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Abstract. In this paper we present a probabilistic model for the re-
trieval of multimodal documents. The model is based on Bayesian de-
cision theory and combines models for text based search with models
for visual search. The textual model is based on the language modelling
approach to text retrieval and the visual information is modelled as a
mixture of Gaussian densities. Both models have been proved successful
on various standard retrieval tasks. We evaluate the multimodal model
on the search task of TREC’s video track. We found that the disclosure
of video material based on visual information only is still too difficult.
Even with purely visual information needs, text based retrieval still out-
performs visual approaches. The probabilistic model is useful for text,
visual and multimedia retrieval. Unfortunately, simplifying assumptions
that reduce its computational complexity degrade retrieval effectiveness.
Regarding the question whether the model can effectively combine in-
formation from different modalities, we conclude that whenever both
modalities yield reasonable scores, a combined run outperforms the in-
dividual runs.

1 Introduction

Both image analysis and video motion processing have been unable to
meet the requirements for the disclosing of content of large scale unstruc-
tured video archives. There appear to be two major unsolved problems
in the indexing and retrieval of video material on the basis of these
technologies, viz., (a) image and video-processing is still far away from
understanding the content of a picture in the sense of a knowledge-based
understanding, and (b) there is no effective query language (in the wider
sense) for searching image and video databases. Unlike the target con-
tent in the field of text retrieval, the content of video archives is hard
to capture at the conceptual level. An increasing number of developers
that accept this analysis of the state-of-the art in the field have started



to use human language as the media interlingua, making the assump-
tion that, as long as there is no possibility to carry out both a broad
scale recognition of visual objects and an automatic mapping from such
objects to linguistic representations, the detailed content of video ma-
terial is best disclosed through the linguistic content (text) that may
be associated with the images: speech transcripts, manually generated
annotations, subtitles, captions, and so on [5].

Since the recent advances in automatic speech recognition, especially
the potential role of speech transcripts in improving the disclosure of
multimedia archives has been given a lot of attention. One of the insights
gained by these investigations is that for the purpose of indexing and
retrieval, perfect word recognition is not an indispensable condition, since
not every word will have to make it into the index, relevant words are
likely to occur more than once, and not every expression in the index is
likely to be queried. Research into the differences between text retrieval
and spoken document retrieval indicates that, given the current level of
performance of information retrieval techniques, recognition errors do
not add new problems for the retrieval task [7,11].

The limitations inherent to the deployment of language features only
have already lead to several attempts to deal with the requirements of
video retrieval by more closer integration of human language technology
and image processing. The notion of multimodal and even more ambi-
tious: cross modal retrieval, have come in use to refer to the exploitation
of the analysis of a variety of feature types in representing and indexing
aspects of video documents [25, 26, 20, 21, 1, 3].

As indicated, many useful tools and techniques have become available
from various research areas that have contributed to the domain of mul-
timedia retrieval, but the integration of automatically generated multi-
modal metadata is most often done in an ad hoc manner. The various
information modalities that play a role in video documents are each han-
dled by different tools. How the various analyses affect the retrieval per-
formance is hard to establish and it is impossible to give an explanation
of performance results in terms of a formal retrieval model.

This paper describes an approach which employs both textual and image
features and represents them in terms of one uniform theoretical frame-
work. The output from various feature extraction tools is represented in
probabilistic models based on Bayesian decision theory and the result-
ing model is a transparent combination of two similar models, one for
textual features, based on language models for text and speech retrieval
[9], and one for image features based on a mixture of Gaussian densi-
ties [22]. Initial deployment of the approach within the search tasks for
the video retrieval tracks in TREC-2001 [15] and TREC-2002 [19] has
demonstrated the possibility to use this model in retrieval experiments
for unstructured video content. Additional experiments have taken place
for smaller test collections.

Section 2 of this paper describes the general probabilistic retrieval model,
its textual (Section 2.1) and visual constituents (Section 2.2). Section 3
presents the experimental setup followed by a number of experimental re-
sults to evaluate the effectiveness of the retrieval model. Finally, Section
4 summarises our main conclusions.



2 Probabilistic Retrieval Model

If we reformulate the information retrieval problem to one of pattern
classification, the goal is to find the class to which the query belongs.
Let 2 = {w1,w2,...,wn} be the set of classes underlying our document
collection and @ be a query representation. Using the optimal Bayes
or maximum a posteriori classifier, we can then find the class w* with
minimal probability of classification error.

w* = argmax P(w;|Q) (1)

In a retrieval setting, the best strategy is to rank classes by increasing
probability of classification error. When no classification is available, we
can simply let each document be a separate class. It is hard to estimate
(1) directly, therefore, we reverse the probabilities using Bayes’ rule.

e PP
B R 2(2) (2)
= argmax P(Q|wi)P(w:)

If the a priori probabilities of all classes are equal (i.e. P(w;) is uniform),
the maximum a posteriori classifier (2) reduces to the maximum like-
lihood classifier, which is approximated by the Kullback-Leibler (KL)
divergence between query model and class model.

w" = arg miin KL[P,(2)||Pi(2)]

The KL-divergence measures the amount of information there is to dis-
criminate one model from another. The best matching document is the
document with the model that is hardest to discriminate from the query
model. Figure 1 illustrates the retrieval framework.’ We build models for
queries and documents and compare them using the KL-divergence be-
tween the models. The visual part is modelled as a mixture of Gaussians
(see Section 2.2), for the textual part we use the language modelling
approach in which documents are treated as bags of words (see Section
2.1). The KL-divergence between query model and document model is
defined as follows.

KLP@IP@)] = [ Plelw)log 5o da

- /P(x\wq)logp(x|wq)da:—/P(x|wq)1og P(afw:)de,
The first integral is independent of w; and can be ignored, thus

w* = arg min KL[Py(z)||Pi(x)]

3)
= argmax/P(x\wq)logP(x|wi)dx

! The query model is here, like the document models, represented as a Gaussian mix-
ture model but it can also be represented as a bag of blocks (see Section 2.2).
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Fig. 1. Retrieval framework: Image represented as Gaussian Mixture, Text as Language
Model (‘bags of words’)

When working with multimodal material like video, the documents in
our collection contain features in different modalities. This means the
classes underlying our document collection may contain different feature
subclasses. The class conditional densities can thus be described as mix-
tures of feature densities.

P(z|w) =Y P(a|wif)P(wi ),
=1

where F' is the number of underlying feature subclasses, P(w;,f) is the
probability of subclass f of class w; and P(z|w; ) is the subclass con-
ditional density for this subclass. When we draw a random sample from
class w;, we first select a feature subclass according to P(w;,r) and then
draw a sample from this subclass using P(z|w;,5).

To arrive at a generic expression for similarity between mixture mod-
els, Vasconcelos [22] partitions the feature space into disjoint subspaces,
where each point in the feature space is assigned to the subspace corre-
sponding to the most probable feature subclass

Xk ={z : P(wik|z) > Plwi|z) VI # k}

Using this partition, Equation (3) can be rewritten to (proof given in
22)):



/ P(z|wq) log P(z|w;)dz =

P i
S Plugr)[log Plwin)+ [ Plalwas,a € xi)log T4 gy / P(zfuwg s)dz
fik Xk P(wi’klm) Xk
(4)

When the subspaces xj form the same hard partioning of the features
space for all query and document models, i.e. when

1, if z e
P(wik|x) = P(wg,k|T) = {0 otherw>i<:e
then
1,if f=k
/Xk P(z|wq,r)dz { 0, otherwise
and

P(w;klz) =1, Vo € Xk
This reduces (4) to

/ P(x|wq) log P(x|w;)dx =

> P(wg,s)log P(wif) + Y Plwq,y) / P(z|wq,r) log P(z|wi,f)dx
7 7 X
(5)

This ranking formula is general and can in principle be used for any
kind of multimodal document collection. In the rest of the paper, we
limit ourselves to video collections represented by still frames and speech-
recognized transcripts. The classes underlying our collection are defined
through the shots in the videos. Furthermore, we assume we have two
feature subclasses, namely a subclass generating textual features and
one generating visual features. We can partition the feature space now
in two distinct subspaces for textual and visual features: x: and x,. This
partitioning is hard, i.e., a feature can be textual or visual but never
both. Our ranking formula becomes:

w* = argmax / P(z|wq) log P(z|w;)dx =
= arg max[P(u}q,t) log P(wi) + P(ww)/ P(x|wg,t) log P(x|w;,¢)dx
¢ Xt

+P(wq,v) log P(w;i,») + P(wq,v)/ P(x|wgq,v) log P(m|wi,v)dw}
(6)

The mixture probabilities for the textual and visual models P(w;+) and
P(wi,») might be derived from background knowledge about the class
w;. If, for example, we know w; is a class from a news broadcast, we



might assign a higher value to P(w;,:), since the probability that there
is text that helps us in finding relevant information is relatively high.
On the other hand, if w; is from a documentary or a silent movie, we
might gain less information from the text from w; and assign a lower
value to P(wj¢). At the moment however, we have no background infor-
mation, therefore we do not distinguish between classes and use uniform
mixture probabilities. This means, the first and third term from (6) are
independent of w; and can be ignored.

Our final (general) ranking formula becomes:

w" = argmax [P(t)/ P(x|wg,t) log P(x|ws,¢)dx
¢ xt

(7)
+ PW) / P(elwq.0) log P(alw: )da]

where P(t) and P(v) are the class-independent probabilities of drawing
textual and visual features respectively.

2.1 Text Retrieval

For the textual part of our ranking function, we use statistical language
models. A famous application of these models is Shannon’s illustration of
the implications of coding and information theory using models of letter
sequences and word sequences [18]. In the 1970s, statistical language
models were developed as a general natural language processing tool,
first for automatic speech recognition [10] and later also for e.g. part-
of-speech tagging [4] and machine translation [2]. Recently, statistical
language models have been suggested for information retrieval by Ponte
and Croft [16], Hiemstra [8] and Miller et al. [13].

The language modeling approach to information retrieval defines a simple
unigram language model for each document in a collection. For each doc-

ument w; ¢, the language model defines the probability P(z+,1, - - -, T+, N, |wi,

of a sequence of N; textual features (i.e. words) x¢,1,- -, Z¢,n, and the
documents are ranked by that probability. The standard language mod-
elling approach to information retrieval uses a linear interpolation of the
document model P(x¢,j|w;) with a general collection model P(xz,;) [8,
12-14]. As these models operate on discrete signals, the integral from (7)
can be replaced by a sum. Furthermore, if we use the empirical distribu-
tion of the query as the query model, i.e. if we assume, then the standard
textual part of (7) is:

Ny
wpk = arg max Nit Z log[AP(z¢,j|ws) + (1 =A)P(z¢,5)] (8)

j=1
The linear combination needs a smoothing parameter A\ which is set
empirically on some test collection, or alternatively estimated by the
expectation maximisation (EM)-algorithm [6] on a test collection. The
probability of drawing textual feature z; ; from document w; (P(x+,;|w;))
is computed as follows: if the document contains 100 terms in total and
the term x;; occurs 2 times, this probability would simply be 2/100 =



0.02. Similarly, P(x ;) is the probability of drawing x¢,; from the entire
document collection.

Using the statistical language modelling approach for video retrieval, we
would like to exploit the hierarchical data model of video, in which a
video is subdivided in scenes, which are subdivided in shots, which are
in turn subdivided in frames. Statistical language models are particu-
larly well-suited for modelling such complex representations of the data.
We can simply extend the mixture to include the different levels of the
hierarchy, with models for shots and scenes:?

Nt
* 1
Shot = argmax —- E log[Ashot P(x¢,;|Shot; )+ Ascene P(x¢, j|Scene; ) +Acon Pzt ;)]
? t
=1

with )\Coll =1- AShot - AScene (9)

The main idea behind this approach is that a good shot contains the
query terms and is part of a scene having more occurrences of the query
terms. Also, by including scenes in the ranking function, we hope to
retrieve the shot of interest, even if the video’s speech describes the
shot just before it begins or just after it is finished. Depending on the
information need of the user, we might use a similar strategy to rank
scenes or complete videos instead of shots, that is, the best scene might
be a scene that contains a shot in which the query terms (co-)occur.

2.2 Image Retrieval

In order to specialise the visual part of our ranking formula (7), we
need to estimate the class conditional densities for the visual features,
P(zy|w;). We follow Vasconcelos [22] and model them using Gaussian
mixture models. The idea behind modelling shots as a mixture of Gaus-
sians is that each shot contains a certain number of classes or components
and that each sample from a shot (i.e., each block of 8 by 8 pixels ex-
tracted from a frame) was generated by one of these components. The
class conditional densities for a Gaussian mixture model are defined as

follows:
c

Plaolwr) = 3 P(01.c) Glwon i, Sie), (10)
c=1
where C' is the number of components in the mixture model, 6; . is com-
ponent ¢ of class model w; and G(x, u, X) is the Gaussian density with
mean vector p and co-variance matrix X

1 g
g(m,,u,E) = € 2HI #sz
(2m)"| 2]

where n is the dimensionality of the feature space and
lz = plls = (@ — )" S (@ - p).

2 We assume each shot is a separate class and replace w; with Shot;.



Estimating Model Parameters The parameters of the models for
a given shot can be estimated using the EM algorithm. This algorithm
iterates between estimating the a posteriori class probabilities for each
sample P(0.|x,) (the E-step) and re-estimating the components param-
eters (i, X and P(6.)) based on the sample distribution (M-step).?

Split colour

&
sesesfe ]

EM algorithm

Fig. 2. Building a Gaussian Mixture Model from an Image

The approach is rather general: any kind of feature vectors can be used
to describe samples. Our sampling process is as follows, illustrated in
Figure 2. First, we convert the keyframe of a shot to the YCbCr color
space. Then, we cut it in distinct blocks of 8 by 8 pixels. On these blocks
we perform the discrete cosine transform (DCT) for each of the 3 colour
channels. We now take the first 10 DCT-coefficients from the Y-channel
and only the DC coefficient from both the Cb and the Cr channels to
describe the samples. These feature vectors are then fed to the EM-
algorithm to find the parameters (uc, X and P(6.)). The EM algorithm
first assigns each sample to a random component. Next, we compute the
parameters (fc, X and P(0.)) for each component, based on the samples
assigned to that component®. We re-estimate the class assignments, i.e.
we compute the posterior probabilities (P(0.|x), Vc). We iterate between
estimating class assignments (expectation step) and estimating class pa-

3 Looking at a single shot, we can drop the class subscripts .

4 In practice a sample does not always belong entirely to one component. In fact we
compute means, covariances and priors on the weighted feature vectors, where the
feature vectors are weighted by their proportion of belonging to the class under
consideration



rameters (maximisation step) until the algorithm converges. Figure 3
shows a query image and the component assignments after different itera-
tions of the EM algorithm. Instead of a random initialisation, we initially
assigned the left-most part of the samples to component 1, the samples in
the middle to component 2 and the right-most samples to component 3.
This way it is clearly visible how the component assignments move about
the image. Finally, after convergence of the EM-algorithm, we describe

inital 2 iterations 10 iterations 30 iterations

Fig. 3. Class assignments (3 classes) for the image at the top after different numbers
of iterations

the position in the image plane of each component as a 2D-Gaussian
with mean and covariance computed from the positions of the samples
assigned to this component.

Bags of Blocks Just like in our textual approach, for the query model,
we can simply take the empirical distribution of the query samples. If a
query-image x, consists of N, samples: , = (Zov,1, Zv,2,- .., Tv,N, ) then
P(zy,i|lwg) = Niu For the document model, we take a mixture of fore-
ground and background probabilities, i.e. the (foreground) probability of
drawing a query sample from the document’s Gaussian mixture model,
and the (background) probability of drawing it from any Gaussian mix-
ture in the collection. In other words, the query image is viewed as a bag
of blocks (BoB), and its probability is estimated as the joint probability
of all its blocks. The BoB measure for query images then becomes:

Ny

* 1
wy = argmax - Jz::l log [kP(xw,j|ws) + (1 — &) P(zv,5)],  (11)



where £ is a mixing parameter and the background probability P(z.,;)
can be found by marginalising over all M documents in the collection:

M

P(2y;) =Y P(wo,;lwi)P(ws).

i=1

Again we assume uniform document priors (P(w;) = 5 for all i). In
text retrieval, one of the reasons for mixing the document model with
a collection model is to assign non-zero probabilities to words that are
not observed in a document. Smoothing is not necessary in the visual
case, since the documents are modelled as mixtures of Gaussians, having
infinite support. Another motivation for mixing is to weight term im-
portance: a common sample z (i.e., a sample that occurs frequently in
the collection) has a relatively high probability P(x) (equal for all docu-
ments), and therefore P(z|w) has only little influence on the probability
estimate. In other words, common terms and common blocks influence
the final ranking only marginally.

Asymptotic Likelihood Approximation A disadvantage of using
the BoB measure is its computational complexity. In order to rank the
collection given a query, we need to compute the posterior probability
P(xy|w;) of each image block x, in the query for each document w; in
the collection. For evaluating a retrieval method this is fine, but for an
interactive retrieval system, optimisation is necessary.

An alternative is to represent the query image, like the document image,
as a Gaussian model (instead of by its empirical distribution as a bag
of blocks), and then compare these two models using the KL-divergence.
Yet, if we use Gaussians to model the class conditional densities of the
mixture components, there is no closed-from solution for the visual part
of the resulting ranking formula (7). As a solution, Vasconcelos assumes
that the Gaussians are well separated and derives an approximation,
ignoring the overlap between the mixture components: the asymptotic
likelihood approximation (ALA) [22]. Starting from (4) he arrives at:

wy = argmax/ P(zy|wg) log P(xy|w:)dzy
e
~ arg max ALA[Py(xy)||Pi(zv)]

= arg mzaxz P(0g,c){log P(0:,a(c)) +1og G(ta.c, liate)s Ziate))

i,0(c)

1 _
— 5trace[2 LTl
(12)
where a(e) = k ¢ tq.e — pill5,p < g — pitlls, V1 £ &

In this equation, subscripts indicate respectively classes and components
(e.g. pi,c is the mean for component 6. of class w;).



2.3 ALA assumptions

The main assumption behind the ALA is that the Gaussians for the
components, 0., within a class model, w;, have small overlap; in fact,
there are two parts to this [22]. The first assumption is that each image
sample is assigned to one and only one of the mixture components. The
second is that samples from the support set of a single query component
are all assigned to the same document component. More formally:

Assumption A: For each sample, the component with maximum pos-

terior probability has posterior probability one:

Ywi, x m]?xP(Gi,k\m) =1

Assumption B: For any document wj;, the component with maximum
posterior probability is the same for all samples in the support set
of a single query component 0 j:

VOqk,w; 3"V : P(x|fg) >0 = arg max P0;]z) =1"

We used Monte Carlo simulation to test these assumptions on our collec-
tion (the TREC-2002 video collection, see Section 3.1) as follows. First,
we took a random document w; from the search collection and then a
random mixture component 6; , from the mixture model of this docu-
ment. We then drew 10,000 random samples from this component and
for each sample z computed:

— P(6;,|z), the posterior component assignment within document ¢ for

all components 6; ;
— P(0j,m|x), the posterior component assignment in a different ran-
domly chosen document j, for all components ;.

For the first measure we simply took the maximum posterior probability
for each sample. We averaged the second measure over all 10,000 samples
and took the maximum over all components to approximate the propor-
tion of samples assigned to the most probable component (remember,
there should be a component that explains all samples). We repeated
this process 100,000 iterations for different documents and components
selected at random, and histogrammed the results (Figure 4). Both mea-
sures should be close to 1, the first to satisfy assumption A, the second
to satisfy assumption B.
As we can see from the plots in Figure 4, the first assumption appears
reasonable, but the second does not hold.> We investigate the effect of
this observation in the retrieval experiments below.

3 Experiments

We evaluated the model outlined above and the presented measures on
the search task of the video track of the Text REtrieval Conference
TREC-2002 [19].

5 The bar at probability zero results from a truncation error in the Bayesian inversion
to compute P(8;,m|z) from a (too small) probability P(x|6;,m).



max; P(0;,|z) max, P(0j,m|r)

Fig. 4. Testing the ALA assumptions A (left) and B (right), samples z drawn from
P(x|0,r).

3.1 TREC video track

TREC is a series of workshops for large scale evaluation of information
retrieval technology [23,24]. The goal is to test retrieval technology on
realistic test collection using uniform and appropriate scoring procedures.
The general procedure is as follows:
— A set of statements of information need (topic) is created;
— Participants search the collection and return the top N results for
each topic;
— Returned documents are pooled and judged for relavance to the
topic;
— Systems are evaluated using the relevance judgements.
The measures used in evaluation are usually precision and recall oriented.
Precision and recall are defined as follows:

number of relevant shots retrieved

recision =
P total number of shots retrieved

number of relevant shots retrieved
recall =

total number of relevant shots in collection

The video track was introduced at TREC-2001 to evaluate content-based
retrieval from digital video [15]. Here, we use the data from the TREC-
2002 video track [19]. The track defines three tasks: shot boundary de-
tection, feature detection and general information search. The goal of
the shot boundary task is to identify shot boundaries in a given video
clip. In the feature detection task, one has to assign a set of predefined
features to a shot, e.g. indoor, outdoor, people and speech. In the search
task, the goal is to find relevant shots given a description of an informa-
tion need, expressed by a multimedia topic. Both in the feature detection
task and in the search task, a predefined set of shots is to be used. In
our experiments we focus on the search task.

The collection to be searched in this task consists of approximately 40
hours of MPEG-1 encoded, video, in addition a set of 23 hours of training
material is available. The topics consist of a textual description of the



information need, accompanied by images, video fragments and/or audio

fragments illustrating what is needed. For each topic a system can return

a ranked list of 100 video fragments. The top 50 returned shots of each

run are then pooled and judged.

We report experimental results using the standard TREC measures, av-

erage precision and mean average precision (MAP):

Average precision: The average of the precision value obtained after
each relevant document is retrieved (when a relevant document is
not retrieved at all its precision is assumed to be 0)

MAP: The mean of the average precision values over all topics.

For the textual descriptions of the shots, we used speech transcripts

kindly provided by LIMSI. These transcripts were aligned to the pre-

defined video shots. We did not have or define a semantic division of the
video into scenes, but defined scenes simply as overlapping windows of

5 consecutive shots.> We removed common words from the transcripts

(stopping) and stemmed all terms using the Porter stemmer [17]. For

the visual description we took keyframes from the common video shots

and we used EM to find the parameters of Gaussian mixture models.

Keyframe selection was straightforward: we simply used the middle frame

from each shot as representative for the shot.

3.2 Estimating the Mixture Parameters

The model does not specify the value of mixing parameters A, Ashot,
AScene, and k. An optimal value can only be found a posteriori by eval-
uating retrieval performance for different values on a test collection; a
priori, we must make an educated guess for the right values.

Figure 5 shows the mean average precision scores on the TREC-2002
video track search task for x ranging from 0.0 to 1.0. We can see that
retrieval results are insensitive to the value of the mixing parameter as
long as we take both foreground and background into account. The plot
has a similar shape as that found in Hiemstra’s thesis for the A parameter
in the standard language model [9].

For the transcripts, we tried over thirty combinations of settings, using
two sets of text queries (see also Section 3.4). For query set Tlong, this re-
sulted in optimal settings for mean average precision with Ashot = 0.090,
Ascene = 0.210, and Acon = 0.700. Here, modelling the hierarchy in the
video makes sense, because shot and scene both contribute to results
in the ranking (Ashot and Ascene are larger than zero). For set Tshort
however, the optimal settings had Ashot = 0.000 and the resulting model
is identical to the original language model. Summarizing, ranking tran-
script units longer than shots is important, but we cannot conclude from
these experiments whether modeling the hierarchy is really necessary.
In all experiments, the differences between the better parameter choices
are not significant, but, a particularly bad choice may seriously degrade
retrieval effectiveness. In the remainder of this work, we have used k =
0.9, Ashot = 0.090, Ascene = 0.210, and Acon = 0.700.

5 In preliminary experiments on the TREC-2001 collection, when varying the window
lengths, 5 shots was the optimum.



Fig. 5. MAP on video search task for different x

3.3 Using All or Some Image Examples

In general, it is hard to guess what would be a good example image
for a specific query. If we look for shots of the Golden Gate bridge, we
might not care from what angle the bridge was filmed, or if the clip was
filmed on a sunny or a cloudy day; visually however, such examples may
be very different (Figure 6). If a user has presented three examples and

Fig. 6. Visual examples of the Golden Gate bridge.

no additional information, the best we can do is try to find documents
that describe all example images well. Unfortunately, a document may be



ranked low even though it models the samples from one example image
well, as it may not explain the samples from the other images.

For each topic, we computed which of the example images would have
given the best results if it had been used as the only example for that
topic. We compared these best example results to the full topic results in
which we used all available visual examples. The experiment was done
using both the ALA and the BoB measure. In the full topic case, the
set of available topics was regarded as one large bag of samples. For
the ALA measure, we built one mixture model to describe all available
visual examples. For BoB, we ranked documents by their probability of
generating all samples in all query images. For the single image queries in
the best example, we built a separate mixture model from each example
and used it for ALA-ranking. For BoB ranking, we used all samples from
the single visual example. Since it is problematic to use multiple examples
in a query, we wanted to see if it is possible to guess in advance what
would be a good example for a specific topic. Therefore, for each topic
we hand-picked also a single representative from the available examples
and compared these manual example results to the other two result sets.
The results for the different settings are listed in table 1. A first thing
to notice is that all scores are rather low. When we take a closer look at
the topics with higher average precision scores, we see that these mainly
contain examples from the search collection. In other words, we can find
similar shots from within the same video, but generalisation is a problem.
Comparing BoB to ALA, we see that averaged over all topics, for each
set of examples, BoB outperforms ALA. For some specific topics, the
ALA gives higher scores, but again these are cases with examples from
within the collection. In general, the BoB approach, which uses fewer
assumptions performs better.

The fact that using the best image example outperforms the use of all
examples shows that indeed combining results from different visual ex-
amples can degrade results. Looking at the results, manually selecting
good examples seems a non-trivial task, but the drop in performance is
partly due to the generalisation problem. If one of the image examples
happens to come from the collection it scores high. If we fail to select
that particular example, the score for the manual example run drops.
Simply counting how often the manually selected example was the same
as the best performing example, we see that this was the case for 8 out
of 13 topics.”

3.4 Using Example Transcripts

We took two different approaches in building textual queries from the
multimedia topics. The first set of textual queries, Thsort, was con-
structed simply by taking the textual description from the topic. In the
second set of queries, Tlong, we augmented these with the speech tran-
scripts from the video examples available for a topic. The assumption
here is that relevant shots share a vocabulary with example shots, thus

" If we ignore the topics for which there is only one example and the ones for which
the best example scored 0.



full topic best example manual example
Topic BoB ALA BoB ALA BoB ALA
vt075 0.0038 0.0100 0.2438 0.0591 0.2438 0.0560
vt076 0.4854 0.1117 0.4323 0.1327 0.1760 0.0958
vt077 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt078 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt079 0.0000 0.0000 0.0040 0.0015 0.0000 0.0000
vt080 0.0048 0.0020 0.0977 0.0007 0.0977 0.0007
vt081 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt082 0.0330 0.0203 0.0234 0.0022 0.0234 0.0022
vt083 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt084 0.0046 0.0000 0.0046 0.0000 0.0046 0.0000
vt085 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt086 0.0053 0.0000 0.0704 0.0149 0.0704 0.0005
vt087 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt088 0.0046 0.0000 0.0069 0.0139 0.0069 0.0139
vt089 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt090 0.0000 0.0000 0.0305 0.0003 0.0305 0.0003
vt091 0.0095 0.0000 0.0095 0.0000 0.0095 0.0000
vt092 0.0003 0.0000 0.0106 0.0213 0.0000 0.0000
vt093 0.0006 0.0000 0.0006 0.0003 0.0000 0.0000
vt094 0.0021 0.0004 0.0021 0.0013 0.0021 0.0013
vt095 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt096 0.0323 0.0000 0.0323 0.0383 0.0323 0.0383
vt097 0.1312 0.0002 0.1408 0.0496 0.0000 0.0000
vt098 0.0000 0.0000 0.0003 0.0006 0.0003 0.0000
vt099 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MAP 0.0287 0.0058 0.0444 0.0135 0.0279 0.0084

Table 1. MAP for Full Topics, Best Examples and Manual Examples



using example-transcripts might improve retrieval results. In both sets
of queries we removed common words and stemmed all terms. We found
that across topics, Tlong outperformed Tshort with a MAP of 0.1212
against 0.0916. For detailed per topic information see Table 2.

3.5 Combining Textual and Visual runs

We combined textual and visual runs using our combined ranking for-
mula (7). Since we had no data to estimate the parameters for mixing
textual and visual information we used P(t) = P(v) = 0.5. For the tex-
tual part we tried both short and long queries, for the visual part we
used full queries and best-example queries. Table 2 shows the results for
combinations with the BoB measure. We also experimented with com-
binations with the ALA measure, but we found that in the ALA case
it is difficult to combine textual and visual scores, because they are on
different scales. The BoB measure is closer to the KL-divergence and,
on top of that, more similar to our textual approach, and thus easier to
combine with the textual scores.

For most of the topics, textual runs give the best results, however for
some topics using the visual examples is useful. This is mainly the case
when either the topics come from the search collection or when the rele-
vant documents are outliers in the collection. This illustrates how difficult
it is to search a generic video collection using visual information only.
We only succeed if the relevant documents are either highly similar to
the examples provided or very dissimilar from the other documents in
the collection (and therefore relatively similar to the query examples).
When both textual and visual runs have reasonable scores, combining
the runs can improve on the individual runs, however, when one of them
has inferior performance, a combination only adds noise and lowers the
scores.

4 Conclusions

We presented a probabilistic framework for multimodal retrieval in which
textual and visual retrieval models are integrated seamlessly and eval-
uated the framework using the search task from the TREC-2002 video
track. We found that even though the topics were specifically designed
for content-based retrieval, and relevance was defined visually, a textual
search outperforms visual search for most topics. As we have seen be-
fore [20], standard image retrieval techniques can not readily be applied
to satisfying a variety of information requests from a generic video col-
lection. Future work has to show how incorporating different sources of
additional information (e.g. contextual frames, the movement in video
or user interaction) can help improve results.

In the text-only experiments, we saw that using the transcripts from
the example videos in queries improves results. We also found that it is
useful to take transcripts from surrounding shots into account to describe
a shot. However, it is still unclear whether a hierarchical description of
scenes and shots is necessary.



. BoBfull BoBfull BoBbest BoBbest
T Tl
opic Tshort ong  BoBfull BoBbest +Tshort +Tlong +Tshort +Tlong

vt075 0.0000 0.0082 0.0038 0.2438 0.0189 0.0569 0.2405 0.3537
vt076 0.4075 0.6242 0.4854 0.4323 0.5931 0.7039 0.5757 0.6820
vt077 0.1225 0.5556 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt078 0.1083  0.2778 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt079 0.0003 0.0006 0.0000 0.0040 0.0003 0.0000 0.0063 0.0050
vt080 0.0000 0.0000 0.0048 0.0977 0.0066 0.0059 0.0845 0.0931
vt081 0.0154 0.0333 0.0000 0.0000 0.0037 0.0000 0.0000 0.0000
vt082 0.0080 0.0262 0.0330 0.0234 0.0181 0.0335 0.0145 0.0210
vt083 0.1669 0.1669 0.0000 0.0000 0.0962 0.0962 0.0078 0.0078
vt084 0.7500 0.7500 0.0046 0.0046 0.6875 0.6875 0.6875 0.6875
vt085 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vt086 0.0554 0.0676 0.0053 0.0704 0.0536 0.0215 0.0791 0.0600
vt087 0.0591 0.0295 0.0000 0.0000 0.0052 0.0003 0.0052 0.0003
vt088 0.0148 0.0005 0.0046 0.0069 0.0052 0.0046 0.0069 0.0069
vt089 0.0764 0.0764 0.0000 0.0000 0.0503 0.0503 0.0045 0.0045
vt090 0.0229 0.0473 0.0000 0.0305 0.0006 0.0075 0.0356 0.0477
vt091 0.0000 0.0000 0.0095 0.0095 0.0000 0.0086 0.0000 0.0086
vt092 0.0627 0.0687 0.0003 0.0106 0.0191 0.0010 0.0078 0.0106
vt093 0.1977 0.1147 0.0006 0.0006 0.0099 0.0021 0.0071 0.0012
vt094 0.0232 0.0252 0.0021 0.0021 0.0122 0.0036 0.0122 0.0036
vt095 0.0034 0.0021 0.0000 0.0000 0.0008 0.0012 0.0011 0.0010
vt096 0.0000 0.0000 0.0323 0.0323 0.0161 0.0161 0.0323 0.0323
vt097 0.1002 0.0853 0.1312 0.1408 0.1228 0.1752 0.1521 0.1474
vt098 0.0225 0.0086 0.0000 0.0003 0.0068 0.0000 0.0004 0.0003
vt099 0.0726 0.0606 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

MAP 0.0916 0.1212 0.0287 0.0444 0.0691 0.0750 0.0784 0.0870

Table 2. Average precision per topic, for Textual runs, BoB runs and combined runs



In our visual experiments, we found that the general probabilistic frame-
work is useful for image retrieval. However, we found that one of the as-
sumptions underlying the Asymptotic Likelihood approximation of the
KL-divergence does not hold for the generic video collection we used.
This was reflected in the difference in performance of the ALA and the
Bag of Blocks model. Unfortunately, computing the joint block proba-
bilities in the BoB model is computationally expensive and unsuitable
for an interactive retrieval system. Future work will investigate ways to
speed up the process.

Furthermore, we noticed generalisation problems. The visual models only
gave satisfying results if the relevant documents were either highly similar
to the query image(s) (i.e. the query images came from the collection), or
highly dissimilar to the rest of the collection (i.e. the relevant documents
were outliers in the collection).

When either textual or visual results are poor, combining them, thus
adding noise, seems to degrade the scores. However, when both modali-
ties yield reasonable scores, a combined run outperforms the individual
runs.
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