
Comparison Of Local And Global Undirected
Graphical Models∗

Zhemin Zhu, Djoerd Hiemstra, Peter Apers, Andreas Wombacher

Electrical Engineering, Mathematics and Computer Science (EEMCS)
University of Twente, Enschede, The Netherlands

Abstract. CRFs are discriminative undirected models which are glob-
ally normalized. Global normalization preserves CRFs from the label bias
problem (LBP) which most local models suffer from. Recently proposed
co-occurrence rate networks (CRNs) are also discriminative undirected
models. In contrast to CRFs, CRNs are locally normalized. It was es-
tablished that CRNs are immune to the LBP even they are local models.
In this paper, we further compare these two models. The connection be-
tween CR and Copula are built in continuous case. Also their strength and
weakness are further evaluated statistically by experiments.

1 Introduction

Many fundamental applications in natural language processing, computer vision
and bioinformatics desire structured outputs rather than a single tag. Condi-
tional random fields (CRFs) [1] are discriminative undirected graphical models
which output structured tags conditioned by observations. CRFs avoid the lim-
itations of other models, such as those of hidden Markov models (HMMs) and
conditional Markov models (CMMs) [2]. HMMs assume strong independence be-
tween observations and CMMs suffer from the label bias problem (LBP). CRFs
address LBP by the nature of global normalization (GN) in which the joint
probability is normalized. But GN brings up the problem of inefficient training.
[3] proposed co-occurrence rate networks (CRNs) which are also discriminative
undirected models. In contrast to CRFs, CRNs can be locally normalized (LN).
It was established in [3] that CRNs also avoid the strong independence assump-
tion of HMMs and the LBP of CMMs even they are locally normalized. Hence
CRNs are promising models which can be trained efficiently while preserving
high accuracy. In this paper, we further compare these two models theoretically
and experimentally. Their differences are clarified. And we futher evaluate per-
formance statistically by experiments. In the remainder of this section we briefly
introduce CRFs and CRNs. For simplicity, in this paper we focus on sequence
(chain-structured) graphs.

1.1 CRFs

The factorization of CRFs are based on the Hammersley-Clifford theorem (HCT).
HCT results in a joint distribution can be written as a product of non-negative
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functions (called potential functions) over cliques. If we specify this result to
sequence graphs, we obtain the factorization of sequence CRFs:

p(S1, S2..., Sn |O) =
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S = (S1, S2, ..., Sn) is a tag sequence and O is a observation sequence. We use
p(X) to denote probability mass function (pmf) of discrete X. ZO is a global
normalization to ensure p is a pmf. Note that there is no pmf constraint on φ
and ψ. According to HCT, they are just non-negative functions. In graphical
models, the factors φ and ψ are normally modeled by exponential functions. For
example, φi(Si, O) = exp

∑
j λj [[fj , (Si, O)]], denoted by E(Si, O). [[fj , (Si, O)]] is

a indicator function which equals 1 if feature fj occurs on (Sj , O); Otherwise, it
equals 0. Suppose the training dataset consists of N pairs of tag and observation
sequences: {(si, oi) | i = 1, ..., N}. Then the likelihood function is:
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|si| is the length of the tag sequence si. A maximal likelihood estimate (mle)
can be obtained by maximizing the logarithm function of Eq. (3).

1.2 CRNs

The factorization of co-occurrence rate networks (CRNs) are based on the con-
cept of co-occurrence rate (CR) and its two theorems [3]:

Definition 1 (Discrete co-occurrence rate).

CR(X1;X2; ...;Xn) =
p(X1, X2, ..., Xn)

p(X1)p(X2)...p(Xn)
. (4)

Theorem 1 (Partition Theorem).

CR(X1; ...;Xj ;Xj+1; ...;Xn) = CR(X1; ...;Xj)CR(Xj+1; ...;Xn)CR(X1...Xj ;Xj+1...Xn).

Theorem 2. If X ⊥ Y | Z, then CR(X;Y Z) = CR(X;Z).

Using CR, sequence undirected graphs can be factorized as follows [3]:

p(S1, S2..., Sn |O) =

n∏
i=1

p(Si |O)

n−1∏
j=1

CR(Sj ;Sj+1 |O), (5)



where CR(Sj ;Sj+1 |O) =
p(Sj ,Sj+1|O)

p(Sj |O)p(Sj+1|O) . p(Si |O) in Eq. (5) is a pmf. Hence it

can be locally normalized. This is different from φi(Si, O) in Eq. (1), for which
there is no pmf constraint. Also there is no ZO in Eq. (5). Hence the global
normalization can be avoided.

The more interesting is the quantity CR(Sj ;Sj+1 |O). By definition, CR is not
a pmf. Hence we cannot do local normalization over CR(Sj , Sj+1 | O). Without
the normalization, if we maximize the likelihood function, the factors will grow
to +∞. Fortunately, CR(Sj , Sj+1) has close relation to the concept Copula [4]
in statistics. We can use a similar idea of estimating Copula to estimate CR. In
continuous case, the connection can be built as follows. For convenience, we use
(X,Y ) instead of (Sj , Sj+1). Let FX and FY be the commutative distribution
functions (cdf) of X and Y :

FX : X → [0, 1], x 7→ P (X ≤ x)

FY : Y → [0, 1], y 7→ P (Y ≤ y).

Then the bivariate Copula of (X,Y ) is defined as the joint cdf of FX and FY :

CFX ,FY
(u, v) = P (FX ≤ u, FY ≤ v) (6)

If Eq. (6) is differentiable with respect to FX and FY , then we can obtain
the Copula density function:

cFX ,FY
=

∂2

∂FX∂FY
CFX ,FY

. (7)

The following formula is a simple variable transformation:

fX,Y (x, y) = cFX ,FY
(FX(x), FY (y))

∣∣∣∣∂FX

∂X
∂FX

∂Y
∂FY

∂X
∂FY

∂Y

∣∣∣∣
= cFX ,FY

(FX(x), FY (y))fX(x)fY (y),

where

∣∣∣∣∂FX

∂X
∂FX

∂Y
∂FY

∂X
∂FY

∂Y

∣∣∣∣ = fXfY is the Jacobian. Hence we obtain:

CR(X = x;Y = y) =
fX,Y (x, y)

fX(x)fY (y)
= cFX ,FY

(FX(x), FY (y)). (8)

Eq. (8) shows in continuous case CR is just the Copula density function. In
discrete case, the definition of Copula is not unique. And the connection between
CR and Copula is unclear. But the idea of estimating Copula can still be easily
used for estimating discrete CR. Estimating Copula implies usually that every
marginal distribution must be estimated and plugged into a joint distribution.
Following this idea, [3] plugs the empirical p(X) and p(Y ) into p(X,Y ) to obtain
CR(X;Y ).

Remark I CRNs are clearly different from approximate training methods
of CRFs, such as tree-reweighted [5], piecewise training [6] and piecewise pseudo-
likelihood [7]. These methods are still global normalization (GN) methods. But



they calculate the GN approximately, which can be done more efficiently than
calculating the original GN. Hence they still need a message passing process to
calculate the approximate GN. CRNs do not need to calculate GN. So message
passing is not employed in CRNs.

Remark II It seems that we can simply estimate CR in Eq. (5) using
maximum likelihood estimate similar to CRFs. As explained, this does not work.
Because we can not find a local normalization for CR. A normalization implies
constraints. Without these constraints, maximizing the likelihood function leads
CR growing to +∞. Of cause we can use the global normalization to constrain
CR. But the purpose of CRNs is to find local methods to estimate CR.

2 Experiments

In the experiments, we adopt CRF++ version 0.57 [8] as the implementation
of CRFs. We implement the empirical CRNs (ECRNs) in Java. We compare
CRFs and CRNs on two real-world datasets. The first one is a part-of-speech
(POS) tagging dataset. In POS tagging, a POS tag is assigned to each word
of a sentence. The second dataset is from named entity recognition (NER).
Similar to POS tagging, in NER each word in a sentence is assigned with a tag
which indicates if it is a organization, location or person’s name. These two
applications can be well modelled as sequence labelling problems.

In POS tagging experiment, the Brown corpus are used for training and
testing. There are 34,623 sentences in this corpus. And the size of the tag
sample space is 252. We use the same spelling features as those described by
[1]. We split this dataset into training dataset and test dataset. The training
dataset consist of 17,311 sentences and the test dataset consist of the remained
17,312 sentences.

We use the the Dutch part of CoNLL-2002 NER Corpus1 for NER exper-
iment. There are three files in this corpus: ned.train (13,221) for training,
ned.testa (2,305) for development and ned.testb (4,211) for testing. The size of
the tag sample space is 9.

POS NER
CRF 8,515,072 794

ECRN 3.3 1.3

Table 1: Training Time In Seconds

Tab. (1) lists the training time for CRF and ECRN on these two datasets. We
multiply the original training time output by CRF++ 0.57 by 8. This is because
it uses 8 threads to train the model parallelly. Our current implementation of
ECRN does not use multi-thread techniques. From these results we can see there
is no doubt that the local model (CRN) can radically reduce the training time,

1http://www.cnts.ua.ac.be/conll2002/ner/



especially when the tag space is large (252 for the POS tagging dataset). In the
remainder of the section, we evaluate the results in the aspect of accuracy.

2.1 Statistical Evaluation On Results

As described, the whole POS tagging dataset (34,623 sentences) is split into two
half parts: training part (17,311 sentences) and test part (17,312 sentences). To
obtain confidence intervals on the results, we further partition the test dataset
into 43 parts, and each part includes 400 sentences. We apply CRF and CRN to
each part to obtain accuracy on total, known and unknown words for each part.
Tab. (2) shows the 95% t-intervals of the total, known and unknown accuracy.

% Total Known Unknown
CRF 93.26± 0.30 95.25± 0.21 63.21± 2.05

ECRN 94.19± 0.26 96.36± 0.22 61.5± 1.94

Table 2: 95% t-interval Of Accuracy On POS Tagging

Total accuracy is calculated by #correct total words
#total words . Known accuracy is the ac-

curacy over known words2 which is calculated by #correct known words
#known words . Similarly,

we can calculate the accuracy over unknown words by #correct unknown words
#unknown words .

Total words cover both the known and unknown words.
The results show that on total and known accuracy, ECRN obtains com-

petitive (even a little better) results than CRF. But on the unknown words,
CRF performs significantly better than ECRN. In this implementation of ECRN,
smoothing and sophisticated techniques are not employed. And we we plug the
marginal distribution to the joint distribution, there is a mismatching problem.
We will address these in future.

The test dataset of NER has 4,211 sentences. Similar to POS tagging ex-
periment, we further partition the NER test dataset into 21 parts and each part
has 200 sentences. Tab. (3) shows the 95% t-intervals of F1, precision and recall
over these test parts.

% F1 Precision Recall
CRF 64.66± 3.61 71.31± 4.46 59.52± 3.41

ECRN 64.97± 2.60 80.15± 2.32 54.87± 2.96

Table 3: 95% t-interval On NER Dataset

F1 is a popular metric for evaluating NER results which is the harmonic mean
of precision and recall. In other words, F1 measures the overall performance
which considers both precision and recall. Precision is the number of correctly
predicted named entities divided by the number of predicted named entities. And
recall is the number of correctly predicted named entities divided by number of

2Know words are the words in the test dataset which have been seen in the training dataset.



total named entities. From Tab. (3), we can see that CRF and ECRN have
very close F1 scores. But on precision, ECRN performs significantly better than
CRF. On recall, in contrast CRF is much better than ECRN. These results are
consistent to POS tagging results. Normally, a model performs better on known
words, it may also obtain better results on precision. And there is a similar
relation between unknown accuracy and recall.

3 Conclusions And Future Work

In this paper, we compared the local models (e.g. CRNs) and the global models
(e.g. CRFs) theoretically and experimentally. We conclude that the local models
can be trained much faster than global models and also obtain competitive results
on overall performance (Total accuracy in POS tagging and F1 in NER). In
future, we will employ more sophisticated methods to train CRNs.
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