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Abstract. In selective search, a document collection is partitioned into
a collection of topical index shards. To efficiently estimate the topical co-
herence (or quality) of a shard map, the AUReC measure was introduced.
AUReC makes the assumption that shards are of similar sizes, one that
is violated in practice, even for unsupervised approaches. The problem
might be amplified if supervised labelling approaches with skewed class
distributions are used. To estimate the quality of such unbalanced shard
maps, we introduce a weighted adaptation of the AUReC measure, and
empirically evaluate its effectiveness using the ClueWeb09B and Gov2
datasets. We show that it closely matches the evaluations of the orig-
inal AUReC when shards are similar in size, but captures better the
differences in performance when shard sizes are skewed.

Keywords: selective search · clustering · evaluation · cluster-based re-
trieval

1 Introduction

With increasingly complex and expensive retrieval pipelines, efficient retrieval
over large document collections can be quite difficult to achieve. Distributed sys-
tems may alleviate part of this problem by partitioning the index into shards
and searching these in parallel. Another approach, selective search [19], avoids
the exhaustive search over the full collection, reducing the total number of docu-
ments processed per query by partitioning the collection into topically coherent
shards. This assumes the Cluster Hypothesis [25] to be true, that a query’s
relevant documents are allocated to the same (subset of) shards. The resource
selection algorithm should select the relevant shards for each incoming query.

Previous work in selective search has investigated end-to-end effectiveness
[19], runtime efficiency [16,17], partitioning strategies [12,18], resource selection
algorithms [1,11,13,20,22,24], and robustness [10]. The AUReC (Area Under Re-
call Curve) measure [15] estimates shard map quality, considered high if, for
any query, its relevant documents are indeed clustered in a few shards only.
The AUReC measure circumvents the need for manual relevance assessments by
marking the top documents retrieved by a strong ranker as pseudo-relevant.

Unfortunately, AUReC makes the assumption that shards have similar size,
such that the top k shards can be returned. However, existing clustering algo-
rithms cannot guarantee that the resulting shards have similar sizes; in fact,
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the shard maps on which AUReC was evaluated originally, generated by Dai et
al. [12], also contain shards that are orders of magnitude larger than the small-
est ones – even after applying size-bounded clustering [19]. In her dissertation,
Kim [14, Section 8.2] already observed that AUReC could be biased towards
unbalanced shard maps.

The situation can be expected to become much worse when these shard maps
distribute Web documents by language, top level domain or category. Especially
category assignments by a supervised classifier like in the ClueWeb22 corpus
[23] are likely to follow a Zipfian distribution. In this case, splitting and merging
shards to balance the shard sizes may not be desirable, as it might decrease
the coherence and interpretability of affected shards. To mitigate this bias, we
introduce a weighted variant of the AUReC that takes shard size into account.
We show empirically how this weighted AUReC is a better measure of shard
map quality when these shard maps exhibit skew.

We also consider a budget-constrained situation, where the system processes
a fixed number of documents per query instead of a fixed number of shards. In
this case, it may be a good strategy to select many small shards, instead of the
few large shards that AUReC is biased towards. We show that weighted AUReC
measures shard map quality also more accurately in this budget-constrained
setting. The code used for our experiments is published to GitLab.1

2 Weighted AUReC

The AUReC measure [15] builds on the underlying goal of a selective search
system: retrieving the same documents as an exhaustive search system, but more
efficiently. As such, a strong ranker can be used to exhaustively retrieve the top
k documents Dq for a given query q (usually, k = 1000). These documents are
then marked as pseudo-relevant for the calculation of the AUReC.

Assume a shard map p with np shards. For each query q, let count(Dq, s
p
i ) be

the number of documents from Dq that appear in shard spi . Define a relevance-
based ranking (RBR) order of shards, such that each shard spi contains more
pseudo-relevant documents from Dq than the next one. Formally:

count(Dq, s
p
i ) ≥ count(Dq, s

p
i+1) for all i ∈ {1 . . . np − 1}

Given this ordering, a recall-like measure Rq(p, k) is defined to measure the
percentage of pseudo-relevant documents that appear in the first k shards of
shard map p2:

Rq(p, k) =
1

|Dq|

k∑
i=1

count(Dq, s
p
i ) for k ∈ {0 . . . np}

1 https://gitlab.science.ru.nl/informagus/weighted-aurec
2 We use a simplified version of the formula from Kim and Callan [15], in which we
assume that Dq is never empty. Other than that, the formulas are equivalent.

https://gitlab.science.ru.nl/informagus/weighted-aurec
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Using this definition, the recall curve is formed by the points ⟨k/np, Rq(p, k)⟩
for all k ∈ {0 . . . np}. The AUReC for query q is the area under this curve:

AUReC q(p) =
1

2np

np−1∑
k=0

(
Rq(p, k) +Rq(p, k + 1)

)
To obtain a final quality measurement, we average the AUReC q over all

queries in the query set. AUReC scores range from 0.5 (relevant documents are
uniformly distributed) to 1.0 (relevant documents are clustered together).

We will now adjust this measure to handle skewed shard maps, in two steps.
First, instead of ordering the shards by the number of documents from Dq

they contain, we simply divide that number by the size of each shard. Formally:

count(Dq, s
p
i )/|s

p
i | ≥ count(Dq, s

p
i+1)/|s

p
i+1| for all i ∈ {1 . . . np − 1}

This modification promotes smaller shards with a relatively large proportion
of pseudo-relevant documents while pushing back large shards with a higher
proportion of irrelevant documents.

Note that this has no impact on the definitions of count(Dq, s
p
i ) and Rq(p, k);

they are applied the same way, only for a different ordering.
Second, we scale each segment of the recall curve by the size of the corre-

sponding shard. In other words, if D is the full collection, we define the recall
curve as the points ⟨

∑k
i=1 |s

p
i | / |D|, Rq(p, k)⟩ for all k ∈ {0 . . . np}.

Weighted AUReC (wAUReC) follows as the area beneath this adjusted curve:

wAUReC q(p) =

np−1∑
k=0

|spk+1|
2
∑np

i=1 |s
p
i |

·
(
Rq(p, k) +Rq(p, k + 1)

)
When documents are distributed evenly across shards (i.e., every shard has

the same size), the value of wAUReC equals the normal AUReC. Therefore,
wAUReC is not only applicable in the case of a skewed shard map; it can be
used as a full substitute for the normal AUReC.

3 Experimental setup

3.1 Documents, queries and runs

To empirically evaluate the effectiveness of the wAUReC and compare it to the
normal AUReC, we ran a set of experiments with a similar setup to Kim and
Callan [15]. We used the same document collections: Gov23 and ClueWeb09B4.
We used the topics and relevance assessments provided by the TREC Terabyte
Track from 2004 until 2006 [3,4,9] for evaluation on Gov2, and the TREC Web
Track from 2009 until 2012 [5,6,7,8] for evaluation on ClueWeb09B. Finally, we

3 http://ir.dcs.gla.ac.uk/test collections/access to data.html
4 https://lemurproject.org/clueweb09/

http://ir.dcs.gla.ac.uk/test_collections/access_to_data.html
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also used SlideFuse-MAP [2,21] to fuse the top 10 runs submitted each year
to obtain the results of a ‘strong ranker’. This fusion run was used both for
gathering Dq for the AUReC measures and for the evaluation of an end-to-end
selective search system using different resource selection algorithms.

Since we use topics, relevance judgments and submitted runs from TREC,
we do not have to index the corpus ourselves and run a retrieval system against
it. This makes our experimental setting easy to setup and replicate.

3.2 Shard maps and shard selection

We reuse the 6 shard maps (3 per dataset) generated by Dai et al. [12] for a
basic comparison between the AUReC and wAUReC.5

Because these shard maps are fairly balanced in terms of shard size, the
differences between the AUReC and its weighted variant might not become fully
apparent. To make the problem more pronounced, we therefore generate extra
shard maps, using different size distributions: uniform, linear and quadratic. For
each collection and distribution type, we generate 10 different shard maps (60
in total). Per query, we distribute the relevant documents randomly over up to
10 shards. We repeat this procedure 50 times per shard map (resulting in 3000
shard maps), which allows us to perform a robust comparison between the two
AUReC variants on unbalanced shard maps.

Evidently, these simulated random shard maps are unlikely to be used in
practice, and lose the topical coherence that real-world clustering algorithms
provide. However, we evaluate the end-to-end selective search performance using
oracle resource selection algorithms only, meaning we can still evaluate whether
relevant documents are clustered together – both for the end-to-end performance
and for the AUReC and wAUReC. As such, the random shard maps are still
useful to demonstrate the advantages of wAUReC, even if experiments with
more realistic distribution approaches are warranted in future research.

Relevance-based shard ranking Kim and Callan [15] evaluated AUReC on
selective search systems using different resource selection algorithms: Rank-S
[20], Taily [1], and relevance-based ranking (RBR). RBR is the oracle that pro-
vides the theoretically maximum performance, selecting the shards with the
highest number of relevant documents at static cutoff k. We only use RBR for
our comparison between AUReC and wAUReC (for cutoffs k ∈ {1, 3, 5}).

Budget-based shard ranking Like AUReC, RBR assumes that shard sizes
are balanced, as it orders the shards based on the absolute number of relevant
documents they contain. As a result, the RBR oracle method might not showcase
the limitations of the AUReC when it comes to unbalanced shard maps: they
follow the same shard ordering. To illustrate the difference between AUReC and
wAUReC more clearly, we also consider an alternate setting.

5 Downloaded from https://boston.lti.cs.cmu.edu/appendices/CIKM2016-Dai/

https://boston.lti.cs.cmu.edu/appendices/CIKM2016-Dai/


Handling Skew in Shard Map Quality Estimation for Selective Search 5

When shard maps are skewed, selecting a static number of shards may not
suffice. Consider a system with a maximum number of documents to process,
e.g. in order to keep latency below a certain threshold or limit the allocated
resources per query. We call this number the budget of the system.

With a budget of 1000 documents, one can either search one shard with
1000 documents, or 10 shards with 100 documents. The larger shard may have a
larger absolute number of relevant documents, but the smaller shards combined
may contain even more relevant documents. Relevance-based ranking will always
return the largest shard first, even if this would result in sub-optimal results.

We therefore introduce budget-based ranking (BBR), an alternative for RBR.
Unfortunately, finding the optimal set of shards given a budget b is an instance of
the knapsack problem, infeasible to solve in practice. Instead, we approximate
the optimal selection by ordering the documents according to the fraction of
relevant documents they contain, and selecting shards greedily, such that the
total number of processed documents stays below b. Since the ordering used for
the BBR is similar to that for computing wAUReC, the measure relates to BBR
shard selection as normal AUReC relates to RBR.

3.3 Metrics

We follow Kim and Callan’s [15] example to evaluate how wAUReC relates to
the performance of an end-to-end system. We compute the correlation (Pearson’s
r) between each of the AUReC measures and the selective search system’s end-
to-end performance, with either shard selection algorithm. Like Kim and Callan
[15], we evaluate the end-to-end system using P@1000, a deep, recall-focused
measure that assumes selective search is used as a first-stage retrieval system.

Table 1: Correlation (Pearson’s r) between AUReC variants and the P@1000 of
end-to-end systems using relevance-based ranking for resource selection.

Dai et al. [12] Random
End-to-end AUReC wAUReC AUReC wAUReC

RBR (k = 1) 0.932 0.934 0.258 0.891
RBR (k = 3) 0.929 0.930 0.261 0.897
RBR (k = 5) 0.925 0.927 0.261 0.899

4 Experimental results

4.1 Relevance-based ranking

The left-hand side of Table 1 shows the correlation between an RBR-based end-
to-end system and both AUReC variants, across all six shard maps from Dai et
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al. [12]. We clearly see that the AUReC and wAUReC are more or less equivalent
in this setting. In fact, the correlation between AUReC and wAUReC over all
topics and datasets is 0.990, indicating the similar outcomes of the two variants.

For the randomly generated shard maps (right-hand side of Table 1), the
wAUReC seems to be more correlated with the system’s end-to-end performance,
showing the added benefit of using shard size in the evaluation of shard maps.
Figure 1 additionally shows the correlation as a function of the standard devia-
tion of shard sizes in a shard map: the lower the standard deviation, the more
balanced a shard map is. For Gov2, the correlation stays roughly the same, but
for ClueWeb09B we clearly see a drop in performance for the AUReC when
shard maps become more unbalanced, while the wAUReC remains more or less
consistent. We observed similar outcomes for different RBR cutoff values k.
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Fig. 1: Correlation (Pearson’s r) between AUReC variants and P@1000 of end-
to-end systems (with RBR and k = 3) for varying degrees of shard size skew.

4.2 Budget-based ranking

Figure 2 shows the correlation between the AUReC measures and end-to-end sys-
tems using BBR, for a wide range of budgets b. There is a large difference between
the performance of the regular AUReC and the wAUReC for both datasets. As
expected, AUReC performs sub-optimally in the setting where a system is lim-
ited in the number of documents it can process, rather than the number of
shards. The wAUReC is better able to capture this budget-constrained environ-
ment, though its correlation also still leaves room for improvement (especially
for small values b). A possible explanation for this outcome is that the artificial
nature of the generated shard maps makes selective search more difficult in gen-
eral. Alternatively, our greedy heuristic for determining the optimal BBR could
result in suboptimal performance of the end-to-end system. Too small values for
b might even make effective retrieval impossible altogether.
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Fig. 2: Correlation (Pearson’s r) between AUReC variants and the P@1000 of
end-to-end systems using budget-based ranking for resource selection.

5 Conclusion

This paper introduced a weighted variant of the AUReC measure (wAUReC),
which can be used to evaluate shard maps for use in a selective search system
when the shards are skewed in size. First, we have shown that the wAUReC
performs similarly to the normal AUReC when shard maps are balanced. Then,
we showed that the AUReC performance degrades when shard sizes are skewed,
and that its weighted counterpart can handle such shard maps better.

We also studied a setup in which a system does not select k shards but
instead has a fixed budget b of documents that it can process given limited time
or resources. In this case, it might be more worthwhile to select smaller shards
with a higher relative number of relevant documents first, to not fill up the
budget with a few large shards. In this setting, AUReC was unable to accurately
measure the quality of a shard map. The wAUReC achieved a much higher
correlation with the end-to-end system, for a wide range of budgets b.

We aim to continue this work and apply the wAUReC on datasets and shard
maps with inherent size skew, to evaluate its performance in more realistic sce-
narios and ensure it can be applied in practice.

Unlike Kim and Callan did for AUReC [15], we have not yet investigated
whether wAUReC can be used in significance testing. However, because of the
strong similarities between the measures, we hypothesise that those findings also
translate to the wAUReC. This hypothesis can be verified in future work.

Acknowledgments

This work has received funding from the European Union’s Horizon Europe re-
search and innovation programme under grant agreement No 101070014 (Open-
WebSearch.EU, https://doi.org/10.3030/101070014). We also thank Yubin Kim,
who kindly helped us with our experimental setup by making her code available.

https://doi.org/10.3030/101070014


8 G. Hendriksen et al.

References

1. Aly, R., Hiemstra, D., Demeester, T.: Taily: shard selection using the tail of score
distributions. In: Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. pp. 673–682. SIGIR ’13, As-
sociation for Computing Machinery, New York, NY, USA (Jul 2013). https://doi.
org/10.1145/2484028.2484033, https://dl.acm.org/doi/10.1145/2484028.2484033

2. Anava, Y., Shtok, A., Kurland, O., Rabinovich, E.: A Probabilistic Fusion Frame-
work. In: Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management. pp. 1463–1472. CIKM ’16, Association for Comput-
ing Machinery, New York, NY, USA (Oct 2016). https://doi.org/10.1145/2983323.
2983739, https://dl.acm.org/doi/10.1145/2983323.2983739
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