Statistical Language Models and Information Retrieval:

natural language processing really meets retrieval *

Djoerd Hiemstra and Franciska de Jong

University of Twente,
Centre for Telematics and Information Technology

P.O. Box 217, 7500 AE Enschede, The Netherlands
{hiemstra, fdejong}@cs.utwente.nl

Abstract

Traditionally, natural language processing techniques
for information retrieval have always been studied
outside the framework of formal models of informa-
tion retrieval. In this article, we introduce a new for-
mal model of information retrieval based on the appli-
cation of statistical language models. Simple natural
language processing techniques that are often used
for information retrieval — we give an introductory
overview of these techniques in Section 2 — can be
modeled by the new language modeling approach.

1 Introduction

Full-text information retrieval is all about natural
language understanding. Users of for instance web
search engines enter some vague ambiguous state-
ment of what they are looking for, and it is the search
engine’s task to return a list of links to documents
that are relevant to the user’s request. Simply re-
turning an unordered list of documents that contain
the words the user entered is insufficient. On any
very large document collection like the world wide
web, many thousands of documents might contain
the words the user has entered, but only a few of
those documents will actually be relevant to the user.
The typical user of a web search engine will only read

*This article was published in Glot International 5(8), 2001,
pages 288-294, http://www.glotinternational.com

the first ten or twenty documents of the thousands of
documents retrieved anyway. It is therefore impor-
tant that the system not only retrieves documents,
but also ranks the retrieved documents in decreasing
order of estimated degree of relevance to the user.
Successful ranking algorithms use word statistics to
‘understand’ which documents are probably relevant
to the user, and which documents are less relevant.

Information retrieval systems that only use word
statistics treat words like “milk”, “cow”, “cows”,
“cattle”, etc., as if they are totally unrelated. It
seems obvious that much can be gained by using
some simple linguistic knowledge during document
indexing and/or query processing. Simple natural
language processing tools might be used to detect re-
lations between words, for instance that “milk cow” is
a phrase, that “cows” is the plural of “cow”, and that
“cattle” is a possible synonym of “cows”. It is how-
ever far from trivial to incorporate the simple type
of linguistic knowledge into the information retrieval
models that use word statistics.

The so-called Boolean model of information re-
trieval is an example of a model that does not use
word statistics and does not rank the documents. A
Boolean retrieval system is designed to retrieve an
unordered list of documents that contain the precise
combination of words included in the query. When
two query terms are related by an AND connective,
both terms must be present in the documents. When
two query terms are related by the OR connective,

only one of the terms (or both) have to be present
in the documents. Note that the OR connective
is a natural choice if two words are used as syn-
onyms, for instance as in cows OR cattle. Modern
Boolean retrieval systems often offer additional oper-
ators to the standard operators AND, OR and NOT,
like the ADJ operator which matches any document
that contains two adjacent terms, and the NEAR op-
erator which matches documents which contain the
two terms within a certain window of terms. So,
the query milk ADJ cow might be used to find doc-
uments containing the phrase “milk cow”.

Many models of ranked retrieval have been pro-
posed that try to tackle the Boolean model’s inability
rank documents (see e.g. Baeza-Yates and Ribeiro-
Neto 1999 for an overview). However, none of these
models adequately answer the question how to in-
corporate the simple type of linguistic knowledge,
because they use word statistics in a rather ad-hoc
way: the so-called tf-idf weights. These weights use
a product of the term frequency #f and the inverse
document frequency idf. The tf component is re-
lated to the number of times a term occurs in a docu-
ment, whereas the idf component is inversely related
to the number of documents in which the term occurs.
Salton and Buckley (1988) report experiments with
a total of 1,800 different variations of tf-idf weights,
and many more variations have been suggested since.

The use of statistical language models for infor-
mation retrieval was recently proposed by Hiemstra
(1998), Miller et al. (1999) and by Ponte and Croft
(1998). These models do not rely on tf-idf weighting.
Instead, they use simple, easy to understand, prob-
ability measures of the form: “If the word occurs
three times in a document that contains 100 words
in total, then the probability of that word given the
document is 0.03.”; or “if the word occurs 2,000 times
in a corpus of a million words, then the probability
of that word in the English language (assuming that
we are searching for English documents) is 0.002”.
A linear combination of these two probability mea-
sures results in a language model that behaves like
the tf-idf weights, outperforming the best-performing
tf-idf variations (Hiemstra 2000). This opens the way
for a well-founded combination of statistics and lin-
guistic knowledge for information retrieval: More ex-

pressive language models are easily constructed, for
instance by using n-gram models, or by combining
the simple language model with a statistical transla-
tion model.

This article is organized as follows. In Section 2,
we give an overview of natural language processing
techniques for information retrieval. In Section 3, we
introduce the use of statistical language models for
information retrieval. Finally, in Section 4, we con-
clude this paper by looking into the future of natural
language search and information retrieval.

2 Natural language processing
and retrieval: An overview

Natural language processing (NLP) techniques are of-
ten applied to enable users to enter a natural lan-
guage request, without bothering them with for-
malisms such as the Boolean connectives. The NLP
techniques presented in this section result in a re-
presentation of documents and user requests that is
closer to the actual meaning of the text, ignoring as
many of the irregularities of natural language as pos-
sible.

2.1 NLP techniques commonly ap-
plied

A typical approach to document indexing and query
processing is the following. First a tokenization pro-
cess takes place, then stop words are removed, and
finally the remaining words are stemmed (what these
terms mean will be explained below). Additionally,
natural language processing techniques might iden-
tify phrases or split compounds. Figure 1 shows an
example text that will be used to illustrate the typ-
ical approach to document indexing and query pro-
cessing.

Tokenization

As a first step in processing a document or a query,
it has to be determined what the processing tokens
are. One of the most simple approaches to tokeniza-
tion defines word symbols and inter-word symbols.

CHAPTER 1, PREAMBLE

1.1. Humanity stands at a defining moment in history.
We are confronted with a perpetuation of disparities
between and within nations, a worsening of poverty,
hunger, ill health and illiteracy, and the continuing
deterioration of the ecosystems on which we depend
for our well-being.

Figure 1: Example text: opening lines of Agenda 21

In the example of Figure 2 all characters that are no
letter and no digit are considered to be inter-word
symbols. The inter-word symbols are ignored dur-
ing this phase, and the remaining sequences of word
symbols are the processing tokens. As a result it is
not possible to search for punctuation marks like for
instance hyphens and question marks.

chapter 1 preamble 1 1 humanity stands at a
defining moment in history we are confronted
with a perpetuation of disparities between and
within nations a worsening of poverty hunger
ill health and illiteracy and the continuing
deterioration of the ecosystems on which we
depend for our well being

Figure 2: The Agenda 21 text after tokenization

In the example, mark-up information is also ig-
nored, but this information might be kept to search
for e.g. title words. Additionally, heuristics might
be used to identify sentences, or the fact that “1.1”
should be kept as one processing token.

Stop word removal

Stop words are words with little meaning that are re-
moved from the index and the query. Words might
carry little meaning from a frequency (or information
theoretic) point of view, or alternatively from a con-
ceptual (or linguistic) point of view. Words that oc-
cur in many of the documents in the collection carry
little meaning from a frequency point of view, be-

cause a search for documents that contain that word
will retrieve many of the documents in the collection.
By removing the very frequent words, the document
rankings will not be affected that much. Stop word
removal on the basis of frequency can be done eas-
ily by removing the 200-300 words with the highest
frequencies in the document collection. As a result
of stopping the very frequent words, indexes will be
between 30 % and 50 % smaller.

If words carry little conceptual meaning, they
might be removed whether their frequency in the col-
lection is high or low. In fact, they should especially
be removed if their frequency is low, because these
words affect document rankings the most. Remov-
ing stop words for conceptual reasons can be done
by using a stop list that enumerates all words with
little meaning, typically function words like for in-
stance “the”, “it” and “a”. These words also have
a high frequency in English, but most publicly avail-
able stop lists are, at least partly, not constructed on
the basis of word frequencies alone. For instance the
stop list published by Van Rijsbergen (1979), con-
tains infrequent words like “hereupon” and “where-
after”, which occur respectively two and four times
in the document collection that is provided by the
Text Retrieval Conference (TREC).

chapter 1 preamble 1 1 humanity stands defining
moment history confronted perpetuation
disparities nations worsening poverty hunger
ill health illiteracy continuing deterioration
ecosystems depend well being

Figure 3: The Agenda 21 text after stop word removal

In Section 3, stop words are defined mathemat-
ically by assigning zero probability to one of the
model’s parameters. The mathematical definition
does not conflict with the linguistically motivated
definition of stop words.

Morphological normalization

Morphological normalization of words in documents
and queries is used to find documents that contain

morphological variants of the original query. Mor-
phological normalization can be achieved either by
using a stemmer or by using dictionary lookup.

A stemmer applies morphological ‘rules of the
thumb’ to normalize words. Stemmers were already
developed in the 1960’s when the first retrieval sys-
tems were implemented. Well known stemmers are
those by Lovins (1968) and Porter (1980), the last one
being the most commonly accepted algorithm. As re-
ported by Harman (1991) for English and Kraaij and
Pohlmann (1996) for Dutch, the effect on retrieval
performance is limited. Stemming tends to help as
many queries as it hurts. Sometimes stemming al-
gorithms may conflate two words with very different
meanings to the same stem, for instance the words
“skies” and “ski” might both be reduced to “ski”. In
such cases users might not understand why a certain
document is retrieved and may begin to question the
integrity of the system in general (Kowalski 1997).
Still, stemmers are used in many research systems
like Smart, Okapi and Twenty-One. Figure 4 gives
the results of Porter’s algorithm, which does not al-
ways result in linguistically correct stems.

chapter 1 preambl 1 1 human stand defin moment
histori confront perpetu dispar nation worsen
poverti hunger ill health illiteraci continu
deterior ecosystem depend well be

Figure 4: The Agenda 21 text after stemming

Linguistically correct output can be generated by
dictionary lookup. Having a full-form dictionary is
however not enough to build a lemmatizer. Some
words will have multiple entries, possibly with differ-
ent lemmas. For instance, the word “saw” may be
a past tense verb, in which case its lemma is “see”
and it may be a noun, in which case its lemma is
equal to the full form. Similarly, the word “number”
may be the comparative of “numb”. For these cases,
a lemmatizer has to determine the word’s part-of-
speech before the correct lemma can be chosen. Sta-
tistical algorithms trained on (partially) hand-tagged
corpora may be used to effectively find the correct
part-of-speech and therefore the correct lemma.

Instead of stemming or lemmatizing both the doc-
uments and the query, the system might as well gen-
erate morphological variants of all query terms and
leave the documents as they are. In Section 3, stem-
ming and lemmatizing will be approached by this
point of view.

Phrase extraction and parsing

During document indexing and query processing,
multiple words may be treated as one processing to-
ken. The meaning of phrases might be quite different
from the meaning of the separate words. A user who
enters the query “stock exchange” will probably not
be satisfied with documents that discuss “exchange
of live stock”. There are three basic approaches to
phrase extraction. Phrases might be simply prede-
fined (Robertson and Walker 2000), extracted by sta-
tistical co-occurrence (Mitra et al. 1997) or extracted
by syntactic processing (Strzalkowski 1995). Phrase
extraction based on statistical co-occurrence may use
very simple methods, e.g. the identification of all
pairs of non stop words that occur contiguously in
at least © documents. Syntactic processing might be
used to extract noun phrases which are then normal-
ized to head-modifier pairs. This will produce the
same processing token for e.g. “information retrieval”
and “retrieval of information”, because in both “in-
formation” modifies the head “retrieval”. Statisti-
cal and syntactic techniques for phrase extraction
were compared by Mitra et al. (1997) for English and
Kraaij and Pohlmann (1998) for Dutch. Both eval-
uations show that phrase extraction, like stemming,
does not improve retrieval effectiveness significantly.

The methods just mentioned use both the phrase
and the single words in the index, which might be
problematic from a theoretical viewpoint. The phrase
and its single words are obviously related, because the
occurrence of the phrase implies the occurrence of its
single words. The application of ranking algorithms
that use term independence might therefore no longer
by justified. This complication is not addressed by
the publications mentioned above, but in fact, the ob-
vious violation of the independence assumption might
be one of the reasons for the disappointing results on
retrieval performance. In Section 3 a bigram model

will be introduced that explicitly models the depen-
dence relation between words in phrases.

Compound splitting

During indexing or query formulation, some words
might be treated as more than one processing to-
ken. A compound word is a single orthographic
unit that consists of two or more single words, like
for instance “airport” and “wildlife”. Compound
words are especially an issue in languages that al-
low almost unrestricted compounding like Dutch and
German. In Dutch, for instance the noun phrase
“potable water supply” would be one compounded
word: “drinkwatervoorziening”. A known problem
with morphological parsers that split compounds is
that they might accidentally split proper names and
other words that are not listed in the dictionary,
for instance “Bangkok” is not the composition of
the Dutch words “bang” and “kok”. Kraaij and
Pohlmann (1998) show that the splitting of com-
pounds improves retrieval performance significantly
for Dutch. Similar to phrases, both the compound
and its components can be used during searching,
but the use of a retrieval model that assumes the in-
dependence between terms might not be appropriate.

Synonym normalization

Much like stemming and lemmatization, synonymous
words might also be conflated to one processing to-
ken during indexing and automatic query formula-
tion. For instance in Okapi, closely related or syn-
onymous terms like “CIA” and “Central Intelligence
Agency” are conflated (Robertson and Walker 2000).
In Inquery special processing tokens like #CITY and
#COMPANY are added for respectively every mention of
a U.S. city or company (Broglio et al. 1994).

2.2 Natural language search in com-
mercial systems

Many commercial natural language search sys-
tems provide operators that replace the traditional
Boolean set operators AND, OR and NOT by related

operators that are more easy to understand by non-
expert users. The use of these operators is however
not mandatory, making it possible to enter a natural
language request as shown in Figure 5. The opera-
tors, which can be found in for instance Dialog Tar-
get, Lexis-Nexis FreeStyle, or Altavista are summed
up in the following paragraphs. In these systems, the
actual tokens used for these operators might differ
from the ones used in the examples.

how to promote sustainable
consumption patterns

Figure 5: Simple natural language request: rank the doc-
uments containing one or more of the terms.

Exact match operator / mandatory terms

The mandatory term operator can be used to indi-
cate that a term must be present in the selected docu-
ments. It is inspired by the AND operator in Boolean
queries, but has slightly different semantics. Unlike
the AND operator, which is a binary operator requir-
ing two arguments, the mandatory term operator is
a unary operator requiring one argument. The ex-
ample presented in Figure 6 uses the plus symbol to
flag mandatory terms, but other conventions are also
used, e.g. using the asterisk-character, or using a sep-
arate user interface field.

Exclusion operator

The exclusion operator can be used to indicate that
a term should not be present in the selected docu-
ments. Obviously it is inspired by the NOT operator
in Boolean queries. This operator is not as common
as the exact match operator, because the absence of
a term is not as clear an indication of relevance as
the presence of a term. In Figure 6 the minus sym-
bol is used to flag terms that documents should not
contain.

Phrases

Explicit marking of phrases is inspired by the
‘Boolean’ ADJ operator. The system uses the phrase
to produce a better ranking. Identifying phrases is
very useful in combination with the exact match op-
erator to perform a high-precision search, looking for
an exact phrase or an exact quotation. Most query
languages use single or double quotation marks to
mark phrases.

how to reduce the production of

+"harmful materials" -uranium

Figure 6: Natural language request: rank the documents
considering that documents should contain the phrase
“harmful materials” but not the term “uranium”

Synonyms

Operators for synonyms are inspired by the Boolean
OR. Explicit marking of synonyms is sometimes sup-
ported by putting synonyms between parenthesis.
The system uses this information to produce a better
ranking. Other conventions leave the main term out-
side the parenthesis as in child (minor, infant).

Manual term weighting

Query term weights are, one way or the other, used in
many ranking algorithms. Some systems give the user
access to these weights so they can indicate them-
selves which terms are important and which terms
are not important. Figure 7 gives an example of this
use of term weights.

why (forbid prohibit ban) wasteful
packaging[0.9] of products[0.1]

Figure 7: Natural language request: rank the documents
considering that the terms “forbid”, “prohibit” and “ban”
are synonyms and considering that “packaging” is much
more important than “products”

2.3 Discussion

The overview given in this section presents practi-
cal natural language processing techniques that have
proven themselves useful for information retrieval,
like stemming, stopping and identifying phrases or
synonyms. Their use, however, is not very well jus-
tified by the formal models of information retrieval.
Open questions related to their use are for instance:
What is the formal justification of stopping infre-
quent words which have a high tf-idf weight? What
is the formal relation between a stemmed index and
an index of the full-form words? How can phrases be
incorporated in a formal model that assumes term
independence? How do we model mandatory query
terms?

These questions can be answered by the new sta-
tistical language modeling approach presented in the
next section.

3 Statistical language models

As said, we will introduce in this section the con-
cept of statistical language modeling in some more
detail. The introduction of statistical language mod-
els in the field of information retrieval can be seen
as an attempt to provide the ad hoc and rather ill
understood role of NLP in information retrieval with
a theoretically sound foundation that can account for
the effects of the kind of techniques described in Sec-
tion 2.

3.1 A short history

Statistical language models have been around for
quite a long time. They were first applied by Andrei
Markov at the beginning of the 20th century to model
letter sequences in works of Russian literature (Man-
ning and Schiitze 1999). Another famous application
of language models are Claude Shannon’s models of
letter sequences and word sequences, which he used to
illustrate the implications of coding and information
theory (Shannon 1948). Later, statistical language
models were developed as a general natural language
processing tool. Language models were first success-
fully applied to automatic speech recognition at the

end of the 1970’s. The by now standard model of
automatic speech recognition consists of two parts.
The first part is the language model, that predicts
the next word in continuous speech. The second part
models the acoustic signal and is therefore called the
acoustic model. The theory behind the speech recog-
nition models is part of hidden Markov model the-
ory (indeed, a ‘hidden’ version of Markov’s models)
that was developed by Leonard Baum and his col-
leagues at IBM in the late 1960’s and early 1970’s
(Rabiner 1990; Jelinek 1997). In the 1990’s, statisti-
cal language models were applied to many other ar-
eas of natural language processing, like for instance
machine translation (Brown et al. 1990) and part-of-
speech tagging (Cutting et al. 1992).

3.2 The basics

A statistical language model assigns a probability
to sequences of words. It does not distinguish be-
tween wellformed and unwellformed sequences: any
sequence of words is considered, but some sequences
are much more probable than others. For information
retrieval, a language model is defined for each sepa-
rate document in the collection, modeling the typical
language use of that particular document. A lan-
guage model of this GLOT article should for instance
assign a high probability to the phrase “natural lan-
guage information retrieval”, but a much lower prob-
ability to the phrase “you are invited to my birthday
party”. Using the language model, the system is able
to decide that this article is a good candidate for
retrieval if the user enters a request for documents
about “information retrieval”, but a bad candidate if
the user searches for “birthday party”.

We use the following notation: P(D) is the proba-
bility of the the event “the document D is relevant”,
where D is a random variable that can be any docu-
ment in the collection; P(T) is the probability of the
term T in general (natural) language, where T' can be
any word in the language; P(T|D) is the probability
of the term T in the relevant document’s language. It
is assumed that when users enter a query, some words
in the query are important, while others are unimpor-
tant, that is, some words come from the general (En-
glish) vocabulary, while others come specifically from

the vocabulary of the relevant document. Because it
can not be known beforehand which are the impor-
tant words and which are the unimportant ones, the
model uses a mixture of the probability P(T) of a
term in general English, and the probability P(T|D)
of a term in the relevant document. The unknown pa-
rameter A (0 < A < 1), which is the probability that
a term is important, determines the mixture. For the
basic model we assume independence between query
terms in a sequence of n terms 11,75, - - -, T, result-
ing in the following definition of our basic model.

P(Ty, -, T,|D) = ﬁ((l—)\i)P(Ti) + M P(T;|D))
i=1

In an IR application documents are ranked in de-
creasing order of this probability. Experimental stud-
ies show that the basic model introduced above out-
performs ranked retrieval models that use today’s
best-performing tf - idf weighting algorithms (Hiem-
stra 2001). It can also be shown, by proper definition
of the probability measures and by applying order-
preserving transformations, that the above model has
an equivalent tf-df-like weighting algorithm that pro-
duces the exact same results (Hiemstra 2000).

3.3 Modeling stop words and manda-
tory terms

Because it is unknown which terms are important
and which terms are unimportant, the unknown pa-
rameter \; is set to some constant value. Experi-
mental studies show that an optimum value for \;
lies around 0.15 and 0.3 (Hiemstra 1998; Miller et al.
1999). However, simple natural language processing
techniques might be used to distinguish between im-
portant and unimportant words in some more clever
way. One of these approaches was introduced in sec-
tion 2: the use of a stop list. The stop list contains
all words that are generally unimportant. Each word
T; that is listed in the stop list might be assigned
A; = 0. Identifying the important words might not
be that simple, but we might for instance assume that
nouns are generally more important than adjectives,
or that the head of a phrase is more important than
its modifiers.

It is easy to verify that for \; = 0, the term T;,
whether it occurs in the document D or not, con-
tributes the same amount of probability to the final
result of the computation. Therefore, if \; = 0, the
term T; does not affect the final ranking of the doc-
uments. Indeed, it might as well be removed from
the user request, as is done with stop words. The
model mathematically explains why terms might not
contribute to the ranking of the documents, although
they have non-zero tf -idf weights.

It is also easy to verify that for A\; = 1, the proba-
bility of the final result will be 0 if, and only if, the
term 7T; does not occur in the document D. There-
fore, only those documents are retrieved in which the
term occurs: the term is mandatory in the retrieved
list of documents.

To our knowledge, none of the other existing mod-
els of ranked retrieval can mathematically explain
or justify the use of stop words and/or mandatory
terms, but they play a role in many practical informa-
tion retrieval systems. A framework for information
retrieval based on language models can justify these
common approaches, and therefore can be considered
as contributing to our understanding of information
retrieval in general.

3.4 Modeling simple phrases

For the basic model we assumed that words are inde-
pendent because it is well-known that retrieval sys-
tems work fine if we completely ignore the (syn-
tactic) structure of natural language. For applica-
tions other than retrieval, statistical language mod-
els often predict the next word given some history
of words by using n-gram models. A bigram model
(n-gram model with n = 2) uses bigram probabil-
ities P(T;|T;—1): the probability of a word T; given
the previous word T;_1. We expect the probability of
P(T; = exchange|T;_1 = stock, D) to be much higher
in documents about Wall Street than in documents
about the “exchange of live stock”, thereby giving
the system the possibility to distinguish between the
two. Simple two-word phrases, to be identified by
a syntactic parser, can be modeled by incorporating
bigram probabilities into the probability measure.

3.5 Modeling translation, synonyms,
stemming, and more

The general problem that natural language process-
ing tools like stemmers want to solve is the following.
Often, users that enter a perfectly reasonable request,
will get disappointing results because the vocabulary
they use differs from the vocabulary of (some of the)
relevant documents, which as a consequence will not
be returned in the search result. The user might for
instance enter plural nouns (requesting documents
about “cows” or “cats”), whereas documents more
often use singular nouns. Similarly, users might use
words that are synonymous or closely related with
the words that are used in the documents (“cows”
vs. “cattle”). An extreme example of such a case is
the situation where the user wants to do a so-called
cross-language search: Using French queries on an
English database.

To model these cases, we will combine a statistical
translation model using probabilities P(S;|T;) with
the basic language model introduced above. The ran-
dom variable S; is used to denote the ith word in
the user’s request. It can be any word in the vo-
cabulary of the user. The random variable T; now
can be any word in the vocabulary of the documents.
The translation model and the basic language model
can easily be combined in a way that is very similar
to way the acoustic model and the language model
in speech recognition are combined (Hiemstra and
De Jong 1999).

In practice, the statistical translation model will be
used as follows. A natural language processing tool
will convert the request Sy, .59, - -, S, into a possibly
ambiguous representation of this request by listing
several possible terms T; = t for each S; = s. This
might for instance be done by a machine translation
tool that lists pairs (s,t), together with their trans-
lation probability. For each word s in this list there
will be one or more possible translations ¢.

Let’s assume the user enters the French request
“déchets dangereux” to search an English document
collection. Possible translations of “déchets” might
be “waste”, “litter” or “garbage”, possible transla-
tions of “dangereux” might be “dangerous” or “haz-
ardous”. In practice, this type of translation takes

place during the processing of the user request, re-
sulting in a structured query like the one displayed
below. The structured query (which is similar to the
so-called word lattice in automatic speech recogni-
tion systems) is matched against each document in
the collection.

((wasteUlitter Ugarbage), (dangerous Uhazardous))

Instead of translation from e.g. French to English, a
natural language processing tool might use any other
conversion algorithm to generate for each word a set
of variants: e.g. possible synonyms of a word, words
that are phonetically similar, identify spelling mis-
takes and suggest corrections, etc., etc. These vari-
ants can be structured in the same way as the pos-
sible translations in the cross-language search exam-
ple. All instances of natural language processing tools
that yield alternative representations for words can
thus be integrated in a retrieval system in a math-
ematically sound way using the language modeling
approach.

The use of the traditional stemmer is a special case:
The stemmer is used on-line (when the user enters the
request), but also off-line during indexing of the doc-
uments. For the language modeling approach, how-
ever, it can be proven that on-line morphological gen-
eration produces the exact same results as the tradi-
tional use of a stemmer, if the generated morphologi-
cal variants are the same words that are conflated by
the stemmer.

4 Conclusion

The statistical language models for information re-
trieval provide a complete mathematical theory of
information retrieval, covering topics like stop words,
mandatory words, phrases, stemming and transla-
tion. The approach suggests new ways to apply natu-
ral language processing tools to information retrieval,
and opens the way to new retrieval applications.
Many of the information retrieval applications of the
near future call for serious NLP, for instance appli-
cations that support cross-language information re-
trieval, question answering from unstructured texts,
or automatic (multi-)document summarization.

A detailed description of the model and experimen-
tal results of several prototype systems on informa-
tion retrieval text corpora are reported in the first
author’s Ph.D. thesis (Hiemstra 2001).

References

Baeza-Yates, R.A. and B. Ribeiro-Neto (1999).
Modern Information Retrieval. Addison-
Wesley, London.

Broglio, J., J.P. Callan, and W.B. Croft (1994).
Inquery system overview. In D. Penrose (Ed.),
Proceedings of the TIPSTER Text Program
(Phase I), Morgan Kaufmann, San Fransisco,
pp- 40-48.

Brown, P.F., J.C. Cocke, S.A.D. Pietra, V.J.D.
Pietra, F. Jelinek, J.D. Lafferty, R.L. Mercer,
and P.S. Roossin (1990). A statistical approach
to machine translation. Computational Linguis-
tics 16(2), 79-85. Association for Computa-
tional Linguistics, Morristown, New Jersey.

Cutting, D., J. Kupiec, J. Pedersen, and P. Si-
bun (1992). A practical part-of-speech tagger.
In M. Bates and O. Stock (Eds.) Proceedings
of Applied Natural Language Processing, Asso-
ciation for Computational Linguistics, Morris-
town, New Jersey, pp. 133-140.

Harman, D. (1991). How effective is suffixing?
Journal of the American Society for Informa-
tion Science 42(1), 7-15. John Wiley & Sons,
New York.

Hiemstra, D. (1998). A linguistically motivated
probabilistic model of information retrieval. In
C. Nikolaou and C. Stephanidis (Eds.) Proceed-
ings of the 2nd Furopean Conference on Re-
search and Advanced Technology for Digital Li-
braries (ECDL), Springer-Verlag, Berlin Hei-
delberg, pp. 569-584.

Hiemstra, D. and F.M.G. de Jong (1999). Disam-
biguation strategies for cross-language informa-
tion retrieval. In S. Abiteboul and A.M. Ver-
coustre, (Eds.) Proceedings of the 8rd European

Conference on Research and Advanced Tech-
nology for Digital Libraries (ECDL), Springer-
Verlag, Berlin Heidelberg, pp. 274-293.

Hiemstra, D. (2000). A probabilistic justification
for using tf.idf term weighting in information
retrieval. International Journal on Digital Li-
braries 3(2), 131-139, Springer-Verlag, Berlin
Heidelberg.

Hiemstra, D. (2001). Using Language Models
for Information Retrieval. Ph.D. thesis, Cen-
tre for Telematics and Information Technol-
ogy (CTIT), University of Twente, Enschede.
http://www.ub.utwente.nl/webdoc/docs/inf.shtml

Jelinek, F. (1997). Statistical Methods for Speech
Recognition. MIT Press, Boston.

Kowalski, G. (1997). Information Retrieval Sys-
tems: Theory and Implementation. Kluwer
Academic Publishers, Dordrecht.

Kraaij, W. and R. Pohlmann (1996). Viewing
stemming as recall enhancement. In H.P. Frei,
D. Harman, P. Schiuble, and R. Wilkinson
(Eds.) Proceedings of the 19th ACM Conference
on Research and Development in Information
Retrieval (SIGIR’96), pp. 40-48, ACM Press,
New York.

Kraaij, W. and R. Pohlmann (1998). Com-
paring the effect of syntactic vs. statistical
phrase index strategies for dutch. In C. Niko-
laou and C. Stephanidis (Eds.) Proceedings
of the 2nd Furopean Conference on Research
and Advanced Technology for Digital Libraries
(ECDL), Springer-Verlag, Berlin Heidelberg,
pp. 605-617.

Lovins, J.B. (1968). Development of a stemming
algorithm. Mechanical Translation and Compu-
tational Linguistics 11(1-2), 22-31.

Manning, C. and H. Schiitze (1999). Founda-
tions of Statistical Natural Language Process-
ing. MIT Press, Boston.

Miller, D.R.H., T. Leek, and R.M. Schwartz
(1999). A hidden Markov model information
retrieval system. In M. Hearst, F. Gey, and R.

10

Tong (Eds.) Proceedings of the 22nd ACM Con-
ference on Research and Development in In-
formation Retrieval (SIGIR’99), pp. 214-221,
ACM Press, New York.

Mitra, M., C. Buckley, A. Singhal, and C. Cardie
(1997). An analysis of statistical and syntac-
tic phrases. In Proceedings of the RIAO’97, pp.
200-216. McGill University, Montreal.

Ponte, J.M. and W.B. Croft (1998). A language
modeling approach to information retrieval. In
W.B. Croft and A. Moffat and C.J. van Rijs-
bergen and R. Wilkinson and J. Zobel (Eds.)
Proceedings of the 21st ACM Conference on
Research and Development in Information Re-
trieval (SIGIR’98), pp. 275-281, ACM Press,
New York.

Porter, M.F. (1980). An algorithm for suffix strip-
ping. Program 14, 130-137.

Rabiner, L.R. (1990). A tutorial on hidden markov
models and selected applications in speech
recognition. In A. Waibel and K.F. Lee (Eds.),
Readings in speech recognition, pp. 267296,
Morgan Kaufmann, San Fransisco.

Rijsbergen, C.J. van (1979). Information Retrieval,
second edition. Butterworths, London.

Robertson, S.E. and S. Walker (2000). Okapi /
Keenbow at TREC-8. In Proceedings of the
eighth Text Retrieval Conference TREC-8, pp.
151-162, NIST Special Publications 500-246,
Gaithersburg.

Salton, G. and C. Buckley (1988). Term-weighting
approaches in automatic text retrieval. Infor-
mation Processing & Management 24(5), 513—
523.

Shannon, C.E. (1948). A mathematical theory of
communication. Bell System Technical Jour-
nal 27, 379-423, 623-656.

Strzalkowski, T. (1995). Natural language informa-

tion retrieval. Information Processing € Man-
agement 31(3), 397-417.

