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ABSTRACT
With the goal of harvesting all information about a given en-
tity, in this paper, we try to harvest all matching documents
for a given query submitted on a search engine. The objec-
tive is to retrieve all information about for instance“Michael
Jackson”, “Islamic State”, or “FC Barcelona” from indexed
data in search engines, or hidden data behind web forms,
using a minimum number of queries. Policies of web search
engines usually do not allow accessing all of the matching
query search results for a given query. They limit the num-
ber of returned documents and the number of user requests.
These limitations are also applied in deep web sources, for
instance in social networks like Twitter. In this work, we
propose a new approach which automatically collects infor-
mation related to a given query from a search engine, given
the search engine’s limitations. The approach minimizes the
number of queries that need to be sent by analysing the
retrieved results and combining this analysed information
with information from a large external corpus. The new
approach outperforms existing approaches when tested on
Google, measuring the total number of unique documents
found per query.

Categories and Subject Descriptors
H.4 [Information systems]: Web searching and informa-
tion discovery

Keywords
World Wide Web, Web mining, Data extraction, Deep web,
Data coverage, Web harvester

1. INTRODUCTION
Nowadays, data is one of the keys to success. Whether you

are a fraud detection officer in a tax office, a data(-driven)
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journalist, or a business analyst, your primary concern is to
access all data relevant to your topic of interest. For a data
journalist investigating a company, an in-depth analysis is
infeasible without a comprehensive collection of data. This
emphasizes the role of the web as one of the main gates to
data. The availability of an up-to-date crawl of the web
would definitely facilitate collecting all relevant information
on a given entity. However, given the software and hardware
requirements of crawling the web, this seems to be imprac-
ticable except for a few big organizations, and the journalist
has to resort to using the search engines provided by such
organizations.

Most web data is accessible by querying general search en-
gines like Google, or Yahoo, or by submitting forms in deep
web data sources. Achieving a full data coverage for an en-
tity via either of these web data access methods has its own
challenges. In [1, 15, 12, 5, 3], the focus is mainly on deep
websites requiring form submissions. These studies investi-
gate web forms, form fields’ inputs, their bindings, and other
features of the forms and websites which could influence har-
vesting a deep website and extracting information about a
given entity. Instead, our paper examines search systems
with keyword-based search interfaces1. This enables us to
include any websites with keyword search.

With keyword search as the only data access approach, to
achieve a full data coverage on a given query in a search sys-
tem, the primitive solution is to follow these steps: 1) submit
a query; 2) retrieve returned results in the results page; 3) go
to next results page; and 4) Repeat number 2 and 3 till there
is no next page. For most queries with thousands of results,
going through these steps is a labour-intensive task. Web
scrapers address this challenge by automatically navigating
through search results and downloading desired data. How-
ever, even while using (semi-)automatic scrapers, achieving
full data coverage on a given query in a search system is
not as straightforward as it looks. Currently, search engines
impose limitations that hamper retrieval of all returned re-
sults:

Limitation 1: #ResultsLimited The number of results a
search engine allows a user to access is limited.

Limitation 2: #RequestsLimited The number of requests a
user is allowed to perform within a certain period of
time is limited.

1They provide a single text field to submit a query.



Figure 1: Problem Definition
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It is also worth mentioning that general search engines are
designed to help users in finding answers to specific questions
and not providing complete data coverage on a submitted
query. For example, determining the location of a company’s
headquarters is not a challenging task with Google, or Ya-
hoo search. However, retrieving all information about that
company requires much effort if at all possible due to the
above limitations.

This work relies on the potential power of search refine-
ment techniques to uncover results beyond what a search en-
gine allows a user to directly access due to #ResultsLimited

and #RequestsLimited limitations. These techniques are
typically based on adding extra terms to the initial query
to obtain refined search results. We propose an approach
which refines search results for the purpose of achieving full
data coverage.

Problem Definition For a given query QColl, RColl is the
set of all documents containing the query. A search engine
that imposes #ResultsLimited limitation, prevents users
from accessing all these documents. With submitting QColl,
users cannot view more documents than a pre-determined
number l. The l is the maximum allowed number but is
not always the actual number of returned results. The re-
turned results accessible for users for query QColl is de-
fined as R̃Coll. Therefore, we have |R̃Coll| ≤ l. In case
of overflowing queries2, we have l < |RColl| which leads

to R̃Coll ⊂ RColl. The documents returned for Q (R̃Coll)
cannot exceed the l. To retrieve all members of RColl, we
form a new query QSample by adding a term T to the QColl

query (QSample = QColl+T ). The documents matching this
newly formed query is referred to as RSample and the ones
accessible by a user are defined by R̃Sample. The documents
present both in R̃Sample and R̃Coll are defined as duplicates
and referred to as D. We also define RCum as the union of
all retrieved documents. Provided that R̃Sample does not in-
clude only duplicates, it provides new documents from RColl.
The Figure 1 models these definitions.

To obtain all documents in RColl, several iterations of
query formulation could be performed. After each iteration
of query reformulation and submission, the RCum and D are
recalculated as shown in Formula 1. We continue query for-
mulation and submission iterations till RCum equals RColl.
Now, the main problem to be addressed is how to minimize

2An overflowing query is a query that produces more results
than #ResultsLimited allows.

the number of these iterations to have an efficient approach
which complies also with the #RequestsLimited limitation.

RCum
n =

⋃
i∈1,n

R̃Sample
i

Di = R̃Sample
i ∩RCum

i−1 (1)

In this approach, reformulating queries should be carried
out with the aim of obtaining as many new results as possible
for each query. Maximizing the number of new results means
submitting queries which return as many documents as l
while minimizing the number of D. This defines the goal of
this work as follows:

Our goal: Collecting the biggest possible set of documents
in a search system that match a given query by posing the

least possible number of requests.

Therefore, maximizing R̃Coll = l while minimizing D are
necessary requirements to achieve this goal. Minimizing du-
plicates becomes complicated with the presence of ranking
bias and query bias [4]. Search engine’s ranking algorithms
(e.g. Google Page-rank) and selection of the initial query
favour some documents more than others to be returned by
the search engine.

Therefore, we define the main challenge in this paper
as finding counter-measures for biases generated by rank-
ing algorithms. These biases cause same documents to be
ranked always high among returned results and therefore al-
ways present in R̃Coll and R̃Samples which leads to a big
D. To meet this challenge, several approaches are sug-
gested, implemented, and compared in this paper. We test
our approaches on Google, which claims to search 100 PB
of Web data (60 trillion URLs)3. Google imposes both
#ResultsLimited and #RequestsLimited, and ranking bias
through its Page-Rank algorithm.

This work is a follow-up on our previous work published as
a short paper [14]. In that short paper, we first introduced
the problems in harvesting all the matching documents for
a given query and suggested a number of approaches based
on the information extracted only from an external corpus.
In this work, we introduce a formal problem definition to
further clarify the issue. In addition, In addition, the new
concepts of Completeness and Relevance are introduced to
give a better understanding of the topic. Also, instead of
relying on external corpora, the returned results for query
submissions are used as feedback mechanisms.

The next section is dedicated to related work. Then,
Section 3 discusses solutions classified into three main cat-
egories. In Section 4, these solutions are tested and the
results are analysed and presented. Finally, in Section 5,
conclusions drawn from these results are discussed and ar-
eas for further research are identified.

2. LITERATURE STUDY
Deep Web harvesting In this work, we are interested in

the methods that are applied to access deep web data ei-
ther for sampling or harvesting websites. Recent studies on
accessing deep web data focus mainly on websites requiring
form submissions [1, 15, 12, 5, 3], studying the website form
to achieve an efficient data access approach. For example,

3Official Google Blog: http://googleblog.blogspot.nl/2008/07/we-
knew-web-was-big.html



in [15], authors investigate how to identify the values and
types of different form fields, and how to efficiently navi-
gate the search space of possible form input combinations
to avoid unnecessary submissions leading to a more efficient
source sampling process. Although the goal of these studies
is not entity focused harvesting, the idea of devising different
query generation plans in querying a data source is relevant.
These studies focus on the features of forms, and require
additional form analysis and extra knowledge.

Query-Based Sampling Accessing data in all diverse web
sources with search interfaces follows a similar method, re-
ferred as query based sampling (QBS): submitting requests
to get results pages. In QBS, by sending a query to the
search engine, the set of returned results is considered as a
sample of documents [6, 4]. Having produced a number of
these samples, they are used in different statistical calcu-
lations (e.g. search engine size estimation, or quality test)
where it is important to have randomly generated samples.
However, in search engines like Google, the application of
complicated ranking mechanisms violates this randomness
assumption and accordingly generates uncertainties in the
calculations. In sampling documents, factors such as chosen
query, content of documents, ranking mechanism and many
others affect the probability of a document to be selected
and therefore the samples’ randomness. Non-random sam-
ples make calculations based on QBS doubtful. To solve
this, in [2, 13, 19], a number of different approaches are in-
troduced. However, none of these approaches aim at reduc-
ing duplicates in samples but on keeping calculations free
from the biases. Oppositely, in this work, we require an
approach to remove biases effects in the generated samples
resulting in a smaller D among them. Generating random
or close-to-random samples can be considered as one of the
counter-measures against generated biases.

Topical Crawling In focused crawlers which are also known
as topical crawlers, a crawl starts from a user-provided set
of data and collects results only for his given topics [17, 20].
The focus of these crawlers is to locate relevant pages with-
out crawling all links. To guide this navigation, with the
usage of available contextual information (e.g. links, and
content of previously crawled pages), different techniques
such as link analysis, automatic classification, text analysis,
machine learning, and evolutionary algorithms are applica-
ble [20] helping to estimate the relevance of a page to a given
topic. These crawlers are designed for particular informa-
tion needs expressed by topical queries or interest profiles
[17].

Query Expansion Query expansion is the process of re-
formulating the original query with the goal of getting a
better query that improves retrieval effectiveness, a query
that is more likely to retrieve relevant documents leading
to better top-k recall and precision [8]. Automatic query
expansion techniques can be classified into five main groups
according to the techniques used for finding the expansion
features: linguistic methods, corpus-specific statistical ap-
proaches, query-specific statistical approaches, search log
analysis, and web data [8]. The pseudo-relevance feedback
from query-specific statistical approaches category is one of
the more interesting approaches for the purpose of this pa-
per where it is assumed that terms in retrieved documents
are useful for the retrieval task and expanding the original
query. The criteria for selecting among these terms can be
based on a number of different features of the documents

and terms [7, 16, 8, 9, 11].

3. ENTITY-FOCUSED WEB HARVESTING
Before diving into solutions, we need to clarify two con-

cepts; completeness, and relevance.
Completeness We formulated our goal as collecting ”all

information” available on the web for a given entity. Moti-
vated by this goal, we consider the first step to gather all the
pages including that information. As we will show in 4, this
is still a challenging task. Having gathered all the relevant
pages, the next step is to extract information. However,
this is beyond the scope of this paper and is suggested as fu-
ture work. Therefore, this paper focuses on finding the most
efficient approaches to get the biggest possible coverage in
terms of documents for a given entity.

Relevance Looking for an entity, we gather all the pages
that contain that entity. These pages are downloaded and
indexed. These pages are used to extract the entities. How-
ever, the focus is only on pages which include the same terms
as the given entity and not the extracted entities.

To reach this data coverage, we send automatically gen-
erated queries to a search engine’s API with the goal of
retrieving all documents that contain a given entity with a
minimum amount of query submissions. We compare the ap-
proaches by their capabilities to deal with #ResultsLimited

and #RequestsLimited. The comparison is based on the av-
erage number of queries submitted to retrieve all documents
for a given query. We distinguish three kinds of approaches.
Section 3.1 describes ideal approaches, for which we estimate
the number of queries needed in ideal (simulated) conditions.
Section 3.2 describes approaches in which queries are refor-
mulated by using an external corpus. Section 3.3 focuses
on approaches inspired by the pseudo-feedback methods for
query expansion. In this method, extracted content from the
previously retrieved documents is the source for the query
generation process.

3.1 Ideal Approaches
The approaches mentioned in this section are desirable or

perfect but not easily realized. These are investigated with
the sole purpose of improving the comparison of the intro-
duced approaches. The Oracle Perfect approach [14] never
retrieves a duplicate document. In this paper, we consider
a more realistic goal by using a probability of retrieving a
duplicate, which is more informative in comparison to the
other approaches. This is discussed in more details in the
Results Section.

3.1.1 Oracle Perfect Approach
To download all the matching documents for a given query

from a search engine which imposes the #ResultsLimited

and #RequestsLimited limitations, a perfect approach re-
turns not only the maximum possible number of documents
(l) but also only unique ones for each request submitting ei-

ther the QColl or the QSamples. Submitting only the |R
Coll|
l

number of requests will cover all matching documents [14].
In reality, this is not easily reachable cause of lack of infor-
mation on ranking algorithms and term frequencies. With
this information on ranking algorithms and term frequen-

cies, one can divide the collection into exactly |R
Coll|
l

sub-
collections. This is only accessible when you have full index
access which does not happen in reality.



3.1.2 Probability Based Approach
Provided that there is a uniform selection probability for

all documents matching a given query in a search system,
we have no bias in selecting documents to return as query
results. This is only the case in search engines without query
and ranking biases. These biases are direct results of rank-
ing algorithms and the criteria of documents matching a
given query to be returned as results. In a system in which
all query results are drawn uniformly at random, we can
generate random samples. With this assumption, statistical
formulas can be applied to calculate the predicted number
of duplicates and accordingly the number of unique results
in a set of randomly generated samples. The following for-
mula calculates the estimated number of unique documents
and duplicates in any of the query submissions to a search
engine.

|RCum
n | = |RColl| − |RColl| ∗ (1− l

|RColl| )
n (2)

Formula definition Formula 2 calculates the number of
newly discovered documents through all submitted queries
to a search engine. It is assumed that the documents have a
uniform selection probability. In this case, this probability
is defined as l

|RColl| . Consequently, the probability of a doc-

ument not to be selected is defined as (1 − l
|RColl| ). Now,

the goal is to calculate these probabilities after n number of
query submissions (sampling events). Keeping this in mind
that having a unique document in the nth sampling event
requires that document not to be selected in the (n−1) pre-
viously generated samples. With (1− l

|RColl| ) as the proba-

bility of a document not to be selected in one sampling event,
through (1 − l

|RColl| )
n the probability for a document not

being selected in n sampling events can be determined. Mul-
tiplying this probability in the total number of documents
matching the given query Q (RColl determines the number of
not retrieved documents by the n number of previous query
submissions. Subtracting this number from |RColl| gives the
number of all the previously retrieved documents. The for-
mula is verified by comparing its output with the results
of a simulation in which random samples were generated to
measure the number of duplicates and unique documents.

3.2 List-Based Query Generation Approaches
In List-Based Approaches [14], the terms to be added to

the seed query are selected from a list of words generated
from an external corpus (ClueWeb09 dataset). In [14], three
different List-Based approach are suggested based on se-
lecting terms either with most, least or a pre-determined
frequency to reformulate the original query. In [14], it is
shown that the pre-determined frequency approach (LB-
FixedFreq.) outperforms the other approaches. This ap-
proach is included in our experiments as the best performing
approach of [14].

3.2.1 Pre-determined Frequency Based Approach
With the most and least frequent terms increasing the

chance of maximum returned results and fewer duplicates
respectively, this approach investigates a term frequency re-
sulting in a trade-off between these two extreme cases. Con-
sidering each query submission as an independent event,
the probability of having an overlap between two queries
equals with the multiplication of the probability of each

query (P (A&B) = P (A) ∗ P (B)). This is shown in For-
mula 3.

|RColl ∩RSample|
sSE

=
|RColl|
sSE

∗ |R
Sample|
sSE

|RSample| = l ∗ sSE

|RColl| | (|R
Coll ∩RSample| = l) (3)

From this formula, with information on the number of
documents matching the seed query, returned results and
search engine size, a term can be found to formulate a new
query returning at least l results. To get information on
terms documents frequencies, full access to search engine
index is necessary. As this is not possible in most of web
search engines, pre-computed terms documents frequencies
from an external corpus (such as ClueWeb [18]) can be used
[13]. If the size of search engine is unknown, as discussed in
[13], the size can be estimated by only using a few number
of generated samples from search engine.

For example, assuming sSE = 109, the number of English
documents in ClueWeb as 5 × 108, l = 100, and |RColl|
for a given query to be 4 × 105, the following calculation
could provide us with a term document frequency that has
higher chance to result in samples of our desired size: 100

109
=

4×105

109
∗ x

5×108
=⇒ x = 125000. This approach is referred to

as LB-FixedFreq..

3.3 Feedback-Based Approaches
In this section, terms to reformulate queries are selected

from the previously retrieved content. The criteria for this
selection can be based on a number of different features of
terms and documents.

3.3.1 FB-Most Frequent Terms Based Approach
Among the terms extracted from downloaded documents,

the ones with higher frequencies have a higher chance in re-
turning at least l results. This is the same principle as intro-
duced in Subsection ??. This approach commences by sub-
mitting a query to the search engine. Then, having extracted
the content of the results for the query, the most frequent
word in that content is selected to be used in query refor-
mulation. The final step is adding this most frequent word
to the original query and submitting the constructed query
to the search engine. With new results obtained from this
query submission, these steps are repeated and new queries
are formed and submitted. This process repeats till reaching
a full data coverage for the original query. For example, with
the goal of reaching full data coverage on the term “Vitol”
which is an oil company, the term “Oil” appears as the most
frequent term in the returned documents by search engine.
The next step is submitting “Vitol”+“Oil”. This approach is
referred to as FB-MostFreq. approach.

3.3.2 FB-Least Frequent Terms Based Approach
In this approach, against the FB-Most Frequent Terms

Based Approach, the least frequent terms are selected. The
reasoning behind this difference is the struggle for minimiz-
ing the number of duplicates among the generated samples.
For example, in the first step for covering all related docu-
ments for the term “Vitol”, the term “damit” which is a Ger-
man word is selected to be used in reformulating the query.
This approach is referred to as FB-LeastFreq. approach.

3.3.3 FB-Least from Last Approach



In this approach, to counteract the effects of ranking al-
gorithms of search engines in favouring a number of docu-
ments more than others, the terms for query reformulations
are selected from the pages with lower ranks. This means
the terms are selected from the documents present in the
bottom of the returned results for a query. This is due to
search engine’s behaviour in returning more important and
relevant pages always on top. Targeting the results in the
bottom of the results list is for selecting terms which are
negatively correlated with the original query and therefore,
have higher chance in generating fewer duplicates among
the samples. Therefore, in this approach, the least frequent
word in the the last returned search result is selected to be
used for query reformulation in next steps. This approach
is referred to as FB-LeastFromLast approach.

3.3.4 FB-Fixed Frequency Based Approach
In Subsections 3.3.2 and 3.3.1, the most and least frequent

terms in the retrieved documents are selected to reformulate
queries. These frequencies represent extreme cases. The
most frequent words represent higher chances in returning
the most allowed number of queries and the least frequent
terms produce potentially less duplicates. A balanced ap-
proach which includes both these cases is also in the interest
of our investigation. In defining such an approach, the for-
mula introduced in 3.2.1 subsection is applicable. This for-
mula calculates a specific frequency that has higher chance
to result in samples of our desired size (l). However, this for-
mula is applicable only in selecting terms from an external
corpus with a pre-calculated list of terms and frequencies.
To apply this formula to a feedback-based approach, it is
required to determine the corresponding frequency in the
retrieved documents with the resulted frequency from the
mentioned formula. To do so, this formula is applicable:

T.D.F.FeedbackText =
|RSample| ∗ |RCum|

sSE
(4)

In this formula, the |RSample| is resulted from Formula 3
defined in 3.2.1. With the number of retrieved documents
(|RCum|) and the size of search engine (sSE) known, the doc-
ument frequency for the next term selection is determined
(T.D.F.FeedbackText). It is assumed that the terms with this
frequency in the retrieved documents have higher chance to
result in samples of the desired size with fewer duplicates
as this approach targets making a trade-off between the ex-
treme cases of submitting the most and least frequent terms.
This approach is referred to as FB-FixedFreq approach.

3.4 Combined List-Feedback Based Approach
In the list-based approaches, the terms are selected from

an external corpus with a specific pre-determined frequency.
However, this frequency as a selection criteria does not offer
any information about the potential relevance between terms
and original queries. To include this missing information
in the selection process, terms which are present both in
the list of external corpus terms and in previously retrieved
documents are selected. For example, as the next query after
submitting “Vitol”, we choose a term appearing in both the
retrieved content and the list from the ClueWeb dataset.
This helps to have both relevance and frequency effects in
one approach. This approach is referred to as the Comb.LB-
FB approach.

4. EXPERIMENTS AND RESULTS

4.1 Experiments Settings
Test Search Engine In this paper, we use Google as the

biggest web search engine with one of the most complicated
ranking algorithms as our test search engine. As support
of keyword-search interface is the only prerequisite to ap-
ply any of the suggested approaches, targeting Google does
not limit our findings. If the suggested approaches work for
Google, they have a good chance in reaching good perfor-
mance on any other website too.

Although Google is used only as an example of a search
engine in our paper, we find it necessary to provide evidence
to support the discussed prerequisites even for this example.
In Google, a user can submit at most 100 queries a day [10].
Through our experiments, we noticed no more than 500 re-
sults are accessible for any submitted query. This number
was dynamic but in all our experiments, it was less than 500.
With Google Web Search API being depreciated, Google
Custom Search, is actually capable of searching the entire
web, but it suffers from the same limitations. As an alterna-
tive, Google Site Search eliminates #ResultsLimited at the
expense of being able to search the entire web. Google Site
Search permits you to search only a specific set of web sites.
In consequence, your results are unlikely to match those re-
turned by Google Web Search and also different from ’site:’
search on Google.com. There are also costs for submitting
more than 100 search queries per day.

Entities Test Set In our experiments, 120,000 queries were
submitted to download information for four different enti-
ties (“Vitol”, “Ed Brinksma”, “PhD Comics”, and “Fireworks
Disaster”). These entities represent diverse types of enti-
ties; Company, Person, Topic, and Event. In addition to
difference in type, we tried to cover queries with different
estimated results sets sizes ranging from 2× 104 to 5× 105.

Relevance Judgement In assessing an approach in achiev-
ing full data coverage on an entity, the amount of retrieved
data is the decisive metric. However, it needs to be further
clarified what is considered as retrieved data. In our exper-
iments, we consider the number of documents returned by
search engine for an entity (RCum) as retrieved data. There-
fore, all the retrieved documents that contain the searched
keyword are considered as related. There are other possible
options which are mentioned as future work. As all the doc-
uments contain the keywords, the more documents retrieved
increases the chance to reach more completeness.

Evaluation Metric Assessing different approaches for one
entity is straightforward by comparing the RCums of all the
approaches. However, the general performance evaluation
of these approaches on all the entities is not possible only
through comparing RCums. With different results set sizes
for entities, comparing RCum

nEntity1
with RCum

nEntity2
of the same

approach does not reveal much information about its overall
performance. While for a small results set, a few number of
queries can cover all documents, for a bigger collection, that
number of queries can just retrieve a very small part. There-
fore, we evaluate each approach for a given entity by its dis-
tance from performance of the Probability-based approach
for that entity (Section 3.1). This is calculated through For-
mula 5. These distances are calculated for all the other
entities in the entities test set and averaged to represent the



0 5000 10000 15000 20000
0

100000

200000

300000

400000

n(number of submitted queries )

A
ll
U
n
iq
u
e
D
o
cs
.
R
et
ri
ev
ed

,
R
C
U
M

Probability Based

Simulation

Oracle Perfect

Figure 2: Retrieved Documents (RCum) for Ideal ap-
proaches

general approach performance.

Performance =
|RCum

nProb.Appr
| − |RCum

nTest.Appr
|

|RCum
nProb.Appr

| × 100 (5)

Fixed l One of the main challenges for data coverage is
the limitation on the number of returned results. In Google,
this number is not fixed. In our experiments, this number
changed from 200 to 500 even for the same query but at dif-
ferent times. It seems that Google acts randomly (or based
on a set of reasons which are not known to us). This creates
an uncertainty on the size of samples for our experiments.
In all the experiments in this paper, the sample size is set
to 100 to assist comparisons and increase reliability in con-
clusions. Practical Details There are also a number of small
practical decisions like what to choose as the first query or
the usage of quotation marks in the query (phrase queries)
which should be noticed. In this work, we always submit
queries between quotation marks.

4.2 Results
In this section, the results of applying the introduced ap-

proaches in Section 3 to the test entities (Section 4.1) are
presented. To establish a comparison baseline, in Figure
4.2, the Oracle Perfect, Probability, and simulation-based
approaches (3.1.2) are compared in retrieving a collection
of 4 × 105 documents with l = 100. The Oracle Perfect
outperforms the other approaches with all samples of the
maximum size and no duplicates. The Probability-based
approach performs worse than the Oracle Perfect but the
same as the simulation-based. In both Probability-based
and simulation-based approaches, the selection of documents
is random.

The results of running the FB-Based approaches (Section
3.3) are shown in Figure 4.2. This figure plots the perfor-
mances of the approaches in obtaining unique documents af-
ter each query submission. For an x-axis value, the approach
with the highest corresponding y-axis value returns more
unique documents. As observable from this figure, among
the FB-Based approaches, the Comb.LB-FB approach out-
performs the others.

To better understand the reasons behind this good perfor-
mance, in Figures 4 and 5, the potential influences of sample
size and number of duplicates are studied. In Figure 4, there
are four scatter plots for four of the introduced approaches.
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Figure 3: Retrieved documents (RCum) for FB-
Based approaches on one entity

In each of these scatter plots, each point shows the relation-
ship between the sample size and the number of duplicates
for each query submission. The sample size is plotted along
the x axis, and the y axis gives the number of returned re-
sults. The pattern of the resulting points of plotting all the
values for all the query submissions reveals the correlation
between these two variables and the approach performance.
This pattern gives an overall view on the samples sizes and
their numbers of unique documents. In Figure 4, in each of
the four graphs, the points in the top right corner represent
samples of maximum size and fewer duplicates. To show how
sample sizes and number of duplicates differ among the ap-
proaches, in Figure 5, the samples sizes and duplicates of all
the FB-based approaches are shown separately in two differ-
ent graphs. In Figure 5, the right graph shows the number
of duplicates for each query submission and the left graph
presents the samples sizes of the submitted queries. In the
left graph, a dot placed higher than others present a sample
with more number of results than other dots and hence it is
more desirable. However, the points in the lower part of the
right graph in Figure 5 are more desirable as they represent
the fewer number of duplicates.

Figure 4.2 compares the performances of the approaches
only for one entity, whereas Figure 4.2 compares the aver-
age performances of all the approaches for all the entities
in the test set. These average performances are calculated
through the Formula 5 in Subsection 4.1. For each entity, for
all the iterations of query submissions, the performance of
the Probability-based approach is calculated. For all the
introduced solution approaches, their distances from this
Probability-based approach are calculated. For all the other
entities, these calculations are repeated. At the end, the av-
erage distances are calculated for each approach over all the
entities. Using the Probability-based approach as a base-
line enables a better comparison as the size of each entity
is already included in the calculations. As it is observable
from Figure 4.2, there are big gaps between each approach
and the estimated probability. This emphasizes the effects
of ranking algorithms of search engines.

4.3 Analysis
As illustrated in Figures 4 and 5, the key to success (hav-

ing more data coverage) is bigger samples with fewer dupli-
cates. However, there is a trade-off between these two goals.
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Figure 4: Sample size and unique Docs of generated samples for FB-Based Approaches
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Figure 5: Sample size and duplicates of generated samples for FB-Based Approaches

Bigger samples increase the chance of more duplicates. In-
stead, to reach fewer duplicates, smaller samples are helpful.
In the FB-MostFreq. approach (Section 3.3.1), samples are
big but but include a lot of duplicates. In the FB-LeastFreq.
(Section 3.3.2), this is exactly the other way around.

One way to tackle the challenge of achieving this trade-off
is to find a specific word frequency to submit as next query.
In the LB-FixedFreq. approach (Section 3.4), different fre-
quencies are applied. In our experiments, we observe that
the low and high frequencies yield worse coverage and the
highest coverage was the result of submitting words with a
frequency derived from Formula 3.

Another way to achieve this trade-off is to counteract the
biases of search systems in selecting documents like PageRank-
generated bias in Google. The introduced FB-ListFromLast
approach, which is based on this bias removal idea, pro-
duced better results than FB-MostFreq and FB-LeastFreq.
However, this approach could not outperform the Comb.LB-
FB. approach. In Figures 4 and 5, it is observable that the
number of duplicates and sample sizes for the Comb.LB-
FB. approach are more desirable than the ones in the FB-
ListFromLast approach.

Among all the introduced approaches, the Comb.List-FB
approach performs the best. In this approach, the queries
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Figure 6: Average Performance For all Queries

submitted in specific frequency are refined to reduce the
number of small samples. This causes 10 percent better
documents coverage in average for all the submitted enti-
ties.

5. CONCLUSION AND FUTURE WORK
In this work, we assessed different query generation mech-

anisms for harvesting a web data source to reach a full data
coverage on a given entity. From the experiments, we found
that the key to success in these approaches is to send queries
which result in the maximum possible number of results with
the minimum possible number of documents downloaded in
previous query submissions. To have this success factor, we
suggested different approaches based on different frequen-
cies and possible dependencies. From these approaches, the
Comb.List-FB approach which analysed the retrieved results
and combined this analysed information with information
from a large external corpus performed the best.

Future Work In addition to word frequency and presence
of word in retrieved documents for selecting the best next
query to submit, there are a number of issues such as terms
distribution in returned documents, their distances, and de-
pendency of candidates to all previously submitted queries
which might help in counteracting the search systems biases.
The future work can focus on experimenting the effects of
these factors. As another next step, the retrieved docu-
ments can be disambiguated, analysed, and the entities in
those documents can be extracted. For example, searching
Vitol results in different topics from a company, to a per-
son. Analysing the returned results by different techniques

like documents clustering helps refining retrieved documents
and analysing only the ones of user interest.
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