
MTCB: A Multi-Tenant Customizable database Benchmark
Wim van der Zijden
ActFact Projects B.V.

Enschede, The Netherlands
w.vanderzijden@actfact.com

Djoerd Hiemstra
University of Twente

Enschede, The Netherlands
d.hiemstra@utwente.nl

Maurice van Keulen
University of Twente

Enschede, The Netherlands
m.vankeulen@utwente.nl

ABSTRACT
We argue that there is a need for Multi-Tenant Customizable
OLTP systems. Such systems need a Multi-Tenant Customizable
Database (MTC-DB) as a backing. To stimulate the development
of such databases, we propose the benchmark MTCB.
Benchmarks for OLTP exist and multi-tenant benchmarks exist,
but no MTC-DB benchmark exists that accounts for
customizability. We formulate seven requirements for the
benchmark: realistic, unambiguous, comparable, correct, scalable,
simple and independent. It focuses on performance aspects and
produces nine metrics: Aulbach compliance, size on disk, tenants
created, types created, attributes created, transaction data type
instances created per minute, transaction data type instances
loaded by ID per minute, conjunctive searches per minute and
disjunctive searches per minute. We present a specification and an
example implementation in Java 8, which can be accessed on this
public repository: https://bitbucket.org/actfact/mtcdb-benchmark.
In the same repository a naive implementation can be found of an
MTC-DB where each tenant has its own schema. We believe that
this benchmark is a valuable contribution to the community of
MTC-DB developers, because it provides objective comparability
as well as a precise definition of the concept of MTC-DB.

CCS Concepts
• Information systems ➝ Database design and models;
Enterprise information systems

Keywords
Multi-Tenant Customizable; Multi-level customizability; OLTP;
Database; Benchmark.

1. INTRODUCTION
1.1 Context
A good practice in business is to focus on key activities. For some
companies this is mostly branding their product [6]. Other
businesses may focus on areas such as consultancy, production or
distribution. Focusing on key activities means to outsource as
much other activities as possible. These other activities merely
distract from the main goals of the company and the company will

not be able to excel in them.

Many companies are in need of OLTP1 software. To fulfill this
need, they often have large IT departments in-house. Those
departments are costly and distract from the company’s main
goals. The emergence of cloud computing should make this no
longer necessary. All they need is an internet connection and a
service contract with an external provider.

However, most businesses are in need of highly customizable
software, because each company has slightly different business
processes, even those in the same industry. So even if they
outsource their IT need, they will still have to pay expensive
developers and business analysts to customize some existing
OLTP application. A large problem is the communication gap [4]:
most developers do not fully understand the business domain, and
most domain experts do not fully understand the technical
implications of their requirements.

These issues are addressed by Multi-Tenant Customizable (MTC)
applications. We define such an application as follows:

A single software solution that can be used by multiple
organizations at the same time and which is highly
customizable for each organization and user within that
organization, by domain experts without a technical
background.

A key challenge in designing such a system is to develop a proper
persistent data storage, because mainstream databases are
optimized for single tenant usage.

1.2 Technical Research Problem
Currently no standalone databases exist that satisfy the
requirements for such a data storage. To stimulate the
development of these databases, we have designed a Multi-Tenant
Customizable database (MTC-DB) benchmark. To this end we
formulate the following technical research problem, using the
template as proposed by Wieringa [11]:

Improve the evaluation of Multi-Tenant Customizable
Database (MTC-DB) implementations, by developing an
MTC-DB Benchmark specification such that it is realistic,
unambiguous, comparable, correct, scalable, simple and
independent in order to enable MTC-DB developers to assess
the quality of their implementations objectively and use the
result to advertise their solution.

1 Online Transaction Processing. Applications whose main

concern is to persistently and reliably process live data
transactions and to facilitate reporting on this data. An OLTP
application is usually backed by a relational database.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICIME 2017, October 9–11, 2017, Barcelona, Spain
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5337-3/17/10…$15.00
DOI: https://doi.org/10.1145/3149572.3149585

17

2. EXISTING BENCHMARKS
In this section we briefly discuss some benchmarks that are close
to the benchmark that we have developed.

2.1 TPC-C
This benchmark is described in [8]. Some of the important
characteristics of the environments that it aims to simulate are:

(1) Various transactions are executed concurrently.

(2) Transactions must adhere to the ACID properties.

(3) The system consists of many tables that differ greatly in size,
attributes and relationships.

To this end, the specification describes a fictional data model of a
wholesale supplier that has tables like warehouse, district and
customer. The model consists of 9 tables. It describes in detail
which attributes each table should have and what initial master
data should be present in the system.

On this data model, a number of transaction profiles are described:
the new-order transaction, the payment transaction, the order
status transaction, the delivery transaction and the stock-level
transaction. A complete business cycle uses a combination of
these transactions to simulate the flow of a business process.

TPC-C produces four primary metrics:

(1) tpmC: the business throughput per minute, measured as the
number of processed orders.

(2) price per tpmC: the total cost of running the system for 3
years, divided by the tpmC.

(3) Availability date: the earliest date at which all components
of the system will be available.

(4) watts per KtpmC: the cost in energy per 1,000 tpmC
(optional).

2.2 TPC-E
TPC-E is described in [9]. Both in goal and specification it is very
similar to TPC-C. The main difference is that it is much more
complex than TPC-C and claims to be more realistic and have a
broader coverage. Its data model is that of a fictional brokerage
firm. According to Chen et al. [3] the main differences are that
TPC-E specifies more tables, more attributes, has check
constraints and also tests for referential integrity.

2.3 Multi-Tenant TPC-W
TPC-W is a benchmark for e-Commerce web applications. It
emulates a fictional online bookstore. It features 14 web pages
that allow users to browse, search, order and pay for products. The
test is run by using emulated browsers that simulate real users by
employing random wait times between 7 and 70 seconds.

TPC-W produces two primary metrics:

(1) WIPS: the number of web interactions per second that can be
sustained by the system.

(2) Cost per WIPS: the cost of the system divided by the WIPS
rate.

Kreb et al. [5] enhanced TPC-W to make it into a Multi-Tenant
benchmark. To this end, they added a column "tenantId" to every
table and added a central administration mechanism for assigning
primary keys. Unfortunately, their extension does not provide
clear comparable performance metrics. The results are graphs that

show how increasing tenants impacts the original TPC-W metrics.
Another problem with this benchmark is that it does not account
for customizability.

3. MTC-DB BENCHMARK (MTCB)
In this section we describe the MTC-DB Benchmark (MTCB) that
we developed. First we discuss the requirements we formulated,
then the specification that we designed and finally the concrete
steps a developer should take to start using the benchmark to
implement and benchmark their own MTC-DB implementation.

3.1 Requirements
The design of MTCB has the following requirements:

R1 Realistic. It should be a realistic reflection of an MTC
environment in terms of performance aspects.

R2 Unambiguous. It should be as unambiguous as possible.
An MTC-DB developer should be able to implement it
without support from an expert such as one of the authors of
this paper.

R3 Comparable. It needs to provide objective and easily
comparable performance metrics.

R4 Correct. It needs to test for correctness. This mainly
concerns the ACID properties of database transactions: they
should be atomic, consistent, isolated and durable.

R5 Scalable. It needs to be easy to benchmark very small
scenarios, very large scenarios and a number of inbetween
scenarios.

R6 Simple. It should be as simple as possible. Every added
complexity should aid one of the other requirements in some
way.

R7 Independent. The specification should stand on its own.
It needs to be independent from any MTC-DB
implementations. For example, there should be no
dependency on the paradigm of SQL and/or RDBMS.

3.2 Conceptual Model
MTCB not only defines the metrics to measure the performance of
MTC-DB implementations, it also defines what an MTC-DB
implementation is. Our definition of MTC-DB is pure: there must
be as little core functionality as possible. For example, the
Force.com platform [7] is an MTC application that has a large
amount of core functionality. For this core functionality they use
traditional tables and only for the modifications by third party
platform developers generic extension tables are used. In this
model, the platform developers are second class to the native
Force.com developers.

We defined the absolute minimum of core functionality to be four
complex types2 and four primitive types3. The complex types are
tenant, user, type and attribute. The primitive types are string,
number, timestamp and boolean. Some of these concepts are
explained in detail below.

3.2.1 Tenant and User
Bezemer et al. [2] give the following definition of tenant:

2 Complex types are types that have attributes
3 Primitive types are types that have no attributes

18

A tenant is the organizational entity which rents a multi-
tenant SaaS solution. Typically, a tenant groups a number of
users, which are the stakeholders in the organization.

This is a good basic definition, but in our model, we use an
enhanced version of this definition. A tenant as described in the
definition above is what we call a data tenant. This kind of tenant
mostly contains transactional data and master data, and little to no
metadata. Its data is also isolated: no other tenants can access it.

A second type of tenant is a module tenant. This kind of tenant
contains little transactional data and no master data, but mostly
consists of metadata instead. Furthermore, its data is not isolated:
it is accessible by all tenants that have declared a dependency on it.
It can also be dependent on other module tenants itself. This
extension of the definition is necessary, because metadata needs to
be shareable. If metadata could not be shared, then each data
tenant would have to build its own application from scratch.

3.2.2 Type and Attribute.
Types are the metadata building blocks of the system. A type has
a name and a display name, is defined within a tenant and has
some attributes. Types can be also be enhanced with additional
attributes by tenants other than the tenant that owns them.

Attributes refer to two types: their master type and their data type.
The master type is the type that they are an attribute of, and the
data type is the type of the data that they store. This can be one of
the primitive types, but it can also be another complex type. An
attribute must also indicate if it is searchable. This determines
whether the attribute can be used in the predicate of a search
query, to allow the MTC-DB implementation to optimize for this.

3.2.3 Search Design.
One of the things that should be benchmarked is how fast search
queries run in the system. We distinguish two types of queries:
load by ID and attribute search.

Load by ID. Load by ID queries simulate the major workload of
OLTP systems. In typical OLTP systems that use an RDBMS for
storage, a window in the user interface displays one row of a
particular database table. To load this data, the application must
retrieve this row. If this row contains foreign key references to
other tables, then these must also be resolved.

In regular SQL, this can be done with a query of the following
form:

To benchmark these type of queries, we specify Transaction Data
Types (TDT) and Master Data Types (MDT). Both are synthetic
data types that are also used for benchmarking customizability
and the creation of new type instances. An MDT is a type that
contains only simple attributes. A TDT also contains complex
types: references to MDTs.

Attribute search. To benchmark queries with search predicates,
we need to design search data and search queries. The search
queries need to be representative for worst-case scenarios in the
system and the search data needs to be generated automatically
and needs to be scalable.

To this end we defined a designated search type and a designated
search tenant, which are created in the Setup script (see section
3.3.2). This script also creates a number of instances of the search
type in the search tenant, dependent on the Profile (see section
3.3.2).

We defined two distinct attribute searches: a conjunctive search
and a disjunctive search. In regular single-tenant SQL, these
searches have the following form.

Conjunctive search:

We chose these two queries because they are two extremes and if
an MTC-DB can implement these queries, they can implement all
single type queries, because any propositional formula can be
translated into conjunctive normal form (CNF) and the disjunctive
normal form (DNF).

The search type has 10 attributes, 5 that are used by the
conjunctive search, and 5 that are used by the disjunctive search.
When instantiating these types, the attributes for the conjunctive

search are populated with random integers in the range [1,],
and the attributes for the disjunctive search are populated with
random integers in the range [1, 5n] where n is the total number of
search type instances. Similarly, when creating the search queries,
the search terms are picked from the same range at random.

These ranges were picked specifically to make sure that no matter
how large n gets, the searches will have approximately the same

probability of returning no results, namely , about 37%. This is
true, because the probability for returning no results for the
respective queries can be expressed with the following formulas,

which both approximate for lim .

Conjunctive Search:

Disjunctive Search:

3.3 Specification
MTCB consists of two main parts: the model and the scripts. The
model consists of the contract of six interfaces. Every MTC-DB
implementation must provide implementations for these interfaces.
The scripts use these interfaces to run the benchmark and report
the performance metrics.

3.3.1 The model
The model consists of six interfaces: MTCDB, PO, Type,
Attribute, Tenant and User. For MTCDB the most
important elements of its contract are shown in Table 1. For the

19

complete specification of all interfaces we refer to the example
implementation4.

MTCDB is the main entry point. An instance of this class must be
fed to the scripts. The most important operations that are defined
on MTCDB are create Tenant(), createType(),
createAttribute() and createPO().

PO stands for Persistent Object. This is the base contract for all
entities that must be stored persistently. Its most important
operations are persist() and several GetValueAs...()
operations to retrieve a value for an attribute by attribute name.

Type, Attribute, Tenant and User are interfaces that
extend PO. So they contain all the operations that PO contains,
including some extra operations. For example, Type has the
operation getAttributes() to get all attributes for that type,
and Attribute has the operations getMasterType() to get
the type it is an attribute of, and getDataType() to get the
type of the value that it can store.

Table 1: The contract for the interface MTCDB

3.3.2 The scripts
There are three scripts: the Aulbach script, the setup script and the
main script. These scripts are explained below. As input, each of
these scripts needs an implementation instance of MTCDB. The
latter two also need a profile that contains a set of parameters.
How MTCDB is implemented and instantiated is up to the specific
MTC-DB implementation.

Profile. The profile needs to be one of the options shown in Table
2. The profile Tiny is mostly meant for development purposes, to
have a benchmark profile available that runs with minimal
resources and allows for a quick test. The profile Small is for

4 https://bitbucket.org/actfact/mtcdb-benchmark

scenarios in which the system is expected to only accommodate a
small number of tenants. The profile Medium should be a realistic
scenario for many applications that are in need of an MTC-DB
layer. We have purposely omitted terms such as Large and Very
Large to allow these terms to be added in the future, because it is
to be expected that computer systems will keep scaling up as the
available computing power and storage space will keep growing
exponentially.

The parameters mentioned in Table 2 have the following
meanings:

(1) DT: Data Tenants. The number of data tenants that are
created in the setup script.

(2) CF: Concurrency Factor. The number of threads each
benchmark operation of the main script will use. Since there
are 7 operations, the total number of concurrent threads the
main script uses is 7 times CF.

(3) MDT: Master Data Types. The number of master data types
that are defined in the metadata module. We define master
data as data that does not refer to other data, but is referred to
by transaction data.

(4) TDT: Transaction Data Types. The number of transaction
data types that are defined in the metadata module. We
define transaction data as data that refers to MINRA to
MAXRA (see below) master data records.

(5) MDI: Master Data Type Instances. The number of master
data type instances per tenant per type that will be created in
the setup step of the test script.

(6) STI: Search Type Instances. The number of search type
instances. Used for benchmarking the search (see section
3.2.3).

(7) TI: Test Interval. The duration of the test in seconds.

(8) MINRA. Minimum Reference Attributes. The minimum
number of reference attributes on transaction data types.

(9) MAXRA. Maximum Reference Attributes. The maximum
number of reference attributes on transaction data types.

Aulbach script. The Aulbach script checks if the implementation
is a correct MTC-DB implementation by testing if it is capable of
representing the example MTC data structure used in the paper by
Aulbach et al.[1]. This example consists of an Account table that
is used by three tenants. One tenant uses the table with an
extension for the health care industry, one with an extension for
the automotive industry and one uses it without an extension.

Setup script. The setup script sets up the MTC-DB
implementation for running the main script. To this end, it creates
several synthetic tenants, users, types and attributes. The amount
of data it generates is heavily dependent on the chosen profile (see
Table 2).

Main script. The main script consists of seven operations that
concurrently run for TI seconds. Each operation runs in CF
concurrent threads, so the total number of threads is 7 times CF.
The operations are:

(1) Create Tenants. Every 5 seconds, create a new tenant with a
random name and a dependency on the module "Main-

20

Module". Report the total number of tenants created and if it
managed to achieve maximum performance.

(2) Create Types. Every 500 milliseconds, create a new type
with a random name for a random tenant. Report the total
number of types created and if it managed to achieve
maximum performance.

(3) Create Attributes. Every 100 milliseconds, create a new
searchable string attribute with a random name for a random
transaction data type for a random tenant. Reports the
number of attributes created and whether the maximum
performance was achieved.

(4) Create Transaction Data Type Instances. Constantly
create transaction data type instances. Because these have
references to MINRA to MAXRA master data types, this
workload also includes retrieving master data types by name.
Report the total number of TDIs created.

(5) Load by ID. Constantly load previously created transaction
data type instances by ID. This workload also includes
loading all the references of the TDT to MDTs by ID.
Reports the number of TDTs loaded.

(6) Conjunctive Search. Constantly perform 5-way conjunctive
(AND) searches. Only the first result is retrieved. It is
designed in such a way that each search has about a 63%
chance of returning a result. Reports the number of
conjunctive searches performed per minute. See section 3.2.3
for more information.

(7) Disjunctive Search. Constantly perform 5-way disjunctive
(OR) searches. Only the first result is retrieved. It is designed
in such a way that each search has about a 63% chance of
returning a result. Reports the number of disjunctive searches
performed per minute. See section 3.2.3 for more
information.

Table 2: Parameter Profiles

3.3.3 Metrics.
The benchmark produces the following metrics:

(1) Aulbach compliance: a boolean indicating whether the
implementation is able to represent the example MTC
scenario described by Aulbach et al. [1]. Every
implementation needs to score true on this metric.

(2) Size on disk: the total size on disk in MB of the MTC-DB
after running the setup script. There is no maximum
indication. The lower the better.

(3) Tenants created: the percentage of tenants created in
relation to the maximum possible amount. This should be
100%.

(4) Types created: the percentage of types created in relation to
the maximum possible amount. This should be 100%.

(5) Attributes created: the percentage of attributes created in
relation to the maximum possible amount. This should be
100%.

(6) TDI created per minute: the number of transaction data
type instances created per minute while running the main
script. There is no minimum indication. The higher the better.

(7) TDI loaded by ID per minute: the number of transaction
data type instances loaded by ID per minute. There is no
minimum indication. The higher the better.

(8) Conjunctive searches per minute: the number of
conjunctive searches performed per minute. There is no
minimum indication. The higher the better.

(9) Disjunctive searches per minute: the number of
conjunctive searches performed per minute. There is no
minimum indication. The higher the better.

3.4 Developer Guide
To help developers utilizing this bench mark with minimal effort,
we have implemented an example implement ationin Java8. This
code is available under the Mozilla Public Licenceat:
https://bitbucket.org/actfact/mtcdb-benchmark

Developers can clone this Git repository and follow the
instructions in the readme file. To implement their own MTC-DB
implementation, they will need to write implementations for all
the Java interfaces in the MTCB codebase. They are encouraged
to refer to the example MTC-DB implementation or even use it as
a starting point if they are unsure how to proceed. Of course it is
also possible to write a non-Java implementation, but in this case
the developer will first have to implement the API himself.

4. EVALUATION
The evaluation consists of two parts. First we perform a
conceptual evaluation, in which we evaluate if this benchmark
fulfills the requirements we formulated in Section 3.1. Second, we
perform a practical evaluation. In this part, we discuss an MTC-
DB example implementation we developed and how we used it to
evaluate the usability of the benchmark.

4.1 Conceptual Evaluation
4.1.1 Realistic
We defined a main module that contains the metadata for types
that all data tenants use. In a real world situation it will also be the
case that a large majority of metadata is the same for each tenant.

In the main script, concurrent users create new data, while other
threads concurrently perform metadata operations. Metadata
changes are a small part of the total work load of such
applications, but it is important that regular data creation is not
blocked while these operations are being performed. It was shown
by Wevers that this is a significant problem for many Relational
Databases [10].

4.1.2 Unambiguous
We provide an implementation neutral specification and
accompany this with an example implementation in Java 8. So
wherever the specification leaves room for multiple
interpretations, the example implementation can be referred to.

21

4.1.3 Comparable
The benchmark specifies a small set of parameter profiles and
produces a small number of simple quantitative metrics. This
enables easy and objective comparison of different
implementations that use the same profile.

4.1.4 Correct
The Aulbach script is a minimal test that checks if the
implementation is a real MTC-DB implementation. Currently no
automated check is implemented for ACID compliance. On a
more general note, it is not possible to automatically guarantee
complete correctness. We can only check if the implementation is
consistent in itself. To guarantee correctness an audit by a human
expert will always remain necessary.

Table 3: The benchmark result over 10 runs for a schema
based implementation, showing the average () and the

coefficient of variation (/).

4.1.5 Scalable
The parameter profiles allow for benchmarking a number of
scenarios of different sizes.

4.1.6 Simple
Instead of specifying a real world data model for the main module,
we chose to use synthetic types and attributes. The same goes for
the scripts that generate data and metadata: it is randomized and
without meaning. Using a real world scenario would make MTCB
extremely complex and would decrease its scalability and
flexibility.

4.1.7 Independent
We specify an API that contains the operations that should be
supported by the MTC-DB implementation. This API places no
restrictions on the MTC-DB implementation in terms of
underlying platform. For example, even though many
implementations will use an RDBMS as underlying platform, this
is not implied in the API. It should be equally possible to
implement the MTC-DB in a document-oriented database, a
functional database or any other kind of persistent storage
structure.

4.2 Practical Evaluation
For the practical evaluation, we have developed a naive MTC-DB
implementation. This implementation has been developed in Java
8 and PostgreSQL 9.6 and is schema based: every tenant is
defined in a separate schema. It is loosely based on what Aulbach
et al. call the Private Table Layout [1].It is available on the same
repository as the benchmark itself, in the project mtcb-
schemabased: https://bitbucket.org/actfact/mtcdb-benchmark.

We ran MTCB for this implementation on a Centos 7 server with
an Intel Xeon E3-2200 Quad Core CPU and 32GB RAM. For
each profile we ran the main script 10 times and report the
average () as well as the coefficient of variation (/) in Table 3.
The reason to run it 10 times was that we noticed considerable
differences between separate runs. This can be seen from the high
variation for some metrics. We did not benchmark this
implementation for the Medium profile, because it does not seem
to be feasible for such a large scenario. We estimate that running
the setup script would not even finish in 48 hours.

This implementation scores very well on some metrics. Most
notably the disjunctive search: more than half a million per minute
for both profiles. Loading TDIs is also fast.

On some of the other metrics the implementation scores very
poorly. The largest problem is tenant creation. The
implementation fails to comply with the requirement to create a
new tenant every 5 seconds. For the small scenario, it only creates
5% of the maximum. This means it takes about 100 seconds to
create a tenant. The reason for this is that in this implementation,
for each tenant creation the database must run DDL5 to create all
the tables that are defined in the metadata module. Aside from
taking a lot of time, this also causes the implementation to score
poorly on the metric Size on disk. On top of this, the DDL
statements have a disruptive nature, irregularly causing operations
such as TDI Creation to be stalled for considerable times. This
causes a high variation for those operations.

Another interesting note is that the performance does not degrade
much when going from the Tiny to the Small profile. For some
metrics, the performance even increases. The most likely reason
for this is that the Medium profile has a higher degree of
concurrency, running in 35 threads, whereas the Tiny profile only
runs in 7 threads. This allows the Medium profile to maximize its
use of the hardware resources. However, the conjunctive search
still shows a severe degradation. This is probably due to the stark
increase in search data: 10 times as much as in the Small profile.

5. CONCLUSION
We present a benchmark specification MTCB and a naive example
implementation that proves that it is implementable. Test results
show that this naive schema per tenant RDBMS implementation is
not sufficient, because it cannot handle metadata modifications
efficiently and causes a huge overhead in redundant metadata
storage. Future work should use this example implementation as a
baseline system. An interesting next step would be to create
implementations based on the schema-mapping techniques
discussed by Aulbach et al. [1].

We believe that this benchmark is an important contribution to the
community of MTC-DB developers. Not only does it allow for
objective comparison, it also makes an attempt at a very precise
definition of the concept of MTC-DB, backed by a concrete
implementation.

6. REFERENCES
[1] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger.

2008. Multi-Tenant Databases for Software as a Service:
Schema-Mapping Techniques. In SIGMOD’ 08.

5Data Definition Language. SQL statements that alter the data

dictionary: mostly CREATE TABLE and ALTER TABLE
statements

22

Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. ACM, 1195–1206.

[2] Cor-Paul Bezemer and Andy Zaidman, 2010. Challenges of
Reengineering into Multi-Tenant SaaS Applications. Delft
University of Technology Software Engineering Research
Group. Technical Report Series (2010).

[3] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons, R.
Johnson, I. Pandis, and R. Stoica. 2010. TPC-E vs. TPC-C:
Characterizing the new TPC-E benchmark via an I/O
comparison study. SIGMOD Record 39, 3 (2010), 5–10.
www.scopus.com.

[4] W. R. Friedrich and J. A. Van Der Poll. 2007. Towards a
methodology to elicit tacit domain knowledge from users.
Interdisciplinary Journal of Information, Knowledge, and
Management 2 (2007), 179–193. www.scopus.com.

[5] R. Krebs, A. Wert, and S. Kounev. 2013. Multi-tenancy
performance benchmark for web application platforms.
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 7977 LNCS. 424-438 pages.
www.scopus.com.

[6] R. M. Locke. 2002. The Promise and Perils of Globalization:
The Case of Nike. MIT Working Paper (2002). Downloaded

16 December 2016 from
https://ipc.mit.edu/sites/default/files/documents/02-007.pdf.

[7] Salesforce.com. 2008. The Force.com Multitenant
Architecture: Understanding the Design of Salesforce.com’s
Internet Application Development Platform. (2008).
Accessed 4 January 2017 on
http://www.developerforce.com/media/ForcedotcomBookLi
brary/Force.com_Multitenancy_WP_101508.pdf.

[8] Transaction Processing Performance Council. 2010. TPC
BENCHMARK C Standard Specification Revision 5.11.
(2010).
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/
tpc-c_v5.11.0.pdf

[9] Transaction Processing Performance Council. 2015. TPC
BENCHMARK E Standard Specification Version 1.14.0.
(2015).

[10] L. Wevers. 2012. A Persistent Functional Language for
Concurrent Transaction Processing. Master’s thesis.
University of Twente.

[11] Roel J. Wieringa. 2014. Design science methodology for
information systems and software engineering. Springer.

23

