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Abstract

In this paper we investigate how a small number
of high-level concepts derived for video shots,
such asSports Face Indoor, etc., can be used
effectively for ad hoc search in video material.
We will answer the following questions: 1) Can
we automatically construct concept queries from
ordinary text queries? 2) What is the best way
to combine evidence from single concept detec-
tors into final search results? We evaluated algo-
rithms for automatic concept query formulation
using WordNet based concept extraction, and we
evaluated algorithms for fast, on-line combina-
tion of concepts. Experimental results on data
from the TREC Video 2005 workshop and 25
test users show the following. 1) Automatic
query formulation through WordNet based con-
cept extraction can achieve comparable results to
user created query concepts and 2) Combination
methods that take neighboring shots into account
outperform more simple combination methods.

I ntroduction

required detectors applies even for limited domains. The
most commonly used metaphor for this problem is to de-
fine an infinitesemantic spaceThe objective is to create
detectors for a certain set of concepts which should allow to
answer all possible queri@Naphadest al., 2005. Besides

the issue of selecting appropriate concepts for a particula
domain, another question is how to handle requests for con-
cepts which are not directly present in the set of available
concepts or require the usage of more then one concept.
For example, a user might search @ondoleezza Ridaeut

the search system only has the concéjatseandWomen
available. Due to the lack of knowledge about the structure
of thesemantic spagét is not an option to simply increase
the number of detectors up to the point where all requested
concepts are covered. Thus, some concepts have to be ex-
pressed as a combination of concepts for which detectors
exist. This problem has not been satisfactory addressed
yet[Snoeket al.,, 20063.

Users searching an image or video collection cannot be
expected to know the concepts that have been used in the
concept detection step. User queries usually either donsis
of a few keywords (e.g.Beach) or more elaborate natu-
ral language requests (e.dsind me pictures of a beach
with people). In the best case the query contains one or
more of the concept names and syntactic matching is suffi-

Bridging the semantic gap is a key problem in multime-cient, however often this will not be the case (for instance,
dia information retrievalSebe, 2008 This gap exists be- in TRECVID available concepts includ@utdoor, Water-
tween the well understood extraction methods of low levelscapeand Peoplebut not beach). Hence, the first task is
features from media files (e.g. color histograms or audiche extraction of the concepts underlying the queries. The
signals) and the high level concepts users express their imquery concepts and the concepts available for the collec-
formation needs with (e.gFind me pictures of a sunrie  tion are then matched and a ranking of relevant concepts is
This problem applies especially to video retrieval wherederived that shall resemble the information need expressed
the detection of the semantic concepts has become a ra the query as closely as possible . When viewing the rel-
search focus in recent yedfdaphade and Smith, 20D4 evant concepts analogously to relevant documents in the
This paper investigates the problem of identifying the-rele information retrieval setting, the quality of concept extr
vant concepts given the user’s text query, and it investigat tion can be evaluated with information retrieval methods.
how multiple concepts need to be combined to retrieve thén order to create relevance judgments we performed a user
best video shots on data from the TREC video (TRECVID)study and evaluated our automatic concept query formula-
search task of 2005. tion algorithms against the queries formulated by the users
The goal of the TRECVID search task is the retrieval This has the advantage that automatic query formulation
of video shots which are relevant to the user. We adopt thean be evaluated independently.
definition of a semantic concept from Snoek af 8hoeket In previous work[Aly et al, 2007, we evaluated ap-
al., 20061 where a concept is defined as something whichproaches to combing two concepts to form a new composite
must appear clearly in the static key frame of the videoconcept. In this paper we extend this work to the combina-
shot to return. Thus the expression does not cover concepti®n of more than two concepts. Prior to this we introduce
which are only represented in the audio content or morea framework of formulas which simplifies the process of
abstract concepts such\&erld Peace building new scoring formulas. Given the ranked list of
The generally used approach to detect concepts in videconcepts from our approaches above there is still the open
data is to train several so called detectors through pesitivquestion of which of those to choose for the actual combi-
and negative examples in order to recognize the appearanoation. We introduce a number of mechanisms to solve this
of a concept. The problem of how to determine the set otask.



The rest of this paper is organized as follows: In Sec- The MediaMill Group [Snoek et al, 20068 evalu-
tion 2 we briefly give an overview of related work. Sec- ated several ways of combinitgw-levelfeatures, namely
tion 3 describes the methods utilized for mapping usercolor-histograms and associated text generated by perform
gueries to a ranked list of concepts. In Section 4 the scorng ASR, into high-level concept detectors. Each strategy
ing of composite concepts is described, and ways to choods based on a vector of a number of low-level features. The
concepts from a ranked list are evaluated. The followingdetector relies on support vector machines (SYMjpik,
section describes the experiments performed to evaluate99d and is trained on designated training data in order to
to presented methods (Section 5). Finally, Section 6 conaccurately assign scores to shots from other data sources.

cludes and proposes future work. In their experiments, they investigated different types of
low-level features and their respective impacts: 1) video
2 Reated Work features only, 2) associated text only, 3) video featurés an

. . associated text (early fusion), 4) a combination of the out-
A lot of work on concept detection has been done in theyt of 1) and 2) (late fusion) and finally 5) a combination

context of the TRECVID WorkshojSmeatoret al, 2008.  of the output of methods 1)-4). For TRECVID 2005 they
The search task in TRECVID requires the participants toyained and evaluated 101 concept detectors on approxi-
return for each topic the first 12000 entries of a ranked |'5tmately 30,000 shots. On average method 1) was perform-
of shots. Each topic consists of a textual part and examplgyg the best on the TRECVID dataset. Hence textual fea-
multimedia material. Together with the main raw collec- yres were not particularly beneficial. The reason for this
tion the participants get the results of the high-level fea\yas not explicitly researched. It seems plausible that the
ture extraction task and speech transcripts from an Autogata was not suitable for speech recognition - because ASR
matic Speech Recognition System (ASR). We use the datgng machine translation from Chinese and Arabic speech
of TRECVID 2005 to evaluate our methods. introduced too much noise. The output of their set of con-
The query concept extraction process is aided by backeept detectors are rankings for the search data together wit
ground knowledge in the form of thesauri or more gen-the ground-truth and rankings on the test dataset that was
eral ontologies. These are hierarchical and associativgsed for the the high level feature extraction evaluatioa. W
structures usually created manually by experts that capyse the scores of the 101 concept detectors on the search

ture domain-independent or domain-dependentknowledgejata to verify our ideas and employ the results from the test
The most widely used knowledge base for the generayata to judge the quality of a detector.

domain today is WordNefFellbaum, 1998 a semantic
dictionary whose content expresses common-sense WOI’B .
knowledge which is also a popular knowledge source fo Concept Extraction
TRECVID participants. Wor_dNet is applied in two di- 31 \WordNet
rections: expansion of queries, documents and concept . ) )
descriptions and the determination of relatedness scoradordNet[Fellbaum, 199Bis an online lexical database de-
between concepts. IfKoskelaet al, 2006; Sjoberget ~ Veloped at Princeton University that was inspired by psy-
al., 2004 the given concepts were located in WordNet cholinguistic theories. It is continuously enlarged a}nel up
and the concept description was expanded by the concefated by human experts and as already been pointed out
names’ synonymous terms. The topics were then syntacan be viewed as a general domain knowledge base. Word-
tically matched against the concept descriptions. A mordVet's building blocks are sets of synonymous tefro-
general approach was adopted @ampbellet al., 2004, called synsets each representing one lexical concept that_
namely the Adapted Lesk algorithfBanerjee and Ped- are (_:onne_cted to each other through a range of semantic
ersen, 200R It also relies on the overlap between topic relat|onsh|ps. Relations between terms instead of synsets
text and the concept descriptions, but furthermore take§Xist as well but are not very frequent.
advantage of WordNet's graph structure and considers re- A small part of WordNet is shown as a graph in Figure 1:
lated concepts and their descriptions as well. Instead oihe synsets are represented by nodes and an edge exists be-
matching queries and concepts based on their descriptionveen two synsets if they are semantically related. A synset
their relatedness can also be measured directly on Word:an consist of several terms and each term is contained in
Net's graph structure[Snoeket al, 20063 link all pos- ™ Synsets withn being the number of senses the term has
sible query nouns and the concepts to entries in Word(identified by the sense numbe¥sy in Figure 1).
Net and determine their relatedness by applying Resnik’s Relationships exist only between synsets of the same
Information-based algorithriResnik, 1995 the related- word type, hence there are separate structures for nouns,
ness between two concepts equals the information contenerbs, adjectives and adverbs with nouns make up the
of their most specific common parent. largest fraction of WordNet. We restrict ourselves to a shor
Exploiting the relationship between concepts is relatedoverview of the relations that we utilized in our approach.

to the creation detectors for combined concepts. The ideln the following paragraphss; and s, represent synsets
behind the multi-concept relationships is to let the saprin andt; andt, represent terms.

rocess for a concept be influenced by the relationship with :
gther related conceF::Jts, for example ){he likelihood o? Ob_Hypernymy, hy_ponymy (nouns): b IS, a hype_rnymof
serving the conceBusdecreases when observing tsz- ands; is a hypon);mof t51 i Stl-s mr?anmg con]:
door setting with a high score. Rong Yéxan, 2006 give a'ﬂ.ssz s, e.9. {vessel, watercrajtis a hypernym o
a good overview of the available techniques to do this. The {ship}.
link to our proposed method is that the multi-concept rela-Hypernymy, troponymy (verbs): s; is ahypernymof s,
tionship approach tries to improve detectors by consider-  andss is atroponymof s, if s, is a certain manner of
ing the presence of related concepts and the presented ap- s; e.g.{walk} is a hypernym of stroll, sauntes.
proach creates new concepts. Thus both consider multiple
concepts. 1A term can be a single word, a compound or a phrase.



Holonymy, meronymy (nouns):s; is aholonymof s, and
so is ameronynof s; if sy is @ member of or part of
s1, €.9.{fleet is a holonym of{ ship}.

Sibling (nouns, verbs):s; and so are siblings if they
share a direct hypernym e.gship} and{yacht, rac-
ing yacht are siblings as they share the hypernym
{vessel, watercrajt

Entailment (verbs): s; entails s, if s; implies sy e.g.
{buy, purchasgentails{pay}.

Verb group (verbs): s; and sy belong to the sameerb
group if they have a similar meaning (manually
grouped by human experts)

Derivationally related form (nouns, verbs): the noun
has a derivationally related noun (or verb) form
if they are morphologically related and semantically
linked e.g. the noumachineand the noumachinist

head of state chief of state the chief pub-
lic representative of a country who may

also be the head of government chancellor
premier prime minister the person who is

head of state (in several countries) Prime
Minister PM premier the person who holds

the position of head of the government in

England president the chief executive of
a republic President of the United States
United States President President Chief
Executive the person who holds the of-

fice of head of state of the United States
government; "the President likes to jog

every morning” sovereign crowned head
monarch a nation’s ruler or head of state
usually by hereditary right

or the verbcookand the nourtook

Simi[ar to .(adjectives)'sl ands, are similar to each other Figure 2: A concept document for the concgpternment
if one is more general than the other e{gellow, yel-  |eader which was mapped to WordNetghead of state,
lowish, xanthousand{chromatig are similar. chief of staté synset. Hyponym-related synset glosses up

Furthermore, WordNet also provides glosses for allto @depth oft were added.
synsets, which consist of definitions or sentences that show
the synset's usage. Examples are here the gloss "a crafferformed - the document ranking corresponds to the con-
designed for water transportation” févessel, watercraft cept ranking.
and the gloss “of the color intermediate between green and ap example of a concept document is shown in Fig-

orange in the color spectrum; of something resembling there 2 it also demonstrates one of WordNet's drawbacks:
color of an egg yolk” for{yellow, yellowish, xanthogs WordNet is updated and altered by human experts, hence
: : inevitably there will be a bias in what concepts make it into
32 Extracting (?onceptsfrpm Queries WordNet and what concepts do not. While the Prime Min-
In order to determine the ranking of concepts that best degster of the United Kingdom and the President of the United

scribes a query, the relatedness scores between the cencegtates occur as concepts, the heads of almost all other coun-
and the query need to be determined. This can be done GRes cannot be found.

two levels: on the synset level or on the term level. A num-
ber of algorithms have been propogBanerjee and Peder- Using WordNet’s Graph Structure
sen, 2002; Patwardhan and Pedersen, 2006; Resnik, 1995etermining the semantic relatedness scores requires a
Jiang and Conrath, 1997; Lin, 1998; Lea, 1998; Wu andchumber of preprocessing steps as depicted in Figure 3. First
Palmer, 1994that differ in what part of WordNet they uti- of all, the word types of the query terms need to be found
lize - glosses, synset terms and various relationship typesith a part-of-speech (POS) tagger. Since most terms have
with different weighting schemes. In the next two sec-more than one sense their meaning in this particular context
tions, the approaches chosen for our experiments are exeeds to be determined. This step is called word sense dis-
plained in greater detail. First, a term-level gloss-base@mbiguation (WSD) and can also utilize WordNet. In the
approach is presented, then three synset-level graphi-bassimplest case the most common sense (which is provided
approaches are introduced. In both cases, it is assumed that WordNet) is chosen.
the concepts have been (manually) linked to the correct cor- Having located the query terms’ corresponding Word-
responding synsets in WordNet. Net synsets makes it possible to use graph theoretic mea-
surements to determine the semantic relatedness between

Using Wor dNet's glosses t?e qguery concepts and the given concepts. A very sim-

This app_roach does not require extensive preprocessmgo% e measure is the hierarchical shortest path measurement
the queries as the graph-based approaches do. Furthermare

it is not restricted by word types: if a query noun is found relys(s1, s7): how many hypernymy/hyponymy eddes

, I f bf le th b tis lfﬁ” of the WordNet graph need at least to be traversed
In & gloss ot a verb Tor example, th€ Verb Conceptis 0eemeg, o 5qh 5 synset, from synsets;? There are problems

likely to be relevant. Graph-based approaches on the Oth?ﬁough, as WordNet is a small-world netwdSigman and

hand usually cannot cross part-of-speech boundaries. Tr@ecchi, 200P, hence within the connected part of the graph

gloss of a concept's synset as well as the glosses of %o nodes can always be reached within a few steps. An-

lated synsets are used to createoacept documentThe gther issue is that at the synsets close the root node aee quit
type of relations used, the maximum depth and the glosse?‘jissimilar from each other (e.gfobject, physical objegt

weightings are freely settable parameters. A_deptl@ of is a direct hypernym of empice}) whereas deep in the
{Eeans thai ((j)nly the %IOSS OE{W%S?/ZSEttﬁSGg. IS added t ierarchy they tend to be very similar (e.dcab, hack,

€ concept document, a deptnianciudes e Airectly ré- - 5, taxical} is a direct hypernym of minicab}). For
lated synsets as well, etc. Possible weighting schemes in-
clude uniform weighting of every gloss and linear weight- 2t o1y the hypernymy/hyponymy relationship is utilized,
ing, which linearly decreases the weight of the glosses théhe noun graph becomes hierarchical and the measures are oft
larger the depth. The concept documents are then treated aslled semantic similarityinstead of the more generaémantic
a document collection and keyword-based text retrieval igelatednessvhich considers all types of relationships.



device#1 vessel#2, watercraft#2 ‘
hyponym Mnym

restraint#6, constraint#2 ‘

khyponym

sea anchor#l, drogue#3 ‘

automobile#1 ‘

ship#1 hyponym

meronym holonym | instance of sibling

fleet#3 Bounty#4, H.M.S. Bounty#1

yacht#1, racing yacht#1

Figure 1: A part of WordNet's noun graph

these reasons, measurements usually prohibit edge walks )

along certain relationship typdsiir, 1998, they include x(c,s;) = scores; usingc 3)
information about WordNet's deptliLea, 1998; Wu and P(C, s5) scores; usingC' (4)
Palmer, 199%o0r exploit information drawn from analysing o

large corporalResnik, 1995: Jiang and Conrath, 1997;X Functions:

Lin, 1994. An overview of five WordNet-based related- r(c,s;) = original score (5)
ness measurements and their performances is gi@uin
danitsky and Hirst, 2046 factor(c,s;) = log(r(c, s;)) 6)
[Lea, 1998 determine the relatedness score of two S S — (e s5)
i=j—nh
synsets also solely based on the hypernymy/hyponymy re- smooth(c,s;) = Zj+nh 5(li— | ()
lationship. In contrast teelys, the number of edges be- i=j—nn 0(7 = J])
tweens; and s, is scaled by the maximum depth of the weighted(c,s;) = ap(c)-r(c,s;) (8)
WordNet hierarchy. o .
Combination Functions:
len(sy, s2) 3 (c,s;)
= — ? c CX C? S]
relzo(si, s2) log 2x  maz  [depth(s)] @ sum(x, C,s5) = ﬂT ©)
seWordNet
_ Gl Y(C\esy) o
[Wu and Palmer, 1994exploit not the global depth of sumC(x, ¥, C,sj) = Z x(c, Sj)w( )
WordNet but instead the depth of tlevest super-ordinate ceC
(Iso) of the two synsets, that is the most specific synset that
subsumes both synsets (e.g. the lowest super-ordinate for Figure 4: Basic Functions

{ship} and{yacht, racing yacht is their common hyper-
nym {vessel, watercraf). Letz = lso(s1,s2), then the

relatedness is given by 4.1 Basic Operationsfor Ranking Functions
9 % denth We refined the list of scoring functions and extended them
relyp(s1, 82) = x depth(z)) to handle more then two base concept detectors. Formally

len(s1,z) +len(sz, 2) +2 X depth(z)  their task is to calculate the score for a shpbased on the
(2)  detectors of a set of concefgts We identified two different
classes of basic operations: 1) functions which only use one
4 Concept Combination for Search concepte for their score calculatioy and 2) combination
functions which operate on a set of concepts
This section studies the possibilities to combine multi- r(c, s;) (5) simply returns the score of the shotas cal-
ple concepts in video retrieval. Our previous studies reculated by the detector for conceptinstead of introducing
vealed that the combination of two concepts improves pera combination function that sums the scores of two con-
formance. We believe the extension to multiple concepts igept ranking functions, and another that multiplies them,
beneficial because many concepts stand in a inhtgads  we define a functiorfactor(c, s;) (6). Summed logarith-
directly torelationship to others. For example, the correctmic scores produce the same ordering of shots as multiplied
detection of the concepacedirectly leads to the presence original scores. Using the functigiactor is beneficial due
of the the conceperson Thus, if searching foA person  to less numerical precision loss in case of a multiplication
in the streethe search for the conce®srson Face Street Another reason is to keep the set of combination operations
Outdoorwill be beneficial in case we have a goéaceand  small.
Outdoordetector. This, of course, assumes that persons are The functionsmooth (7) assumes that it is more likely
mainly shown with their face into the camera and that allthat a concept appears in the shat; if it also appears in
streets are outdoor. previous or following shots. Similar approaches have been
The rest of this section proceeds as follows: first the bainvestigated using the text from automatic speech recogni-
sic operations used are introduced (Section 4.1), followedion associated with shof$lauptmanret al, 2004. We
by an overview of the new ranking formulas tested (Sec-define the surrounding neighborhood as a fixed numher
tion 4.2). In Section 4.3 methods on how to identify the of shots before and after the actual shpthat contribute
concepts to use in a query, given the list of concepts seto the score of;. We expect that shots which are further
lected by the concept extraction approach presented in th@wvay froms; to rank, to have less influence on the likeli-
previous section. hood of the presence of concept We model this fact in



| Stanford NLP Taggerl | Most Frequent Sensel | Adapted Lesk | | Shortest Palhl | Leacock & Chodorow
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NLP Query —» POS Tagger WSD SR Measurement$-® Concepts

Figure 3: Converting queries to concepts.

4.2 Ranking With Combined Concepts

add(C,s;) = sum(r,C,s;) (11) ) ]
bw(C,s;) = sum(weighted,C, s,) (12) Based on these basic operations we extended methods we
» o P already studied ifAly et al, 2007 for the use of two con-
mult(C,s;) = exp(sum(factor,C, s;) (13)  cepts. The functiondd(C, s,) (11) is a simple summation
n(C,s;) = sumC(r,sum(smooth),C,s;)(14)  of the base scores. The derived version(C, s;) (12)
Plog = log(sum(smooth)) (15) Welghts the summands by their AP in the test set. In the
function mult(C, s;) (13) first the sum of the logarithms
Viogs = log(sum(smooth)) (16) " out of each base score is calculated. At the end& )
nm(C,s;) = exp(sumC(factor,iog, C,5;)017)  function is applied to get the scores again in the interval
nw(C,s;) = sum(weighted,Piogs, Cys;) (18)  [0..1].
sa(C,s;) = sum(smooth,C,s,) (19) The Neighbor functiom(C, s;) (14) considers all base
scores multiplied with the average of the smoothed scores
sm(C, s) exp(sum(Yiog, C, ;) (20)  ofthe other conceptsim(C, s;) (17) is an extension of the
mult function which is weighting the individual scores by
Figure 5: Concrete Functions thelog() of averaged smoothed scores of other concepts.

As described above it is the case that some concept de-
tectors are less precise then others. Therefore we create
versions of then function, namelynw(C, s;) (18) which

a weighting functions which takes the absolute distance additionally weights the score of the individual scoring

[0...nh] of a shot as an argument and returns a weight irfunction by the AP of the detector in the test data.

the interval[0...1] to weight the score of the shot. We A new class of scoring functions are the functions which

define the smooth function as follows: only operate on smoothed values. The(C,s;) (19)
takes the average of all smoothed scores. The function

Let o(x) be a function of the distance from the shot ., s.) (20) does the equivalent but with the described
that determines the influence of the neighboring shotsmethod'to effectively multiply summands.

We created three alternatives for The first version

Sconstant(r) = 1 weights all shots uniformly. This will 43 sdection of Concepts

serve as a base line. The functi®p,cq,(z) = 1 — #ﬂ _ o _
lowers the weight of a shot linearly in its distancesto ~ The input for the concept combination algorithms are or-
The furthest shots on both sides will still have a small posdered lists of concepts. The problem now is what con-

itive weight. The versiod,,,(z) = —exp(—x) lowers the ~ CEPLS tO employ during the ranking. The most obvious is
weight of shots in an exponential fashion. of course to combine the whole list of concepts. However

there are a lot of concepts which were only chosen once or
As ranking functions differ in their precision of detecting have very little effect on the search performance. Out con-
their base conceptSnoeket al, 20060 we created a pos- cept extraction method could return all available avadabl
sibility to weight their outputweighted(c, s;) (8) weights  concepts, in which case some of them will definitely have
the outcome of the ranking function for concepby the  negative impact for search performance. To overcome this
average precisionp(c) achieved for this concept on the problem we use a Top-N approach to only select thesfirst
test dataset. concepts of a list.

We identified two basic combination methods. The first, .
sum(x,C, s;) (9) takes asy a function which should be 9 Evaluation
executed for each particular concept.is the set of con- :
cepts which it should perform the function for. It then sumsS'l Concept Extraction
up the results from execution gf on each concept from Not every concept could be attached to exactly one synset
C. To keep the scores withif..1] it divides the result in WordNet, some concepts were linked to several synsets.
from the sum by the number of concepts. The functionThe concepnatural disasterfor instance does not occur
sumC(x,,C,s;) (10) allows each summand to be cal- as such in WordNet 2.1 but instead was represented by the
culated from two parts: A score from a function using thesynsetqflood, inundation, deluge, alluvign{earthquake,
current concept on the shot (Clagsand a function which ~ temblor, seisrh, {storm, violent storrh and {volcanisn}.
operates on all other concepts in the set passed to the funé&nother problem arose for several person concepts like
tion ¢. In order to assure range intervals the output of thisA. Sharonor E. Lahoudwhich have no representation in
function is divided by the number of concepts the calcula-\WordNet. In those cases, the concepts were added to Word-
tion is build on. The rational is that the score for a conceptNet as instances of an appropriate synset sudlinaad of
on a certain shot could be influenced by the performance dodtate, chief of stateand their gloss consists of the concept
other ranking functions. name alone.



[Run [ Depth| MAP | P@5 | [Run [ MAP [ P@5 |

uniform/sibling 0 0.268] 0.246 relgs | 0.370] 0.217
uniform/noSibling| 4 0.296| 0.225 relrc | 0.366| 0.217
linear/sibling 4 0.286| 0.200 relwy | 0.345] 0.200
linear/noSibling | 4 0.297]| 0.225

Table 2: Results for the graph-based approaches.
Table 1: Results for the gloss-based approach. 4 types of

runs were performed with varying depth: uniform weight-

ing with siblings, uniform weighting without siblings, kn Graph-Baged Approaches )
ear weighting with siblings and linear weighting without POS tagging the queries was performed with the Stanford
siblings. The best performing run for each type in terms ofNLP Tagget. The relatedness measuresy s, relzc and

P@5 is shown together with its depth parameter. relyy introduced in Section 3.2 were investigated in two
variants: 1) word sense disambiguation of the query con-

cepts was reduced to choosing the most common sense
and 2) the query termg were tested with all their senses
Golden Standard against the concepts and the maximum relatedness score

In order to evaluate the different concept extraction algo\Vas returned:

rithms separately from the concept combination part, we oo s.) — I _ 21
developed a@jolden standardor the TRECVID 2005 top- rel(a, s;) g?eqsf[re (ks 5)]- (21)
ics. 25 users were given the topics and asked to return those .
concepts of the 01 available concepts that best describe. The differences between 1) and 2) proved to be small,

the information need expressed in the topics. No restricl Table 5.1 the results of the most common sense ap-

tion was given on the number of concepts the users coulBroaCh are presented. Whild AP cc_)nS|derany INCreases
choose. On average users ch6$¥ concepts per topic. Gver the gloss-based approadt@l5 is harmed. Thus, for

The spread between the users was quite large: the Ioweg}?q;;SE(%\geDszggg.:]O%'gsthgsc'ggczmé t.geth%I%S;;SaOf :ggch
average wad.42, the maximum average wad$.67. Fur- Y ponding pist PP

thermore, for many topics the agreement between the usefd"ony all tested ones.

was surprisingly low.11 of the 25 topics had more than : Sear

20 different concepts returned at least once. We derive(?'2 Combined F:on_cept ch

a concept ranking for each topic from this survey by con-Most of our combinations methods depend ongheoth
sidering all concepts of a topic that more tH#¥ of the ~ method. There are two free parameters which will affect
participants had chosen and ranked them accordingly. Th&e performance: The degrading functiband the size of
average number of concepts per topic was reddcadhe the neighborhoodh. We first evaluate the best parameter
minimum number of concepts B (for topics 155, 157, Setting performance in order to justify which of the combi-
164, 166, 170) and the maximum number7igfor topic nations to employ in the later combination. First we evalu-
159). As mentioned before, viewing the relevant conceptéted whichs function was the best. We did this by taking
as relevant documents in the information retrieval settingthe average AP of the first top-n concepts for each query
allows us to evaluate our approaches with information reWith this 5. We did this for top-n following{2, 4,6, 8}.
trieval performance measures, namely mean average predihe results are shown in Table 3 (a).

sion (MAP) and precision at 5 documents (P@5). dconst performs for all top-n values best, thus it is used
to evaluate the variations af:. Results with othe§ func-
Gloss-Based Approach tions are not shown due to space limitations but did not

yield other conclusion. Table 3 (b) shows the MAPs of the

r and thesmooth function with é..,,,s; for nh € {2,5, 8}.

We stopped abh = 8 because it was the first drop in the

MAP. As we deem it to be realistic that this will not im-
rove with highernh we limit ourselves to this sample. The
ettingnh = 2 is always worse than the other results. The

For the gloss-based conversion, we utilized igponymy
meronymy entailment sibling, verb group derivationally
related formandsimilar to relationships described in Sec-
tion 3.1. The depth was varied betweg@mand5 and the
uniform and linear weighting schemes were tested. Finall

due to the large volume of siblings for a humber of Con'settingnh — 5 improves MAP compared to by 24% in
cepts we also considered the influence they have and ruz;rl\/erage Withuh, — 8 the improvement s a bit lower with
the algorithms with and without the inclusion of this par- 18%. This brings us to the conclusion that we use for our

ticular relationship. For the retrieval experiments we em- L : : .
ployed the Lemur Toolkit for Information Retrieval The goinglnatlc;r;l;i%ctLOQSmooth with the parameter setting
cons - .

?;rﬁ%ryee dnts-r?,gd|é?1pﬁ: vg/er:]eogtee"rgmgd ?ggcﬂwmoﬁ‘?i%’éir_e After evaluation of thesmooth method we use the best
: janguag 9 app settings to test the concept combination methods. We eval-
Mercer smoothing was used for retrieval purposes. We re

port the_ results in Table 1. Since the concept combinatio%
step relies ontthetTop-N ranrhed cl\(;lrkc;pts, P@5was deem%@ncepts was tested in a range fr@ng. It turned out that
amore important measure than : _ ) Top-2 showed the best MAPs. Table 4 shows the results of
Surprisingly, using the synset glosses without adding rethese experiments. Thieear / sibling d=4performed sur-
lated concepts performs best for P@5. The sibling relationisingly similar but a bit stabler than the Golden Standard
ship hurts the performance across all runs tested except fdthe other gloss based methods were always were in terms
one. The weighting scheme does not have a large influencg map. The graph based concept extraction methods re-
on the results. sult in very poor performance for all combination methods.

uated them against the Golden Standard and our concept
traction methods. The paramelérthe Top/V extracted

3http://www.lemurproject.org/ “http://nip.stanford.edu/software/tagger.shtml



[ op-N]| dconst | Otin | Jeap | | top-n | r| nh=2] nh=5] nh=8]
0.0190| 0.0182| 0.0156 0.0173] 0.0114| 0.0233]| 0.0223
0.0175] 0.0168] 0.0144 0.0175] 0.0119| 0.0209]| 0.0196
0.0165| 0.0160| 0.0138 0.0163| 0.0113| 0.0197| 0.0186
0.0161| 0.0156| 0.0135 0.0156| 0.0110| 0.0191] 0.0181

0| O B[N
0| O B[N

0 functions, averaged over all neighborhoodsmooth with §.,,s; and differentahs against base score

(@) (b)

Table 3: Evaluation of smoothing parameters on MAP
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| Top2 of | add | cbw | mult | n | nm | nw | sa | sm |
Golden Standard 0.0715] 0.0615| 0.0801 | 0.0588] 0.0801 0.053 | 0.0621 | 0.0719
uniform / sibling d=4| 0.0525]| 0.0564| 0.0548| 0.0553| 0.0548| 0.055| 0.051| 0.0566
linear / noSibling d=4| 0.0515| 0.0541| 0.053| 0.0567| 0.053| 0.0556| 0.0481| 0.0465
linear / sibling d=4| 0.0736 | 0.0741 | 0.0754| 0.0713 | 0.0754| 0.0710 | 0.0606| 0.064
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| Average:| 0.0494] 0.0493] 0.0498 | 0.0481] 0.0495] 0.047] 0.0456] 0.0443]
Golden Standard TopB 0.0600] 0.0372] 0.0593] 0.0464] 0.0593] 0.0266] 0.0408] 0.0681 |

Table 4: MAP values for each Concept Extraction and Comtnatlethod.bold: best for this combination method.
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