
Query Load Balancing by Caching Search Results
in Peer-to-Peer Information Retrieval Networks

Almer S. Tigelaar
a.s.tigelaar@cs.utwente.nl

Database Group, University of Twente

Djoerd Hiemstra
hiemstra@cs.utwente.nl

Database Group, University of Twente

ABSTRACT
For peer-to-peer web search engines it is important to keep
the delay between receiving a query and providing search
results within an acceptable range for the end user. How to
achieve this remains an open challenge. One way to reduce
delays is by caching search results for queries and allowing
peers to access each others cache. In this paper we explore
the limitations of search result caching in large-scale peer-to-
peer information retrieval networks by simulating such net-
works with increasing levels of realism. We find that cache
hit ratios of at least thirty-three percent are attainable.

Keywords
distributed query processing, peer-to-peer simulation.

1. INTRODUCTION
In peer-to-peer information retrieval a network of peers

provide a search service collaboratively. We define a peer
as a computer system connected to the Internet. The term
peer refers to the fact that in a peer-to-peer system all peers
are considered equal and can both supply and consume re-
sources. In a peer-to-peer network each additional peer adds
extra processing capacity and bandwidth in contrast with
typical client/server search systems where each additional
client puts extra strain on the search server. When such a
peer-to-peer network has good load balancing properties it
can scale up to handle millions of simultaneous peers. How-
ever, the performance of such a network is strongly affected
by how well it can deal with the constant and rapid joining
and departing of peers which is called churn.

We study peer-to-peer information retrieval systems where
the collection is split over the peers. Each peer contains a
subset of all the documents in the collection, and thus also
contains a partial index. Since presumably relevant search
results can be located at any peer in the network it is often
difficult to route a query to the right peer. This problem is
commonly approached by using different network topologies

Copyright is held by the author/owner(s)
DIR’2011, February 4, 2011, Amsterdam.
Copyright c© 2011 Almer S. Tigelaar.

and replication of index data. Indeed, query routing is a
difficult problem in peer-to-peer information retrieval [4].

In this paper we explore search result caching as a tech-
nique that can be used to both perform load balancing and
increase the availability of search results. Instead of for-
ward push-based replication of an index, we use a pull-based
caching approach [1]. We experiment with fifty times more
peers than any existing scientific peer-to-peer experiments
we know of.

We define the following research questions:

1. What fraction of queries can be potentially answered
from a cache?

2. How can the cache hit distribution in a peer-to-peer
network be characterised?

3. How does churn affect caching?

2. RELATED WORK
Markatos [5] analyses the effectiveness of caching search

results for a centralised web search engine combined with a
caching web accelerator. Their experiments suggest that one
out of three queries submitted has already been submitted
previously. They conclude that cache hit ratio’s between 25
to 75 percent are possible.

Skobeltsyn and Aberer [7] investigate how search result
caching can be used in a peer-to-peer information retrieval
network. When a peer issues a query it first looks in a
distributed meta-index, kept in a distributed hash table, to
see if there are peers with cached results for this query. If
so, the results are obtained from one of those peers, but if
no cached results exist, the query is broadcast through the
entire network. The costs of this fallback are O (n) for a
network of n peers. The authors further try to increase the
performance of their system by using query subsumption:
obtaining search results for subsets of the terms of the full
query. They show that with subsumption cache hit rates of
98 percent are possible as opposed to 82 percent without.
Interestingly, only 18 percent of the queries in the query log
they use appear only once. Perhaps this is because their log
is a Wikipedia trace as this is inconsistent with our findings.

3. EXPERIMENTS

3.1 Introduction
Our experiments are intended to give insight into the max-

imum benefits that can be gained by caching. Each exper-
iment has been repeated five times, averages are reported,

Table 1: Query log statistics.

Queries (incl. duplicates) 21,082,980
Users 651,647

no differences between runs were observed that exceeded 0.5
percent. We assume that there are three types of peers:
supplier peers that have their own locally searchable index,
consumer peers that issue queries to the network, and mixed
peers that have both an index and issue queries. We further
assume that all peers in our network are willing to cooperate
by caching search results. For query routing we introduce a
party called the tracker which keeps track of which peer can
answer what query. The usage of a tracker is inspired by
BitTorrent [3]. However, in BitTorrent the tracker is used
for locating a specific file: exact search, and not for search-
ing to obtain a list of peers which have presumably relevant
search results: approximate search. In reality the tracker
can be implemented in various ways: as a central machine,
as a group of high capacity machines in the network, as a
distributed hash table or by fully replicating a global data
index over all peers. In our experiments we make two im-
portant assumptions: firstly, that caches are unbounded in
size, and secondly that cached results retain their validity:
they need not be invalidated. When dropping either of these
two assumptions, caching would become less effective.

3.2 Collection
To simulate a network of peers posing queries we use a

large search engine query log [6]. This log consists of over
twenty million queries of users recorded over a period of
three months. Each unique user in the log is a distinct peer
in our experiment. We made several adjustments to it to
make our simulations more realistic. Firstly, some queries
are censored and appear in the log as a single dash [2]: these
were removed. Secondly, we removed results by one user
in the log that poses an unusually high number of queries:
likely some type of proxy.

Furthermore, we assume that a search session lasts at most
one hour. If the exact same query is recorded multiple times
in this time window, they are assumed to be requests for
subsequent search result pages and thus we use it only once
in the simulation. Table 1 shows statistics regarding the log.
While the log is sorted by numeric user identifier, for realistic
simulation we play back the log in chronological order. We
noticed that one day in the log, May 17th 2006, is truncated
and does not contain data for the full day, but only for about
half an hour after midnight. This has consequences for one
of our experiments described later. For clarity: we do not
use real search results for the queries in the log. In our
experiments we make the assumption that specific subsets
of peers have search results and obtain experimental results
by counting hits only.

3.3 Centralised
Let us first consider the case where one supplier peer in

the system is the only peer that can provide search results.
This peer does not pose queries itself. This scenario provides
a baseline which resembles a centralised search system. Cal-
culating the query load on the peer-to-peer network is trivial
in this case: all 21 million queries have to be answered by
this single central supplier peer.

0 5 10 15 20

0
2

4
6

8
10

Hit Distribution

Queries (x 1,000,000)

#
 H

it
s

(x
 1

,0
00

,0
00

) Central Supplier Peer (Origin)
Consumer Peers (Caches)

Figure 1: Distribution of hits when peers perform
result caching (N=651,647 peers).

However, what if the search results provided by the central
supplier peer can be cached by the consuming peers? In this
scenario the tracker makes the assumption that all queries
can initially be answered by the central supplier peer. How-
ever, when a consuming peer asks the tracker for advice for
a particular query, this peer is registered at the tracker as
caching search results for that query. Subsequent requests
for that same query are offloaded to caching peers by the
tracker. When there are multiple possible caching peers for
a query, one is selected randomly.

Figure 1 shows the number of search results provided by
the origin central supplier peer and the summed number of
hits on the caches at the consumer peers. It turns out that
results for about half of the queries need to be given by the
supplier at least once. The other half can be served from the
caches of the other peers. Since the maximum achievable
cache hit ratio is approximately 0.5, caching can reduce the
load on a central peer by about 50 percent. Caching becomes
more effective as more queries flow through the system. This
is due to the effect that there are increasingly more repeated
queries and less unique queries. So, you always see slightly
fewer new queries than queries you have already seen as the
number of queries increases.

How many results can a peer serve from its local cache
and for how many does it have to consult caches at other
peers? The local cache hit ratio climbs from around 22 per-
cent for several thousand queries to 39 percent for all 21
million queries. So, the majority of cache hits is on external
peers (between 61 and 78 percent).

Let us take a closer look at those external hits. We define
a peer’s share ratio as follows:

shareratio = #cachehits/#queries (1)

Where cachehits is the number of external hits on a peer’s
cache, meaning: all cache hits that are not queries posed by
the peer itself. Queries is the number of queries issued by
the peer. A shareratio of 0 means that a peer’s cache is
never used for answering external queries, between 0 and 1
means that a peer is sending more queries than it answers,
and a ratio above 1 indicates that a peer is actually serving
results for more queries than it sends.

Figure 2 shows that about 20 percent of peers does not
share anything at all. It turns out that the majority of peers,
68 percent, at least serve results for some queries, whereas
only 12 percent, about 80,000 peers, serve results for more
queries than they issue.

0 (0,1] (2,3] (4,5] (6,7] (8,9] (10,11] (12,13] (14,15]

Share Ratios

Ratio

#
 P

ee
rs

 (
x
 1

00
0)

0
20

0
50

0

Figure 2: Observed share ratios (N=651,647 peers).

3.4 Decentralised
Now that we have shown the effectiveness of caching for

offloading one central peer, we make the scenario more real-
istic. Instead of a central peer we introduce n peers that are
both suppliers and consumer at the same time. These mixed
peers are chosen at random. They serve search results, pose
queries and also participate in caching. The remaining peers
are merely consumers that can only cache results.

The central hits in the previous sections become hits per
supplier in this scenario. How does the distribution of search
results affect the external cache hit ratios of the supplier
peers? We examine two distribution cases:

1. For each query there is always only exactly one supplier
with unique relevant search results.

2. The number of supplier peers that have relevant search
results for a query depends on the query popularity.
There is always at least one supplier for a query, but
the more popular a query the more suppliers there are
(up to all n suppliers for very popular queries).

For simplicity we assume in both cases that there is only
one set of search results per query. In the first case this set
is present at exactly one supplier peer. However, the sec-
ond case is more complicated: among the mixed peers we
distribute the search results by considering each peer as a
bin covering a range in the query frequency histogram. We
assume that for each query there is at least one peer with rel-
evant results. However, if a query is more frequent it can be
answered by more mixed peers. The most frequent queries
can be served by all n supplier peers. The distribution of
search results is, like the queries themselves, zipf over the
mixed peers. We believe that this is realistic, since popular
queries on the Internet tend to have many search results as
well. In this case the random choice is between a variable
number m of n peers that supply search results for a given
query. Thus, when the tracker receives a query for which
there are multiple possible peers with results it chooses one
randomly.

We performed two experiments to examine the influence
on query load. The first is based on case 1, where there
is always one supplier given an input query. The second is
based on case 2 where the number of suppliers varies per
query. For case 2 we first used the query log to determine
the popularity of queries and then used this to generate the
initial distribution of search results over the suppliers. This
distribution is performed by randomly assigning the search
results to a fraction of the suppliers depending on the query
popularity. Since normally the query popularity can only
be approximated, the results represent an ideal outcome.

Table 2: Original search results and cache hits
(21,082,980 queries; 651,647 peers of which 10,000
are suppliers). All suppliers operate in mixed mode.

Case 1 Case 2

Suppliers (origin) 11,599,060 12,110,592
Consumers internal (caches) 3,682,995 3,930,025
Consumers external (caches) 5,800,925 5,042,363

1000 1400 1800 2200 2600 3000 3400 3800 4200 4600 5000

Supplier External Hits

External Hits

#
 S

u
p
p
li

er
s

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

Case 1: Random from all n

Case 2: Random m from n

Figure 3: Supplier external hit distributions
(N=651,647 peers, n=10,000 suppliers).

We used n = 10,000 supplier peers in a network of 651,647
peers in total (about 1.53 percent). This mimics the Internet
which has a small number of websites compared to a very
large number of surfing clients.

Figure 3 and Table 2 show the results. The number of
original search results provided by the suppliers is about five
percent higher than in the central peer scenario. This is the
combined effect of no explicit offloading of the supplier peers
by the tracker, and participation of the suppliers in caching
for other queries. In the second case there is slightly more
load on the supplier peers than in the first case: 57 percent
versus 55 percent. The hit distribution in Figure 3 is sim-
ilar even though the underlying assumptions are different.
About 87 percent of peers answer between 1000 and 1500
queries. A very small number of peers answers up to about
five times that many queries. Differences are found near the
low end, which seems somewhat more spread in the first than
in the second case. Nevertheless, all these differences are rel-
atively small. The distribution follows a wave-like pattern
with increasingly smaller peaks: near 1300, 2500, 3700 and
4900. The cause of this is unknown.

3.5 Churn
The experiments thus far have shown the maximum im-

provements that are attainable with caching. In this section
we add one more level of realism: we no longer assume that
peers are on-line infinitely. We base this experiment on case
1 above where the search results are uniformly distributed
over the suppliers. The query log contains timestamps and
we assume that if a specific user has not issued a query for
some period of time, that his session has ended and its cache
is temporarily no longer available. If the same user issues a
query later on (comes back on-line), its cache becomes avail-
able again. This simulates churn in a peer-to-peer network

1
2

3
4

5
6

7

#
 A

ct
iv

e
P

ee
rs

 (
x
 1

0,
00

0)

0 5 10 15 20

0
5

10
15

20
Hit Distribution (Churn)

Queries (x 1,000,000)

#
 H

it
s

(x
 1

,0
00

,0
00

)

Suppliers C. Internal C. External Network Size

Figure 4: Distribution of hits under churn condi-
tions (N=651,647 peers).

where peers join and depart from the network. All peers,
including supplier peers, are subject to churn. For boot-
strapping: if there are no suppliers on-line at all, an off-line
one is randomly chosen to provide search results.

Assuming that all peers are on-line for a fixed amount of
time is unrealistic. Stutzbach and Rejaie [8] show that down-
load session lengths, post-download lingering time and the
total up-time of peers in peer-to-peer file sharing networks
are best modelled by using Weibull distributions. However,
our scenario differs from file sharing. An information re-
trieval session does not end when a search result has been
obtained, rather it spans multiple queries over some length
of time. Even when a search session ends, the machine it-
self is usually not immediately turned off or disconnected
from the Internet. This leads us to two important factors
for estimating how long peers remain joined to the network.
Firstly, there should be some reasonable minimum that cov-
ers at least a browsing session. Secondly, up-time should
be used rather than ‘download’ session length. As soon as a
peer issues its first query we calculate the remaining up-time
of that peer in seconds as follows :

remaininguptime = 900 + (3600 · 8) · w (2)

where w is a random number drawn from a Weibull dis-
tribution with λ = 2 and k = 1. The w parameter is usually
near 0 and very rarely near 10. The up-time thus spans from
at least 15 minutes to at most about 80 hours. About 20
percent of the peers is on-line for longer than one day. This
mimics the distribution of up-times as reported in [8].

Figure 4 shows the results: the number of origin search
results served by suppliers as well as the number of internal
and external hits on the caches of consumer peers. We see
that the number of supplier hits increases to over 12.75 mil-
lion: over 1.16 million more compared to the situation with
no churn. The majority of this increase can be attributed to
a decrease in the number of external cache hits. The dotted
cloud shows the size of the peer-to-peer network on the right
axis: this is the number of peers that is on-line simultane-
ously. We can see that this varies somewhere between about
30,000 and 80,000 peers. There is a dip in the graph caused
by the earlier described log truncation.

4. CONCLUSION
We conducted several experiments that simulate a large-

scale peer-to-peer information retrieval network. Our re-
search questions can be answered as follows:

1. At least 50 percent of the queries can be answered from
search result caches in a centralised scenario. This
drops to 45 percent for the decentralised case.

2. Share ratios are skewed which suggests that additional
mechanisms are needed for cache load balancing.

3. Introducing churn into a peer-to-peer network reduces
the maximum cache hits by 12 percent to 33 percent.

We have shown the potential of caching under increasingly
realistic conditions. Caching search results significantly off-
loads the origin suppliers that provide search results under
all considered scenarios. This could be even further im-
proved by applying query subsumption, term re-ordering
and stemming. These techniques may decrease the qual-
ity of the search results, but also offer more effective usage
of caches. This is needed when extra layers of realism are
added to the experiments by working with individual search
results instead of result sets, by experimenting with finite
size caches, and by invalidating cached results over time. It
would be useful to experiment with a combination of caching
and replication. Finally, much work remains to be done in
peer-to-peer information retrieval, especially in investigating
the properties that hold in large-scale simulations.

5. ACKNOWLEDGEMENTS
We wish to thank Dolf Trieschnigg. This paper was cre-

ated using only Free and Open Source Software. We grate-
fully acknowledge the support of the Netherlands Organisa-
tion for Scientific Research (NWO) under project 639.022.809.

References
[1] Baentsch, M., Baum, L., Molter, G., Rothkugel,

S., and Sturm, P. 1997. Enhancing the web’s infrastruc-
ture. Internet Computing 1, 2 (Mar.), 18–27.

[2] Brenes, D. J. and Gayo-Avello, D. 2009. Stratified
analysis of aol query log. Information Sciences 179, 12,
1844 – 1858.

[3] Cohen, B. 2003. Incentives build robustness in bittor-
rent. In Proceedings of P2PEcon.

[4] Lu, J. and Callan, J. 2006. Full-text federated search
of text-based digital libraries in peer-to-peer networks. In-
formation Retrieval 9, 4, 477–498.

[5] Markatos, E. P. 2001. On caching search engine query
results. Computer Communications 24, 2 (Feb.), 137–143.

[6] Pass, G., Chowdhury, A., and Torgeson, C. 2006.
A picture of search. In Proceedings of InfoScale. Hong
Kong, 1.

[7] Skobeltsyn, G. and Aberer, K. 2006. Distributed
cache table: efficient query-driven processing of multi-
term queries in p2p networks. In Proceedings of P2PIR.
Arlington, Virginia, US, 33–40.

[8] Stutzbach, D. and Rejaie, R. 2006. Understanding
churn in peer-to-peer networks. In Proceedings of IMC.
Rio de Janeiro, BR, 189–202.

	Introduction
	Related Work
	Experiments
	Introduction
	Collection
	Centralised
	Decentralised
	Churn

	Conclusion
	Acknowledgements

