected, especially since the result’s rank
seems to be the most important feature for all models (just
as for RR), as can be seen in Tables 2 and 3. Note that the
range of all feature values lies between one and zero, except
for the LM features (of which we have seen values ranging
from zero up to five).

7. CONCLUSION
Merging search results from different servers both efficiently
and effectively is a major problem in Distributed Informa-
tion Retrieval.
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Figure 1: Global-MAP for CORI-selection on the 100MB (left) and 500MB (right) collections
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Figure 2: Global-MAP for GAP-selection on the 100MB (left) and 500MB (right) collections
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Figure 3: Global-MAP for LAP-selection on the 100MB (left) and 500MB (right) collections
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Figure 4: P@10 for CORI-selection on the 100MB (left) and 500MB (right) collections
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Figure 5: P@10 for GAP-selection on the 100MB (left) and 500MB (right) collections
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Figure 6: P@10 for LAP-selection on the 100MB (left) and 500MB (right) collections
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Our approach avoids the use of document scores and learns
a ranking function—using Support Vector Machines—that
can merge results based on information that is readily avail-
able: i.e. the ranks, titles, summaries and URLs, contained
in the result pages. By not downloading additional infor-
mation, such as the full document, we decrease bandwidth
usage.

We have experimented extensively with many different fea-
ture combinations to find a good ranking function. We
trained a ranking-SVM model that uses pairwise training
instances to learn a ranking function, and a regression-SVM
model that uses pointwise training instances.

However, our experiments show that the SVM-methods do
not improve over the baselines.

8. DISCUSSION
Using Ranking-SVM proved to be very much more sensitive
to the type of features used, and the way in which they are
preprocessed, as compared to Regression-SVM.

It is disappointing that the SVM approaches were unable to
achieve a better performance than Round Robin. One might
argue that in real life, no such thing exists as GAP-selection.
However, that does not explain why the SVM algorithms
apparently learn a mediocre ranking function when trained
with exactly these features (i.e., result rank and server rank,
as indicated by GAP-selection).

We also experimented with z-normalization for those fea-
tures that might have a different order of magnitude, de-
pending on the query. Z-normalization works as follows: for

a feature f , we compute a new score s
′

f = (sf − �f )/�f ,
where �f is the mean of all values of feature f , and �f is
the standard deviation of all values of feature f .

Our preliminary results show that this additional normaliza-
tion does not lead to an improvement of the learned models.

We used a linear kernel for our experiments; therefore, we
cannot conclude that our features are insufficient to opti-
mally merge the results. Using a non-linear kernel could
lead to a better model. Our motivation for using linear ker-
nels was that Joachims [6] also used linear kernels, and he
also used some features that looked similar to the features
that we used.
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