
Evaluating structured information retrieval and
multimedia retrieval using PF/Tijah

Thijs Westerveld1, Henning Rode2, Roel van Os2, Djoerd Hiemstra2, Georgina
Ramı́rez1, Vojkan Mihajlović2, and Arjen P. de Vries1

1 CWI, Amsterdam, The Netherlands
2 University of Twente, Enschede, The Netherlands

Abstract. We used a flexible XML retrieval system for evaluating struc-
tured document retrieval and multimedia retrieval tasks in the context
of the INEX 2006 benchmarks. We investigated the differences between
article and element retrieval for Wikipedia data as well as the influence
of an elements context on its ranking. We found that article retrieval
performed well on many tasks and that pinpointing the relevant pas-
sages inside an article may hurt more than it helps. We found that for
finding images in isolation the associated text is a very good descriptor
in the Wikipedia collection, but we were not very succesful at identifying
relevant multimedia fragments consisting of a combination of text and
images.

1 Introduction

CWI and the University of Twente collaborated again for INEX. This year, we
participated in the Ad Hoc and Multimedia tasks. For both tasks, we relied on the
PF/Tijah system [3], a system for flexible information retrieval from structured
document collections. PF/Tijah integrates NEXI based IR functionality and full
XQuery support.

In the Ad Hoc track we focused on three aspects. First, we studied whether
element retrieval could do better than article retrieval. Second, we experimented
with context weighting. Third, we looked at approaches to identify good entry-
points in relevant articles for the AllInContext and BestInContext tasks.

For the multimedia track, we did not do any image processing, all our ap-
proaches are purely text and context based. For the Multimedia fragments task
(MMfragments), we extended the Wikipedia collection with the metadata from
the image collection. Also, we made sure any submitted result contained at least
one image. We experimented with query variants based on just the title terms
of the distributed topics, as well as with extending this with terms originating
from castitle’s or image examples.

The remainder of this paper is organised as follows. First, we introduce the
PF/Tijah system in Section 2. Then, Sections 3 and 4 discuss our approaches and
results for the Ad Hoc and Multimedia tracks. The paper ends with conclusions
in Section 5.

2 The PF/Tijah System

PF/Tijah is a research project run by the University of Twente with the goal
to create a flexible environment for setting up search systems. By integrating
the PathFinder (PF) XQuery system [2] with the Tijah XML information re-
trieval system [4] it combines database and information retrieval technology. The
PF/Tijah system is part of the open source release of MonetDB/XQuery devel-
oped in cooperation with CWI Amsterdam and the University of München. The
system is available from SourceForge.

PF/Tijah includes out-of-the-box solutions for common tasks like index cre-
ation, stemming, stopword removal, and result ranking for structured queries
(supporting several retrieval models), but it remains the same time open to any
adaptation or extension.

The PF/Tijah system has a number of unique features that distinguish it
from most other open source information retrieval systems:

– It supports retrieving arbitrary parts of the textual data, unlike traditional
information retrieval systems for which the notion of a document or fields
need to be defined up front at indexing time. A query can simply ask for
any XML tag-name as the unit of retrieval without the need to re-index the
collection.

– The system allows complex scoring and ranking of the retrieved results by
directly supporting the NEXI query language.
return

pf:tijah-query($root, "//html[about(.,IR DB)]//p[about(.,XML)]")

– PF/Tijah embeds NEXI queries as functions in the XQuery language. This
way the system supports ad hoc result presentation by means of its query
language. For instance, when searching for a special issue of a journal, it
is easy to print any information from that retrieval result on the screen
in a declarative way (i.e., not by means of a general purpose programming
language), such as the special issue title, its date, the editors and the preface.
This is simply done by means of XQuery element construction. As another
example, we can formulate a query that performs a whole INEX run and
gathers the results in the required output format:
for $topic in doc("/INEX/topics2006.xml")//inex topic

let $result := tijah-query-id($c, $topic/castitle/text())

return

<topic topic-id=.{$topic/@topic id}">
{ for $r in tijah-nodes($result) return

<result>

<file> { $r/name/@id } </file>

<path> { local:getINEXPath($r) } </path>

<rsv> { tijah-score($result, $r) } </rsv>

</result> }
</topic>

– PF/Tijah supports text search combined with traditional database querying,
including for instance joins on values. For instance, one could formulate the
difficult INEX topic 14 from 2002 in the following way:
Find figures that describe the Corba architecture and the paragraphs that
refer to those figures. Retrieved components should contain both the figure
and the paragraph referring to it.
let $doc := doc("inex.xml")

for $p in tijah-query($doc, "//p[about(.,corba architecture)]")

for $fig in $p/ancestor::article//fig

where $fig/@id = $p//ref/@rid

return <result> { $fig, $p } </result>

Recent developments in the PF/Tijah search module mainly concerned sta-
bility, scalability and performance. We can index the current Wikipedia collec-
tion in 25 to 30 minutes on a 64 bits machine with a 2Ghz Opteron processor
and 8 Gb of memory running Fedora Core 6. Querying times are shown in the
following table:

Simple article query //article[about(.,X)] (top 10, ranking only) 2 sec
Full INEX //article[about(.,X)] query (top 1500, INEX results format) 28 sec
Full INEX //*[about(.,X)] query (top 1500, INEX results format) 141 sec
Complete INEX run

3 Ad Hoc Track

The characteristics of the Wikipedia collection differ considerably from the IEEE
collection used before. This inspired us to test some ideas that seem in partic-
ular suitable for this new collection, but also to revisit some of the approaches
that were successful on IEEE and to test how well these techniques work on a
very different set of documents. We studied element vs. article retrieval, con-
text weighting and the entry-point tasks, each of these is discussed in a separate
subsection below, but first we discuss our general approach.

3.1 Approach

For all our submissions, we employed the PF/Tijah system. We indexed the
entire Wikipedia collection, without removing any structural information. The
index was stemmed and stopwords were removed. All our submissions are based
on the XML variant of the unigram language modelling approach to information
retrieval [4]. Elements are scored based on a mixture of foreground or docu-
ment statistics and background or collection statistic. When we need to combine
information from different levels in the hierarchy, for example for queries like
//article[about(.,X)]//*[about(.,Y)] we use a product of the element scores.
All elements always have a score greater than zero because of the background
statistics. Therefore, the product based combination functions as a weak AND.

We believe it is useless to show the same information twice to a user, and thus
removed overlap from all our runs. As a result, all our runs can be interpreted as
submissions for the Focused task and that’s how we evaluate them below. Our
focused runs are constructed from (thorough) pure language modelling runs, by
iteratively going down the ranked lists and removing all lower ranked ancestor
and descendant of a retrieved element.

3.2 Element vs. Article retrieval

The IEEE collection contains mainly lengthy documents where it makes sense
to retrieve parts rather than the whole document. For the Wikipedia collection
this is the case to a much lesser extend. Wikipedia documents tend to be short
and focused. Moreover, a substantial amount of real Wikipedia queries has a
corresponding Wikipedia document whose title matches the query exactly. This
indicates that for many queries, an entire document may be a good answer.
We investigated this by comparing document retrieval and element retrieval ap-
proaches. To this end, we ran two types of title only queries against our PF/Tijah
system:

– //article[about(.,$title)]

– //*[about(.,$title)]

Where $title is replaced by the terms from the <title> field. The results for
these runs on the Focused task are shown in Figure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no
rm

al
ise

d
Cu

m
ul

at
ed

 G
ai

n

Rank as %

//article[about(.,$title)]
//*[about(.,$title)]

Fig. 1. Element vs. Article retrieval, normalised Cumulated Gain (overlap: on, quan-
tisation: strict)

The runs are indistinguishable, indicating it makes no difference whether we
retrieve full articles, or unrestricted elements. If we look closer at the retrieved

elements, this makes sense. Figure 2a shows the element types we retrieved most
in the element run. Almost half of the elements we retrieve are either body or
article, and thus very close to full documents. Another 11% of the retrieved
elements are of type collectionlink, and point indirectly to another article. We
did not exploit this indirection, but these numbers indicate that effectively our
element run was mainly pointing at full documents rather than smaller parts.
This does not mean element retrieval is useless in this collection, though. Many
of the relevant elements are of a much finer granularity, 45% of the relevant items
are either paragraphs (p) or sections (section) (see Figure 2b).

32.5% body 32.7% p
17.3% p 12.4% section
16.3% article 9.0% item
11.2% section 8.4% emph3
11.0% collectionlink 6.3% emph2

Most retrieved element
types with element run

Most relevant element
types

a b

Fig. 2. Element types. Most retrieved in element run (//*[about(.,$title)]) (a) and
most relevant (b) element types

3.3 Context weighting

Previous INEX results have shown that it is important to take an element’s
context into account. In particular article weighting has been successful [1, 4].
Article weighting takes the article context of an element into account; good
elements in good articles will be ranked higher than good elements in bad articles.
We investigated whether article weighting is useful for element retrieval in the
new Wikipedia collection.

In addition, articles in wikipedia have a clear and concise title, which may
help in identifying relevant articles. We experimented with using this name to-
gether with the article content for article retrieval (and as a side-effect for setting
the context for element retrieval).

We compared article retrieval with and without names3:

– //article[about(.,$title)]

– //article[about(.,$title) OR about(.//name,$title)]

And we experimented with article weighting:

– //*[about(.,$title)]

3 A limited preliminary study indicated an disjunctive combination of article content
and name performs better than a conjunctive combination.

– //article[about(.,$title) OR about(.//name,$title)]//*[about(.,$title)]

Figure 3 and 4 show the results for name and article context respectively.
Context and article weighting appear to have no influence on retrieval effective-
ness. Thus context appears to be less influential than in the IEEE collection.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no
rm

al
ise

d
Cu

m
ul

at
ed

 G
ai

n

Rank as %

//article[about(.,$title)]
//article[about(.,$title) OR about(.//name,$title)]

Fig. 3. Normalised Cumulative Gain for article and article OR name runs.

3.4 Entrypoint tasks

We submitted some basic runs for both the AllInContext and the BestInContext
tasks. These submissions started from top 1500 focused runs without overlap.

For AllInContext we grouped the retrieved elements by article and scored
the articles by aggregating the element scores (for top 1500 elements only).
We experimented with both maximum and average as aggregation functions.
Within each article, we simply kept all elements that made it to the top 1500 of
the original focused run. Thus, our AllInContext runs are nothing more than a
re-ordering of the Focused run.

For BestInContext we did something similar. Again, we group by article, but
now we order articles by the sum of the element scores, since we want articles
with a lot of good material on top. Our assumption is a user wants to see all
relevant passages in an article, thus as a best entry point, we simply returned
the first element in document order that was in the focused top 1500. We did
not extend our best entry point run with articles that did not made it to the
focused top 1500, thus our BestInContext runs typically contain fewer than the
allowed 1500 entry-points.

The approach was applied to both the plain and article weighted elements
runs. Figure reffig:AiC shows our results in the AllinContext task. The two

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

no
rm

al
ise

d
Cu

m
ul

at
ed

 G
ai

n

Rank as %

//*[about(.,$title)]
//article[about(.,$title) OR about(.//name,$title)]//*[about(.,$title)

Fig. 4. Normalised Cumulative Gain for //* runs with and without article weighting.

element runs (ARTorNAME STAR AVG and ARTorNAME STAR MAX) are
indistinguishable. The article run (ARTorNAME) is clearly better. Apparently,
in this collection, selecting the best elements inside an article is still a hard task,
and the best strategy is to simply return the entire article. Similar results were
found on the BestInContext task:

4 Multimedia Track

The CWI/Utwente participation in the multimedia track is without any image
processing; all our submitted runs are purely text based. Still, we adapted our
runs to cater for the multimedia information needs. We augmented the Wikipedia
collection with metadata, we filtered the results for images and we added some
knowledge about the example images to our queries. Below these approaches are
discussed in detail.

4.1 Augmenting the collection with image metadata

The MMfragments is similar to the Ad Hoc track in that it asks for fragments
from the Wikipedia collection. The main difference is that the information needs
in this task have a clear multimedia character. The idea is that a system would
return fragments containing relevant images together with relevant text. The
PF/Tijah system and the Language Models used are designed for returning
relevant (structured) text. To be able to work with images, we tried to get extra
textual information in, to help us decide which are the relevant images. We
did this by adding text from the image metadata document as available in the
Multimedia images (MMimages) collection. Each < image > tag in the collection
is augmented with the corresponding metadata from the MMimages collection.

 0

 0.2

 0.4

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

isi
on

recall

{/=26 INEX 2006: Results’ Summary}
{/=20 metric: generalized Precision/Recall}

{/=20 task: AllInContext}

ARTorNAME
ARTorNAME_STAR_AVG
ARTorNAME_STAR_MAX

Fig. 5. AllinContext, generalised precision/recall: cwi/utwente compared to the com-
petition.

We did not try to separate names, users and captions, we simply added the
contents of the entire metadata document as text under the image tag.

4.2 Filtering results

Since the MMfragments deals with multimedia information needs, it seems wise
to return only fragments that contain images. We made sure this was the case
by filtering our results. Not all < image > tags in the Wikipedia correspond to
images that are actually part of the INEX multimedia collections; images that
are not part of these collections will not be visible to users during assessments.
Therefore, we also removed all results that contained references to images that
are not in the collection. This way, we made sure all our returned fragments
contain at least one visible image from the multimedia collections.

4.3 Experiments

We participated in the MMfragments and MMimages tasks. For both tasks, we
experimented with relatively simple text only queries, aiming to show that text
only queries can be competitive. Below we discuss our experimental results.

MMfragments For MMfragments we submitted one full article run and three
element runs. For the element runs, we did not directly use the given castitle,
but we experimented with runs of the form: //*[about(.,X)], where X contained
some set of terms taken from the topic. We experimented with the following sets
of terms:

STAR TITLE the title field

CAS noMM the terms from the castitle field without the visual examples and
concepts

CAS MMtext the terms from the castitle field plus the textual terms from the
example images metadata documents (again no concepts).

The article run (ART TITLE), was based on the title field of the topic only.
These queries were run against the augmented collection and the results were

filtered to make sure all returned fragments contain images from the collection.
The results are very disappointing; with mean average effort precision values of
around 0.001. The main reason for this is that –like in the Ad Hoc task– we
remove overlap from the results. This means we submitted Focused runs, while
the results are evaluated using the thorough setting. The results for our thorough
runs that still contain overlap show median performance, see Figure 6.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

In
te

rp
ol

at
ed

 E
ffo

rt
Pr

ec
isi

on

Gain Recall

CAS_MMtext
CAS_noMM

STAR_TITLE
ARTICLE_STAR

Fig. 6. MMfragments results: cwi/utwente runs compared to competition.

MMimages For MMimages, we submitted two very basic runs:

article-title An article run, only using the title field of the topic:
article[about(.,$title)]

cas-noMM A castitle run ignoring the visual hints, we removed all image ex-
amples and concept references from the NEXI query.

Figure 7 shows these basic runs give highly competitive performance on the
MMimages task. Clearly it is har to beat a text only baseline on this task.

5 Conclusion

PF/Tijah was used at INEX for the first time. The flexibility of the system and
the ease with which it allows the modification and combination of XML data

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pr
ec

isi
on

Interpolated Recall at

Interpolated Recall Precision Averages

UTWENTE-frag-article-title
UTWENTE-img-cas-noMM

Fig. 7. MMimages results: cwi/utwente runs compared to the competition.

makes it a very useful tool for (XML) IR experiments. For short article only
queries, the system is reasonably fast; for larger queries it takes a bit longer, but
for IR experiments, this is still acceptable.

Without adapting the models we used for the IEEE collection in previous
years, the unigram language modelling approach retrieves elements that are of-
ten (almost) complete articles or links to them. Moreover, for the AllInContext
and BestInContext tasks, the tasks most close to a realistic setting and to the
way the assessment procedure is set-up, retrieving complete articles rather than
smaller elements appears to be a useful strategy. Still, among the known rele-
vant elements are many smaller elements like paragraphs and sections. Perhaps
these smaller relevant elements appear in clusters. Further study is needed to
investigate whether this explains the success of the article retrieval strategies.

Our text only approach to multimedia retrieval was very successful on the
MMimages task, but less so on the MMfragments task. Perhaps a smarter way of
filtering the results is needed to retrieve the appropriate multimedia fragments.

References

1. P. Arvola, M. Junkkari, and J. Kekäläinen. Generalized contextualization method
for xml information retrieval. In CIKM ’05: Proceedings of the 14th ACM inter-
national conference on Information and knowledge management, pages 20–27, New
York, NY, USA, 2005. ACM Press.

2. P. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. Mon-
etdb/xquery: a fast xquery processor powered by a relational engine. In SIGMOD
’06: Proceedings of the 2006 ACM SIGMOD international conference on Manage-
ment of data, pages 479–490, New York, NY, USA, 2006. ACM Press.

3. D. Hiemstra, H. Rode, R. van Os, and J. Flokstra. Pftijah: text search in an XML
databases system. In Proceedings of the 2nd International Workshop on Open Source
Information Retrieval (OSIR), 2006.

4. J. List, V.Mihajlovic, G.Ramirez, A. de Vries, D. Hiemstra, and H. Blok. Tijah:
Embracing ir methods in xml database. Information Retrieval, 8(4):547 – 570,
December 2005.

