
Efficient XML and Entity Retrieval
with PF/Tijah:

CWI and University of Twente at INEX’08

Henning Rode1, Djoerd Hiemstra2, Arjen de Vries1, Pavel Serdyukov2

1CWI Amsterdam, The Netherlands
2CTIT, University of Twente, The Netherlands

Abstract.

1 Introduction

PF/Tijah is a research prototype created by the University of Twente and CWI
Amsterdam with the goal to create a flexible environment for setting up search
systems. By integrating the PathFinder (PF) XQuery system [1] with the Ti-
jah XML information retrieval system [2] it combines database and information
retrieval technology. The PF/Tijah system is part of the open source release
of MonetDB/XQuery developed in cooperation with CWI Amsterdam and the
University of Tübingen.

PF/Tijah is first of all a system for structured retrieval on XML data. Com-
pared to other open source retrieval systems it comes with a number or unique
features [3]:

– It can execute any NEXI query without limits to a predefined set of tags.
Using the same index, it can easily produce a “focused”, “thorough”, or “ar-
ticle” ranking, depending only on the specified query and retrieval options.

– The applied retrieval model, score propagation and combination operators
are set at query time, which makes PF/Tijah an ideal experimental platform.

– PF/Tijah embeds NEXI queries as functions in the XQuery language. This
way the system supports ad hoc result presentation by means of its query
language. The efficiency task submission described in the following section
demonstrates this feature. The declared function INEXPath for instance com-
putes a string that matches the desired INEX submission format.

– PF/Tijah supports text search combined with traditional database query-
ing, including for instance joins on values. The entity ranking experiments
described in this article intensively exploit this feature.

With this year’s INEX experiments, we try to demonstrate the mentioned
features of the system. All experiments were carried out with the least possible
pre- and post-processing outside PF/Tijah. Section 2 shows with the applica-
tion of the system to the INEX efficiency track, how a wide range of different
NEXI queries can be executed efficiently. Section 3 demonstrates how combined
database and retrieval queries provide a direct solution to specialized tasks like
entity ranking.

2 Efficiency

The INEX efficiency task combines retrieval quality and performance. In order
to test the performance on a wide range of different queries, the task uses a query
set of 568 structured queries combined from other tasks and collected over the
last years. The queries vary with respect to the contained number of query terms
and structural requirements. A subset for instance represents typical relevance
feedback queries containing a considerable higher number of query terms.

The retrieval efficiency of PF/Tijah was improved in the last year with re-
spect to several aspects, which we wanted to test by our submissions. The index
structure, containment joins, and score computation had been changed [4] to
improve the execution of simple query patterns such as

//tag[about(., term query)]

PF/Tijah creates a full-text index on top of Pathfinder’s pre/post encod-
ing of XML files [5]. Instead of assigning a pre-order value to complete text-
nodes as done by the Pathfinder, the Tijah full-text index enumerates each single
term. Both the Pathfinder encoding and the separate full-text index are held in
database tables. An “inverted” table is created by clustering the table (pre-order
values) on tag- and term ID.

PF/Tijah does not use top-k query processing strategies. Neither tag-term
pairs nor scores are precalculated or indexed in order avoid redundancy on the
one hand, and to allow at query time the application of arbitrary ranking func-
tions on the other hand. The applied ranking function is specified in PF/Tijah
for each single query. Furthermore, PF/Tijah’s containment join operator re-
lies on input sorted in document order. Node sequences sorted on score order
as they are typically accessed in the top-k query processing framework do not
match this requirement. PF/Tijah does not implement any caching strategy it-
self. However, the underlying database system tries to make use of the operating
system’s caching functionalities.

2.1 Submissions

We submitted in total 4 runs, 1 “article” ranking and 3 “thorough” element
rankings. Since PF/Tijah does not support top-k query processing, all submitted
runs return the complete set of the 1500 highest ranked elements for each query.
The applied ranking function for all submissions follows the language modeling
framework for retrieval. The so-called NLLR, normalized logarithmic likelihood
ratio, compares for each query term its distribution within element and query
model. The ranking aggregates single term scores on the level of scored elements.
Query terms marked by a leading ‘-‘ to indicate that they should not occur in
relevant elements were removed from the queries, since PF/Tijah currently does
not support this feature. For the same reason, phrases were treated as normal
query terms only.

For repeatability we report here the complete XQuery that was used to pro-
duce the ranking in PF/Tijah. The XQuery below was generated for Topic 856.

The individual queries only substitute the inside NEXI string accordingly. The
costly function call producing the required INEX path string was omitted when
running time measurements, since it does not reflect the retrieval performance
itself:

declare function INEXPath($n as node()) as xs:string

{

let $paths :=

for $a in $n/ancestor-or-self::*

where local-name($a) ne "docs"

return if (local-name($a) eq "article")

then concat(local-name($a),"[1]")

else concat(local-name($a),"[",

string(1 + count($a/preceding-sibling::*

[local-name() eq local-name($a)])),"]")

return string-join($paths, "/")

};

let $opt := <TijahOptions returnNumber="1500" ir-model="NLLR"

prior="NO_PRIOR" txtmodel_returnall="FALSE"/>

let $nexi := "//article//body[about(.//section//p, State Park) and

about(.//section//title, Geology) and

about(.//section//title, Geography)]

//figure[about(.//caption, Canyon)]"

return <topic id="856"> {

for $res at $rank in tijah:queryall($nexi, $opt)

return <result><file> {

concat("",$res/ancestor-or-self::article/name/@id)}</file>

<path>{INEXPath($res)}</path>

<rank>{$rank}</rank></result> }

</topic>

For the article ranking we automatically created NEXI queries by substitu-
tion of the placeholder ?CO-TITLE? below with the content-only (CO) field of
the query topic:

//article[about(., ?CO-TITLE?)]

The run should show how our XML retrieval system performs when used as a
standard document retrieval system.

In contrast, the “thorough” element rankings use the content-and-structure
(CAS) field of each query topic. The first “thorough” run, called star-strict,
executes the unmodified CAS query as provided in the query topic. The final
two runs perform a slight modification. Since the new PF/Tijah system is tuned
towards queries starting with a tag-name selection rather than searching in all
element nodes, we translated queries starting with the pattern

//*[about(., terms)]...

to

//(article|section|p)[about., terms)]...

The runs based on this modification are called asp-strict and asp-vague. The
distinction between both is explained in the following.

Thinking in terms of XPath, the base of the NEXI language, the scoring pred-
icates [about(., terms)] are first of all evaluated to a boolean value, causing
those elements to pass that satisfy the query. If the predicates are translated to
a scoring operator in the algebra tree, that only assigns scores to all elements,
the predicate becomes obsolete as a filter and the side effect of the predicate
evaluation, the score assignment, has become the primary aim. This is clearly
not the only possible query interpretation. We can require that an element has
to reach a certain score threshold in order to satisfy the predicate condition.
The least strict setting of such a threshold would be to filter out all zero scored
element. In other words, the about function would assign a true value to all
elements that contain at least one of the query terms. For a query of the form

//article[about(., xml)]//p[about(.,ir)]

strict semantics will pass only those articles that match the keywords of the
first about, whereas vague semantics also considers results of paragraphs about
“ir” that are not occurring within articles about “xml”. The two submitted runs,
asp-strict and asp-vague, compare the different query interpretation with respect
to retrieval quality and performance.

2.2 Results

Test System setup The test system used for all time measurements in this ar-
ticle was an INTEL Core2 Quad machine running on 2.4 Ghz with 8 GB main
memory. The necessary index structures could hence be held in memory, but not
in the considerably smaller CPU caches. Queries were executed sequentially. For
time measurements, we omitted the generation of the INEXPath as mentioned
above and stored only node identifiers instead. We measured the full execution
of the query, including the query compilation phase.

run avg time sum time min time max time

article 0.702 399 0.327 11.814
star-strict 17.186 9762 0.324 330.495
asp-strict 2.306 1310 0.324 52.388
asp-vague 8.213 4665 0.444 1235.572

Table 1. Execution time overview in sec

Table 1 shows an overview on the execution times of the different runs. The
article ranking is obviously faster on average than the three other runs evaluating

the CAS query. Since some CAS queries in the query set issue a simple fielded
search, it is not surprising that the minimal execution time stays almost the
same for all runs. Looking at the average and maximal execution time for a
single query, we observe, however, huge differences. Most of the time differences
can be attributed to queries that contain the pattern //* in the NEXI path.
If a posting list of a certain tagname is fetched from the inverted index, the
system guarantees the pre-order sortedness of the list, which is required for the
subsequent containment evaluation. Fetching the entire inverted index, however,
will not return a pre-order sorted element list, and therefore requires a resorting
of the entire node set. The difference becomes apparent when comparing the
execution times of the two runs star-strict and asp-strict. Even the expensive
substitute pattern selecting all article, section, and p nodes shows still a
better performance.

Evidently, the application of strict query semantics yield a better query per-
formance. The average total execution is around 4 times faster than in the case of
a vague interpretation. The early filtering on intermediary result sets especially
helps on highly structured queries. Consequently, we observe similar minimal ex-
ecution times but clear differences when looking at the highest times measured
for evaluating a single query. The differences of the two query interpretations
needs to be studied as well in terms of retrieval quality. Unfortunately, the results
here were not available at the time writing this article.

3 Entity Ranking

The INEX entity ranking task searches for entities rather than articles or ele-
ments with respect to a given topic. With entities we mean here unique instances
of a given type, such as “Hamburg” and “München” being an instance of type
“German cities”. For a given query topic such as “hanseatic league” and target
entity type “German cities” a good entity retrieval system should return “Ham-
burg”, but not “München” since it is off topic, or “Novgorod” since it is not a
German city.

The target type is given as a Wikipedia category in the INEX task. Fur-
thermore, each retrieved entity needs to have its own article in the Wikipedia
collection. Obviously, this decision is only suitable for entity ranking within an
encyclopedia, where we can assume that most mentioned entities in fact have
their own entry. In consequence, a baseline ranking is achieved by a straight-
forward article ranking on the Wikipedia corpus combined with an appropriate
category filtering mechanism.

The INEX task further provides a few relevant example entities for each query
topic. The given entities can be used as relevance feedback to improve the initial
text query or to redefine the set of target categories. Another application for the
example entities comes with the list completion task. This task asks to derive
appropriate target categories automatically from the given relevant entities.

Our main aim for this year’s track participation was to express entity ranking
queries completely in the XQuery language. Hence, we wanted to show that

PF/Tijah is “out of the box” able to express and evaluate complex entity ranking
queries with a high retrieval quality. One preprocessing step, however, turned out
to be unavoidable. The INEX wikipedia corpus comes without category tagging
in the provided XML format. Instead, the categorization of all articles is provided
by separate plain text files. In order to unify all given information, we integrated
the category tagging in the XML corpus itself as shown in the following example:

<article><name id="13467">Hamburg</name>

<body>....</body>

<category id="5654">cities in germany</category>

<category id="52414">port cities</category>

</article>

Next to the title keywords, target categories, and relevant entities provided
with each search topic, we generated for each search topic an additional list of
relevant derived categories. Namely those categories assigned to the specified
relevant entities. The derived relevant categories are used as mentioned above
for refinement of the target categories as well as for the list completion task:

for $topic in doc("topics.xml")//inex topic

let $relevant entities := $topic//entity/@id

return collection("wikipedia")//

article[name/@id =

$relevant entities]//category/@id

3.1 Submissions

We submitted in total 6 runs, 4 runs for the entity ranking task, and 2 list
completion submissions. The submissions can also be divided into 3 runs based
solely on a direct article ranking, and 3 other runs using also the scores of
adjacent articles in the link graph.

We start by describing the direct article rankings. The ranking and category
filtering is performed by a single XQuery, which is shown below. The fields fields
?QID?, ?QTERMS?, ?CATS?, ?DERIVEDCATS? were substituted according to the
given query topic:

(: part1 - retrieval :)

let $query_num := "?QID?"

let $q_terms := tijah:tokenize("?QTERMS?")

let $opt := <TijahOptions ir-model="LMS" returnNumber="1000"

collection-lambda="0.5"/>

let $nexi := concat("//article[about(.,", $q_terms, ")]")

let $tijah_id := tijah:queryall-id($nexi, $opt)

let $nodes := tijah:nodes($tijah_id)

(: part2 - determine target categories :)

let $targetcats := distinct-values(((?CATS?), (?DERIVEDCATS?)))

(: part3 - filtering and output generation :)

for $a at $rank in $nodes

let $score := if ($a//category/@id = $targetcats)

then tijah:score($tijah_id, $a)

else tijah:score($tijah_id, $a) * 0.0000001

order by $score descending

return string-join((string($query_num), "Q0", concat("WP",$a/name/@id),

string($rank), string($score), "ER_TEC"), " ")

The presented XQuery ranks in the first part all articles of the Wikipedia col-
lection according to the topic of the query. We applied here a standard language
modeling retrieval model with the smoothing factor set to λ = 0.5. Moreover,
the result set was limited to the top 1000 retrieved articles.

The second part determines the target categories. Whereas our first run
ER TC uses only the categories provided with the query topic, the second run
ER TEC refines the target category set by uniting the given and derived cat-
egories as shown in the query. The list completion LC TE, on the other hand,
uses only the derived but not the given categories.

The final part performs the actual filtering and required TREC-style output
generation. Notice that the applied filtering in fact only performs a reordering
and does not remove articles from the ranked list. Last year’s experiments had
clearly shown that the reordering comes with a higher recall compared to the
filtering technique.

The other 3 runs ER TC idg, ER TEC idg, LC TE idg exploit the retrieval
scores of adjacent nodes and follow otherwise a symmetrical experiment schema
with respect to the used target categories. The underlying idea behind the ex-
ploitation of link structure is adopted from other entity ranking tasks such as ex-
pert finding, where we typically find a number of topical relevant documents that
mention relevant entities, but entities do not have a textual description them-
selves. A sample cutout of such a graph is visualized in Figure 1. The edges here
symbolize containment of entities within documents. Entities are then ranked
by a propagation of scores from adjacent documents.

Although entity ranking on the Wikipedia corpus is different since entities
are represented by their own articles and have a text description themselves, it
still often occurs the articles outside the target category carry valuable infor-
mation for the entity ranking. Recall the above given example query searching

Fig. 1. Part of a link graph containing entities ei and other documents dj

for German cities in the hanseatic league. We will find Wikipedia entries about
the history of the hanseatic league listing and linking to all major participat-
ing cities. While such article remains outside the target category, the links to
relevant city pages are of high value for the ranking. Especially, when a city’s
description itself does not reach far enough into history. We developed last year a
ranking method matching this condition [6]. The personalized weighted indegree
measure tries to combine the article ranking itself w(e|q) with the ranking of
other Wikipedia entries w(e′|q) linking entity e:

PwIDG(e) = µw(e|q) + (1− µ)
∑

e′∈Γ (e)

w(e′|q) (1)

A corresponding indegree score computation can be expressed as well in
XQuery. The below shown query part substitutes the score computation in the
previous entity ranking example and sets the parameter µ to 0.85:

for $a at $rank in $nodes

let $in_score := sum(

for $l in $nodes//collectionlink[@*:href =

concat($a/name/@id, ".xml")]

let $source_article := exactly-one($l/ancestor::article)

return tijah:score($tijah_id, $source_article)

)

let $score := if ($a//category/@id = $targetcats)

then 0.85 * tijah:score($tijah_id, $a) + 0.15 * $in_score

else (0.85 * tijah:score($tijah_id, $a) + 0.15 * $in_score)

* 0.0000001

order by $score descending

return string-join((string($query_num), "Q0", concat("WP",$a/name/@id),

string($rank), string($score), "1_cirquid_ER_TEC_idg"), " ")

Notice that each link between two entities is counted separately here. We
tested before a version of the query that establishes only one link between two
entities e1 and e2 even if e1 links e2 multiple times. Initial tests on last years
data indicated, however, a higher retrieval quality for the above presented query.

3.2 Training

We trained the parameter µ on the data of last year’s entity ranking task. For
the chosen relevance propagation method a setting of µ = 0.85 showed the best
performance with respect to precision on top of the retrieved list as well as for
mean average precision:

µ 0.8 0.85 0.9 0.95
MAP 0.3373 0.3413 0.3405 0.3349
P5 0.4435 0.4435 0.4304 0.4348
P10 0.3739 0.3783 0.3717 0.3630

3.3 Results

The results will be shown in the final version of this paper, but have not been
evaluated at the time writing the notebook paper.

4 Conclusions

We demonstrated with this article the flexibility and effectiveness of the cho-
sen approach to integrate the retrieval language NEXI with the database query
language XQuery. The PF/Tijah system allows to express a wide range of INEX
experiments without changes to the system itself. Often time consuming pre- and
post-processing of data is not necessary or reduced to simple string substitutions
of query terms for each given query.

Although PF/Tijah does not apply top-k query processing techniques, it
shows a good performance on a wide range of NEXI queries. Future develop-
ments should address the currently bad supported retrieval on the entire node
set, issued by //*-queries.

The INEX entity ranking task demonstrates how standard retrieval functions
can be applied to non-standard retrieval tasks with the help of score propagation
expressed on the XQuery level. A combined DB/IR system as PF/Tijah can
demonstrate here its full advantage.

References

1. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: a fast XQuery processor powered by a relational engine. In:
SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, New York, NY, USA, ACM (2006) 479–490

2. List, J., Mihajlovic, V., Ramı́rez, G., de Vries, A., Hiemstra, D., Blok, H.E.: Tijah:
Embracing Information Retrieval methods in XML databases. Information Retrieval
Journal 8(4) (2005) 547–570

3. Hiemstra, D., Rode, H., van Os, R., Flokstra, J.: PF/Tijah: text search in an XML
database system. In: Proceedings of the 2nd International Workshop on Open Source
Information Retrieval (OSIR), Seattle, WA, USA, Ecole Nationale Supérieure des
Mines de Saint-Etienne (2006) 12–17

4. Rode, H.: From Document to Entity Retrieval. PhD thesis, University of Twente,
CTIT (2008)

5. Grust, T., van Keulen, M., Teubner, J.: Accelerating XPath evaluation in any
RDBMS. ACM Trans. Database Syst. 29 (2004) 91–131

6. Rode, H., Serdyukov, P., Hiemstra, D.: Combining Document- and Paragraph-
Based Entity Ranking. In: Proceedings of the 31th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2008). (2008) 851–852

