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Abstract. We describe a novel and flexible method that translates free-
text queries to structured queries for filling out web forms. This can ben-
efit searching in web databases which only allow access to their informa-
tion through complex web forms. We introduce boosting and discounting
heuristics, and use the constraints imposed by a web form to find a so-
lution both efficiently and effectively. Our method is more efficient and
shows improved performance over a baseline system.

1 Introduction

Many web pages contain structured information that cannot be indexed by gen-
eral web search engines like Bing or Google [4]. Web search engines use crawlers
to follow hyperlinks and download web pages in order to index these pages,
which enables fast keyword search. This crawler architecture has three draw-
backs [1, 15]. First, a large part of the web cannot be crawled by simply following
hyperlinks. Many pages are hidden behind web forms which cannot be automat-
ically filled out by a crawler. Second, the indices of crawler-based search engines
are only a snapshot of the state of the web. Pages containing real-time or highly
dynamic information like traffic information or stock information are outdated
as soon as they are indexed. Third, most of this information resides in structured
databases that allow structured queries, a powerful means of searching. In con-
trast, putting this information in indices of crawler-based search engines would
only allow unstructured keyword queries, a less powerful means of searching.
In this work we alleviate these problems by providing a single free-text search
box to search multiple websites through complex web forms. We address the
problem of translating a free-text query into a structured query, i.e., key-value
pairs accepted by web forms. For instance, the free-text query “acer travelmate at
least 4gb” could be mapped to the fields ‘brand’, ‘model’ and ‘minimum memory’
of a shopping website. As results, our system would return forms containing such
fields, filled out and ready to be submitted. Note that in order to return results,
the system does not need to crawl the web pages behind the forms, it just needs
to know how to fill out the form given the free-text query. The problem can
be decomposed into a segmentation problem of cutting up the free-text query
into parts (segments); and a labeling problem of actually assigning each segment
to the right input field. Our work extends existing segmentation & labeling
methods based on HMMs (Hidden Markov Models) [16]. Segmenting is based
on whitespace and punctuation characters, and subsequent labeling is based



on a probabilistic model. Our contributions are as follows. We propose a novel
method that incorporates constraint information (see Sect. 3) and segments,
labels, and normalizes queries; thereby deriving structured queries. We show
that it is beneficial to apply boosting and discounting heuristics; that our method
can be applied to a multi-domain, multi-site per domain setting; and, that our
method outperforms a well known baseline. Paper outline: In Sect. 2, we discuss
and compare related work to this work. We then formalize the problem and
describe our framework in Sects. 3 and 4. We describe our data in Sect. 5, and
our evaluations in Sect. 6. Finally, we round up with our conclusions in Sect. 7.

2 Related Work

Correct query segmentation in web IR can substantially improve retrieval
results, e.g., grouping ‘new’ and ‘york’ as ‘new york’ can make a big difference.
Li et al. [14] argue that supervised methods require expensive labeled data and
propose an unsupervised segmentation model that can be trained on click log
data. Hagen et al. [7] show that their segmentation algorithm, which uses only
raw web n-gram frequencies and Wikipedia titles, is faster than state-of-the-art
techniques while having comparable segmentation accuracy. Lastly, Yu and Shi
[19] train a CRF (Conditional Random Field [12]) with tokens from a database.
They first predict labels for each word in the query, and then segment at each
start (S-) label. For example, given the query Green Mile Tom Hanks and the
predicted labels {[S-MOVIE],[R-MOVIE],[S-ACTORJ,[R-ACTOR]}, it is segmented
as “Green Mile” and “Tom Hanks”.

Query segmentation & labeling. The previous example illustrates that CRF's
can both indicate segment offsets (e.g., with start/rest labels) and assign entire
segments to fields (e.g., ACTOR or MOVIE). However, CRFs need a lot of
expensive (manually labeled) training data. To avoid the high costs of manually
labeled data, Li et al. [13] used two data sources to train CRFs: a pool of 19K
queries labeled by human annotators; and a pool of 70K queries, automatically
generated by matching entries from click logs with information from a product
listings database. However, the generated queries did not contain all possible
labels. Still, the highest performance was obtained when combining the evidence
of both sources. In contrast, Kiseleva et al. [10] train multiple CRF's solely on
click log data. But unlike manually labeled data, click log data suffers from noise
and sparsity. In a follow-up study [11], they did use some manual data (brand
synonyms and abbreviations) and artificially expanded their training set aiming
to reduce data sparsity. Sarkas et al. [17] propose an unsupervised approach
to segment & label web queries. They train an open language model (LM) on
tokens derived from a general web log, and attribute LMs on tokens from the
structured data residing in tables. They score results using a generative model of
the probability of choosing: a set of attributes T..4 from table T, a set of tokens
AT given T.A, and a set of free tokens F7T given the table T. Further, they
decide whether a query is intended as a web keyword query, or as a structured
search query. DATAMOLD, by Borkar et al. [3], uses nested HMMSs to segment &



label short unformatted text into structured records. They modify the Viterbi
algorithm [6] to include semantic constraints, restricting it from exploring invalid
paths. Since this violates the independence assumption, they re-evaluate a path
when some state transition is disallowed by the constraints. Zhang and Clark [20]
describe a framework that uses the averaged perceptron algorithm for training
and a beam search algorithm (which is essentially, a stack decoder with a small
stack) for decoding, and apply it to various syntactic processing tasks, like joint
segmentation and POS-tagging. Our approach differs from these approaches in
that it uses a stack decoder [2] and incorporates constraint information to prune,
boost and discount; it is not purely probabilistic and works without training; and
while it does not require, it can benefit from training.

Conclusion. Probabilistic methods like HMMs or CRF's outperform other meth-
ods for segmentation & labeling, but require large amounts of expensive training
data, while fully unsupervised methods suffer from noisy training data. As a gen-
eral remark, there is no agreed upon test collection to compare these methods,
which makes it hard to determine the best method. That is, if such a conclusion
can be made at all, since each method was developed for very specific use cases.

3 Problem Description and Approach

Our query translation problem can be formalized as:

Given a web form and a free-text query, find the intended values and assign the
values to their intended fields, under the constraints imposed by the web form.

A web form has input fields, it only accepts queries as structured information
needs consisting of a set of field-value assignments, e.g., F;=v;, fori =1...n;
and, a free-text query is an unstructured sequence of characters describing an
intended structured information need. Next, we describe the types of contraints,
how they can aid free-text to structured query translation, and our approach.

3.1 Hard Constraints

Web forms impose constraints that only allow certain combinations of fields and
values. Queries satisfying these constraints are valid. Otherwise, they are invalid.
Mandatory fields. A web form may require certain fields to be filled out before
it can be submitted. For example, it may require either the make field, or both
the min and max price fields to be filled out before it can be submitted. Formally,
mandatory field constraints are propositions of the form: (F;) V (F; AFy) V...,
stating that at least one set of fields must be present in the query.

Conditional fields. While a field may not be mandatory, it may be required
if some other field is used. For example, consider a query that contains the text
5 miles near, which states a radius (near some place). A web form with fields
radius and place, may require that if you fill out radius, you must also fill out
place. Formally, assertive conditional constraints are implications of the form:
F; — F}, stating that if some field F; is present, then so must Fj. Negative



conditional constraints are implications of the form: F; — —Fj}, stating that if
some field F; is present, then F; may and must not also be present.

Field frequency. We refer to fields that allow only one value as single-valued
fields and to fields that allow more values as multi-valued fields. Frequency con-
straints state that if a field is single-valued, it can be used at most once.
Categories. A category defines a set of values. For example, the category base
color defines ‘red’, ‘green’ and ‘blue’ as values, while year could define numbers
between 1970 and 2015 as values. Closed categories have a limited set of values,
which are typically stored in a dictionary. Open categories have a limitless set of
values, such as the set of real numbers. These are typically modeled by regular
expressions. An input field will only accept values of one specific category.
Dependencies. The values allowed for one field may depend on the value of
another. For example, if a make field has value Ford, then model may have Fiesta,
but not Laguna. Formally, dependency constraints are implications of the form:
F; NF; — f(M(F;),A(Fj)) , stating that if two dependent fields F; and F; are
used, then the function f applied on their values A(F;) and A(F;) must be true.
Here, f can be any function that takes two values as input and returns a boolean.

3.2 Soft Constraints

Soft constraints indicate which filled out form is more likely, given a valid query.
Patterns. A pattern determines when to assign values to a particular field
by detecting field-specific hints that appear just before or after the values of
a field’s expected category. Formally, a pattern is defined as a 4-tuple {field
name, prefixes, category, postfixes}. Prefixes and postfixes denote a set of words
which may be empty. For example, consider the query to New York from Dallas
and assume that New York and Dallas are values of the category city, which
can be assigned to the fields: departure or destination. Then, a pattern for the
destination field could for example be: {destination, [to], city, []}.

Field order. Ideally, when a query contains a hint for some field F, followed
by a value v of the category expected by F', then by all means, assign v to F.
In practice however, queries may just contain values, like the query New York
Dallas. The system would benefit from knowing that a particular field order is
more likely than another, e.g., that P(departure, destination) > P(destination,
departure). We make the Markov assumption and model the probability of a
sequence of fields as: P(Fy, Fy, ..., F,) =[], P(F;|Fi—2, Fi_1) .

3.3 Approach

Our approach consists of three steps: a) segmenting, i.e., splitting the free-text
query into smaller segments ready to be assigned to some field—a segment is a
subsequence of the characters of the free-text query. At each character position in
the query, we search for known values which are defined by a regular expression
or are contained in a dictionary. Our dictionary is based on a Bursttrie [8], but
is modified to tolerate spelling errors as long as the first few characters of the
search string are error free, and return search completions even if the string



being completed has a spelling error. Whenever a value is found, it is added
to the segment in which it was found. This process yields a set of segments,
each segment containing a list of values, e.g., the segment ‘red’ can contain the
values ‘4’ (a color), and ‘red hat’ (an operating system name); b) labeling,
i.e., indicating what to do with a segment value. A label assigned to a segment
indicates one of three roles, namely that the segment contains: 1) a value v that
will be assigned to some field F’; 2) a field name, hinting that the value of an
adjacent segment must be assigned to F'; or, 3) no useful information. During this
process, we also determine an actual segmentation. A segmentation denotes a list
of segments such that the whole query can be reconstructed by concatenating
each segment from the list. This also implies that the chosen segments may not
overlap each other. In Section 4, we discuss how we apply our stack decoder
for this labeling task; and ¢) normalizing, i.e., (slightly) rewriting the field
value into a format accepted by the form, if necessary. A field has a format in
which a value must be specified. For example, a field may require that a time
be entered as hh:mm, i.e., two digits for the hour, a colon, and two digits for the
minutes. If the query contains a time as ten to five am, it should be normalized to
04:50. For normalizing dates and times, we created a separate function. Other
normalizations, like when the color red actualy has a value 4, or when a word is
misspelt, are dealt with using a dictionary.

4 Stack Decoding

Given a free-text query, we first segment it into a set of segments, each segment
containing a list of values. Next, we initialize a sorted stack with an empty path.
A path has a score and a list of labeled segments. We then iteratively decode
the query as follows: 1) remove the best path from the stack; 2) look up all
segments S that follow immediately after the last segment in the path; 3) for
each value in each segment s € S, determine the possible labels and label the
segment; 4) for each labeled segment, create a new path and add it to the stack.
The process iteratively extends partial paths to become complete paths. When a
path is complete, it is removed from the stack and stored as a result for further
processing. The decoding stops when the stack is empty, or when some stopping
criterion is met (e.g., some max decoding time ¢ has elapsed).

Scoring. A path’s score is based on the field values, and on the field order which
was discussed in Section 3.2. The score of a value v from some closed category
C is initially modeled as a uniform probability of ﬁ for observing v. The score
of a numeric value from an open category is determined heuristically: based
on the number of digits, it diminishes quadratically such that a 4-digit value
gets the highest score, then 3-digit and 5-digit values, and so on. An important
issue in stack decoders is the comparability of partial paths [2, 20]. We lower
a partial path’s score by the number of characters that must yet be processed.
This basically estimates for any partial path what the score would be if the whole
query was processed. Note that lowering the score too much causes the decoder
to proceed in a depth-first search manner instead of best-first search manner.



Pruning. With enough time and memory resources, we could theoretically ex-
amine all possible paths, including invalid ones. In practice however, we have
little time and resources and need to reduce the time spent on processing in-
valid paths. Therefore, we prune partial paths that violate the dependency, field
frequency, or negative conditional constraints defined in Section 3.1.

Boosting & discounting. The speed of a stack decoder depend on it repeatedly
choosing and expanding the best partial path until it finds the best complete
path. The choice is based on fields and values seen so far, without regard for
possible further fields and values. This is not always desirable. For example,
consider the query BMW 2000 euro and a form with three fields: make, year
and price. The segment ‘BMW’ is labeled as make and we must now label the
segment ‘2000’. If we only considered segments up to and including ‘2000’, then
both labels year and price would seem fine. However, if we would have looked
ahead when labeling ‘2000 as year, we would have known that this label is not
likely, therefore we would have lowered the position of this path in the stack.
The process of looking ahead and deciding to raise or lower a path’s position in
the stack is referred to as boosting or discounting, respectively. We can rank the
complete paths by their original scores or by the boosted & discounted scores.

5 Data used for Evaluation

Our aim was to obtain realistic queries under three conditions: a) multi-domain
search environment. Participants should be able to search in different domains,
like travel planning or second hand cars, and get real-time query suggestions; b)
multi-site domains. Each domain should have different sites that may or may
not offer the same search functionality. For example, in travel planning, one site
might offer bus travel results, while other sites offer train or flight results; and,
¢) minimal query bias. Participants should not be persuaded to any kind of
information need nor to any structure in which the they can phrase a query.

5.1 Data Acquisition

We setup an online search system covering 3 multi-site domains, and instructed
the participants that they could search these domains. We briefly describe the
domains and instructions for the participants. The travel planning domain has
3 sites, each providing either bus, train, or flight travel information. Instruction:
Find travel advice (for example, a traintrip to someone you know) and rate the
result. The second hand cars domain has 5 sites, each having a web form with
fields for at least minimum price, maximum price, make, and model. Instruction:
Find cars with specific characteristics (for example, find cars with characteris-
tics like your own car or a car of someone you know) and rate the result. The
currency exchange domain has 3 sites, each with a form that has three input
fields (from currency, to currency, and amount). Instruction: Find the exchange
rate (of currencies of your choice) and rate the result.

Participants started with a training session in which they could issue multiple
queries in each of the three domains. Whenever a result was clicked on, a box



appeared asking to rate the result as either: ‘completely wrong’, ‘iffy’, or ‘com-
pletely right’. After rating a result, the system prompted for the next domain.
It is natural to rephrase the query if a system returns no or unsatisfying results.
However, if a participant believed that the query could have been answered
corectly by the system, he/she could indicate this and optionally describe what
kind of results should have been returned. During the training session, partici-
pants got acquainted with the system and discovered the search functionality by
themselves. After introducing all domains, the participant was asked to conduct
10 different searches and rate at least one result of each search request. As an
incentive to continue with the experiment, a score was shown based on, amongst
others: the number of queries issued, the number of results rated, and the search
functionality' discovered so far. Participants could quit whenever they wanted.

5.2 Manual Analysis and Labeling

We manually analysed all submitted queries and specified which forms could
return relevant results and how the forms should be filled out. For each form, we
compiled a testcorpus specifying the set of field-value assignments for the queries
that make sense to the web form. We then measured how much our judgments
agreed with those of the participants using the overlap between our manually
assigned query-result pairs and those of the participants. Overlap is defined as
the size of the intersection of the sets of relevant results divided by the size of
their union, and has been used by several studies for quantifying the agreement
among different annotators [18, 9, 5. We needed to compile the testcorpora
ourselves because: first, participants did not (and were not expected to) find
and label all correct results. Second, the system may not have returned any
correct results, making it impossible for participants to label all correct results.

5.3 Data Obtained

In total, 47 participants interacted with the system and 23 opted to state their
age and gender, resulting in 17 males (age: 19-81, avg. 39) and 6 females (age:
25-41, avg. 30). We analyzed 363 queries, but nearly half were invalid, either
missing mandatory fields or asking information that was out of scope. Examples
of invalid queries are: to Amsterdam; how long is the Golden Gate bridge; kg
to pound; and, for sale: 15 year old mercedes. In total, we labeled 194 valid
queries containing enough information to fill out a form in our experiment. When
multiple forms could be filled out for a given query, we chose the ones in which
we could specify most key-value pairs of the query. A summary of the results for
the travel planning, currency exchange, and second hand cars domains is shown
in Table 1. The rows ‘A’ to ‘K’ each correspond to a form in the specified domain
and shows: @): the number of queries submitted in that form; Maz: the maximum
number of different ways to fill out that form for a single query; Avg: the average

! Search functionality here means the number of different fields in all clicked results,
divided by the total number of fields from all web forms configured in the system.



number of filled out forms per query; and, Std.dev: the standard deviation from
this average. The row ‘All’ shows the results when aggregating all forms, and
should be interpreted as: 194 queries were submitted in this aggregated form;
there was a query that could be filled out in 19 different ways; there were 2.99
filled out forms per query on average, with a standard deviation of 2.43.

Table 1. Manual labeling results.

Travel Q. Max. Avg. Std.dev. Cars Q. Max. Avg. Std.dev.
A | 52 8 1.19 0.99 G 24 2 1.04 0.20
B 5 5 1.80 1.79 H 59 7 1.39 1.16
C | 12 3 1.25 0.62 I 61 9 1.38 1.29

Currency J 52 4 1.12 0.51
D | 61 1 1.00 0.00 K| 49 3 1.20 0.58
E | 61 2 1.03 0.18  Merged |
F | 62 1 1.00 0.00 All | 194 19 2.99 2.43

A result (i.e., a filled out form) denotes a set of field-value pairs. On a result
level, the agreement of our judgments and those of the participants is 0.33, which
is consistent with the “key” agreement reported in [5]. Though it might seem
low, it is a direct result of the strict comparison: one slightly different field value
causes results to disagree completely. If we considered field-value pairs instead,
and averaged the field-value agreement per result, the agreement is 0.68.

6 Evaluating the Stack Decoder

We evaluated our system using the data described in Section 5.3. We investigated
how different stopping criteria, boosting, discounting, and ranking on original or
on boosted scores, affected the decoding time and retrieval performance—which
was measured using MAP (Mean Average Precision [18]). Table 2 lists the 6
stopping criteria that we used. The decoding stopped when: a maximum of r
results was found; or, more than ¢ time elapsed during decoding; or, the next
result’s score was lower than some absolute minimum abs.min; or, when it was
lower than some mimimum rel.min relative to the best result. Further, we tested
two settings for pruning probably irrelevant paths based on the percentage of
the query that was ignored. A path was discarded if more than j% was ignored
(e.g., due to unknown words). One (fairly strict) setting required the system to
interpret at least 60% of the query, while the other required only 20%.

Table 2. Stopping criteria, sorted by number of results and “strictness”.

Abs. Rel. Ignore Abs. Rel. Ignore
Results Time min. min. % Results Time min. min. %
A 10 0.5 -200 -150 40 D 50 45 -200 -150 40
B 10 0.5 -200 -150 &0 E 50 45 -200 -150 80

C 10 0.5 -600 -550 80 F 50 45 -600 -550 80



Table 3. Results obtained without training. The headers A—F denote stopping criteria
(see Table 2). The leftmost letters B, D, and R denote boosting, discounting, and ranking
by original score, respectively. Time is the average query decoding time. Map! and
Map?2 are the MAP of filled out forms, and of segmentation & labeling, respectively.

(a) Evaluation results, averaged over the individual tests per form.

MAP1 Time MAP2 MAP1 Time MAP2 MAP1 Time MAP2 MAP1 Time MAP2 MAP1 Time MAP2 MAP1 Time MAP2
0.549]0.551 0.04 [0.608(0.622 0.07 10.6250.485 10.05 0.551 0.05 10.6080.629 0.31 [0.627
0.502 10.04 [0.576{0.568 0.04 0.636]0.641 [0.07 §0.656|0.501 10.05 [0.575]0.568 0.05 [0.635 |0.647 0.30 [0.653
0.503 /0.04 10.567(0.569 0.04 [0.627]0.639 [0.07 10.641|0.503 10.05 [0.566 |0.569 0.05 [0.626|0.647 0.16 [0.645
0.579]0.570 0.04 [0.638|0.640 [0.07 10.652|0.504 |0.04 [0.5770.570 [0.04 [0.637|0.649 0.15 [0.656
0.5190.04 [0.583|0.582 0.04 [0.644|0.642 |0.07 10.664|0.521 /0.05 [0.586 |0.583 0.04 |0.647 [0.649 0.31 [0:666
0.521/0.04 [0.580|0.583 0.04 [0.642|0.642 |0.07 10:656/0.522 /0.05 [0.5830.585 (0.05 [0:645 [0.649 0.16 [0:664
0.522 10.04 [0.585]0.584 0.04 10.646|0.643 |0.07 10.659]0.523 /0.04 [0.588]0.586 10.04 10.649|0.650 0.16 [0:668
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(b) Evaluation results of the aggregated web forms.

MAP1 Time MAP2
0.504 1.64 10.597
0.516 1.66 10.611
0.514 1.09 10:608
0.517 1.16 10.613
0.479 1.88 10.579
0.477 1.23 10.579
0.478 1.25 10.582

MAP1 Time MAP2 MAP1 Time MAP2 MAP1 Time MAP2
0.539]0.446 10.11 [0.5560.475 0.10 j0.581
0.453/0.22 10.554]0.455 |0.11 [0.571|0.484 0.10 [0:596
0.461 /0.22 [0.5530.462 |0.14 [0.573|0.495 0.13 [0:603
0.464 (0.22 [0.5580.461 /0.13 [0.576 |0.493 0.12 |0:606
0.439/0.22 [0.540(0.417 |0.10 [0.527|0.452 0.10 [0.558
0.447/0.22 10.538|0.424 /0.13 [0.533|0.457 0.12 [0.567
0.4490.2210.537]0.422 |0.12 [0.532|0.456 0.12 [0.567

MAP1 Time MAP2 MAP1 Time MAP2
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6.1 Untrained and Individual, “per Form” Evaluation

One at a time, we loaded a form’s dictionary and constraints and ran its tests.
We did not train the system but used a uniform field order distribution?. Ta-
ble 3(a) shows the averaged results of the individual tests, weighted by the num-
ber queries per form. The results show that we should not prune “improbable”
paths beforehand, i.e., paths with low scores and in which up to 80% of the query
is ignored. It also shows that boosting and discounting affects MAP, especially
with relatively strict stopping criteria; and that as the criteria relaxes, the effect
decreases. This is due to the relatively small search space in the individual tests.
The stopping criteria limit the part of the search space can be inspected, and the
boosting and discounting try to sneak in as many relevant paths to this limited
space as possible. Thus when the stopping criteria are sufficiently relaxed, the
effects of boosting and discounting will naturally decrease. For the individual
tests, we can conclude that boosting reduces decoding time, and that boosting,
discounting, and ranking on original scores yields the best retrieval performance.

6.2 Untrained and Collective, “Aggregated Forms” Evaluation

We collectively loaded all forms into our system. This causes the search space to
be much larger, and aside from determining how to fill out a form, the system
must also determine which forms to return in the first place. We also aggre-
gated the tests, specifying for each query all forms that should be returned and

2 Except in one form where we manually specified that “departure” fields were more
likely followed by “destination” fields, instead of other fields. However, this was done
before going online and gathering data, so before we had even seen the test data.



all ways of filling out a form for that query. From the collective evaluation re-
sults in Table 3(b), we can conclude that: we should not prune “improbable”
paths beforehand, which agrees with the results of the individual tests; Boosting,
discounting, and ranking on the boosted & discounted scores yields the best re-
trieval performance, which contrasts with the individual tests where you should
rank on the original scores; Finally, our system effectively brokers over different
sites across different domains (e.g., travel planning, currency, second hand cars).

6.3 Baseline Evaluation

To our knowledge, no other system translates free-text queries to filled out forms,
normalizes values, and checks against constraints. However, LingPipe? is a suit-
able baseline, as it recognizes named entities by segmenting & labeling text, and
is a widely used text processing toolkit. We manually segmented the queries
and labeled each segment. Filled out forms naturally correlate with segmented
& labeled queries. However, due to normalization and constraint checking, there
may not be a valid filled out form even if the query is correctly segmented.

We evaluated both systems on their prediction of which query segments con-
tained field values and what label to assign to each segment. We used 3 data sets
to simulate “untrained” up to “fully trained” systems: set A contains uniform
field transitions and uniform token counts; set B contains field transitions from
the queries, but uniform token counts; and, set C' contains both field transitions
and token counts taken from the queries. We cross-validated LingPipe using
out-of-the-box settings for named entity recognition. In each test, we loaded the
dictionary but no regular expressions because they cannot be used together (at
least, not out-of-the-box). We cross-validated our system using the parameters
from Table 3 that gave the best filled out forms (i.e., with the highest MAP1, and
lowest time if MAP1I is equal). So, for the individual tests we used {criteria=C;
B,D,R=1,1,1}, and for the collective tests {criteria=B; B,D,R=1,1,0}.

The segmentation & labeling results are shown in Table 4. Row A denotes
results of untrained systems (i.e., they are only “trained” on uniform distribu-
tions). Rows B and C denote 5-fold cross validation results of the systems. The
collective cross-validations tests are stratified, i.e., 1/5-th of the queries of each
form is used in each fold. As expected with no training (row A), LingPipe per-
forms poorly, which constrasts with our untrained system. For now, our system

Table 4. Segmentation & labeling results. Training set A involves no training. In B
we train on field transitions, and in C on both field transitions and token counts.

(a) Averaged individual tests. (b) Collective tests.

i Our system ingPi QOur system
Training set MAP Time Training set MAP Time
0.659 0.07 0.576 0.08
0.717 0.05 0.629 0.07

Training set MAP
A 0.302 0.27
B 0.459 0.04
C 0.708 0.04

A 0.117 66.88
B 0.207 5.16
C 0.289 5.11

3 Alias-i. 2013. LingPipe 4.1.0. http://alias-i.com/lingpipe (accessed March 1, 2013)



can only train on field transitions (row B), and this already improves perfor-
mance. Training LingPipe on only field transitions also improves performance;
but training on both transitions and token counts (for which it was designed)
gives the biggest improvement. Since LingPipe does not know that once it uses
labels of one form it cannot use labels of others, it performs very poorly in the
collective tests. Then again, it was not developed for such a task.

6.4 Further Discussion

The problem of converting non-structured queries to structured queries goes back
as far as 30 years, and solutions were proposed based on heuristics, grammars,
and graphs. Due to space limits however, we focussed on probabilistic, state-of-
the-art approaches to segmentation & labeling in Sect. 2. In Sect. 3, the form’s
constraints must be specified manually. Automatic detection of such constraints
would be beneficial and warrants further research. Regarding the results, after
inspecting a sample of the results we noted that OOV (out-of-vocabulary) words
were lowering retrieval performance. Some OOV words can easily be added (e.g.,
new car models), but others consitute natural language phrases that must be
interpreted in context and cannot easily be added. The problem of OOV words
must be further researched. Online learning using click log data is potentially
the cheapest solution, but comes with several challenges (see Section 5.2). We
also noticed that few labels were used for numerical tokens, e.g., a number was
often intended as a price, but never as the engine displacement. This makes it
easier for LingPipe to guess the right label, as it is ignorant of the actual possible
labels for each numerical token and just considers the labels seen during training.
Finally, we will extend our system to train on token counts as well (i.e., data
from set C), which should further improve retrieval results.

7 Conclusion

We introduced a novel and flexible method for translating free-text queries to
structured queries for filling out web forms. This enables users to search struc-
tured content using free-text queries. In contrast, web search engines struggle
to index structured content from web databases, and users cannot enter struc-
tured queries in a typical web search engine. Our method consists of three steps:
segmenting, labeling, and normalizing. We use the constraints imposed by web
forms to prune the search space and apply boosting & discounting heuristics.
Our results confirm that our heuristics are effective, reducing decoding time
and raising retrieval performance. We also showed that without training, our
system outperforms an untrained baseline on the individual and the collective
tests. Compared to a trained baseline, our trained system is still better on the
individual tests and outperforms the baseline on the collective tests.
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