
A database approach to content-based XML retrieval

Djoerd Hiemstra
University of Twente, Centre for Telematics and Information Technology

P.O. Box 217, 7500 AE Enschede, The Netherlands

d.hiemstra@utwente.nl

ABSTRACT
This paper describes a first prototype system for content-
based retrieval from XML data. The system’s design sup-
ports both XPath queries and complex information retrieval
queries based on a language modelling approach to informa-
tion retrieval. Evaluation using the INEX benchmark shows
that it is beneficial if the system is biased to retrieve large
XML fragments over small fragments.

Keywords: XML Databases, Information Retrieval, Lan-
guage Models

1. INTRODUCTION
This paper describes a number of fundamental ideas and

starting points for building a system that seamlessly inte-
grates data retrieval and information retrieval (IR) function-
ality into a database system. We describe a first prototype
system that is developed according to these ideas and start-
ing points and report on experimental results of the system
on the INEX collection. The current prototype system only
support a small part of the functionality that we envision
for future systems. In the upcoming years we will build a
number of such prototype systems in the CIRQUID (Com-
plex Information Retrieval Queries in a Database) project
that is funded by the Netherlands Organisation for Scientific
Research (NWO).

The CIRQUID project bridges the gap between structured
query capabilities of XML query languages and relevance-
oriented querying. Current techniques for XML querying,
originating from the database field, do not support relevance-
oriented querying. On the other hand, techniques for rank-
ing documents, originating from the information retrieval
field, typically do not take document structure into account.
Ranking is of the utmost importance if large collections are
queried, to assist the user in finding the most relevant doc-
uments in a retrieved set.

The paper is organised as follows: Section 2 describes
our database approach to relevance-oriented querying from
XML documents. Section 3 reports the experimental results
of our first prototype system. Finally, Section 4 concludes
this paper.

2. A MULTI-MODEL DATABASE APPROACH
A three level design of DBMSs – distinguishing a con-

ceptual, a logical, and a physical level – provides the best
opportunity for balancing flexibility and efficiency. In our
approach, we take the three level architecture to its extreme.

Not only do we guarantee logical and physical data indepen-
dence between the three levels, we also map the conceptual
data model used by the end users to a physical implemen-
tation using different data models at different levels of the
database architecture: the so-called “multi-model” database
approach [26].
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Figure 1 shows a graphical representation of the approach.
At the logical level, language models will be used to develop
information retrieval primitives as a logical algebra. The
physical level provides a relational storage of the XML data,
including fast index structures. A new approach to query
optimisation deals with the complex queries that combine
structure and content at the logical level. In the following
three subsections we will present some of the ideas and start-
ing points for developing the three levels of the multi-model
database approach.

2.1 All of XPath and modern IR queries
The conceptual level should support XML and IR queries.

Our objective is to build a system that supports “all of XML

and all of IR”.
For XML, standards are currently emerging, and it seems

reasonable to support the XPath standard for our “tradi-
tional database queries”. Practically, this means that our
system should contain a complete representation of the XML

data, and that the system is able to reproduce (parts of) the



data as the result of the query. For XPath we refer to [2].
Unlike the database and XML communities, which have

developed some well-accepted standards in the past 30 years,
the information retrieval community does not have any com-
parable standard query language or retrieval model. If we
look at some practical systems however, e.g. internet search
engines like Google and AltaVista, or online search services
as provided by e.g. Dialog and LexisNexis, it turns out that
there is much overlap in the kind of functionality they pro-
vide.

1. IT magazines
2. +IT magazine* -MSDOS
3. "IT magazines"
4. IT NEAR magazines
5. (IT OR computer) (books OR magazines OR journals)
6. XML[0.9] IR[0.1] title:INEX site:utwente.nl

Figure 2: Examples of complex IR queries

Figure 2 gives some example queries from these systems.
The first query is a simple “query by example”: retrieve a
ranked list of documents about IT magazines. The second
query shows the use of a mandatory term operator ‘+’, stat-
ing that the retrieved document must contain the word IT,1

a wild card operator ‘*’ stating that the document might
match “magazine”, but also “magazines” or “magazined”
and the ‘-’ operator stating that we do not prefer IT mag-
azines about MSDOS. The third and fourth query searches
for documents in which “IT” and “magazines” occur respec-
tively adjacent or near to each other. The fifth query shows
the use of the ‘OR’ operator, stating that the system might
retrieve documents about “IT magazines”, “computer mag-
azines”, “IT journals”, “IT books”, etc. The sixth and last
query shows the use of structural information, very much
like the kind of functionality that is provided by XPath; so
“title:INEX” means that the title of the document should
contain the word INEX. The last query also shows addi-
tional term weighting, stating that the user finds XML much
more important than IR.

These examples suggest that at the logical level, our sys-
tem should support algebraic constructs for proximity of
terms, mandatory terms, a logical OR, term weighting, etc.
To support proximity operators the system should at least
store term position information somehow at the physical
level.

2.2 Moa and Language Models
Parts of a prototype multi-model database system have

already been developed with the extensible object algebra
Moa [14] as the logical layer. An open question in this set-
up is how Moa, which provides a highly structured nested
object model with sets and tuples, can be adapted to man-
aging semi-structured data. In this paper we will not get
into Moa, but direct our attention to the language mod-
elling approach to information retrieval as proposed in [9,
18] to guide the definition of the logical layer of our system.

1Note that most retrieval systems do not distinguish upper
case from lower case, and confuse the acronym “IT” with
the very common word “it”.

The basic idea behind the language modelling approach to
information retrieval is that we assign to each XML element
X the probability that the element is relevant, given the
query Q = q1, · · · , qn. Using Bayes’ rule we can rewrite
that as follows.

P (X|q1, q2, · · · , qn) =
P (q1, q2, · · · , qn|X)P (X)

P (q1, q2, · · · , qn)
(1)

Note that the denominator on the right hand side does
not depend on the XML element X. It might therefore be
ignored when a ranking is needed. The prior P (X) however,
should only be ignored if we assume a uniform prior, that is,
if we assume that all elements are equally likely to be rele-
vant in absence of a query. Some non-content information,
e.g. the number of accesses by other users to an XML ele-
ment, or e.g. the length of an XML element, might be used
to determine P (X).

Let’s turn our attention to P (q1, q2, · · · , qn|X). The use of
probability theory might here be justified by modelling the
process of generating a query Q given an XML element as a
random process. If we assume that this page in the INEX
proceedings is an XML element in the data, one might imag-
ine picking a word at random from the page by pointing at
the page with closed eyes. Such a process would define a
probability P (q|X) for each term q, which might simply be
calculated by the number of times a word occurs on this
page, divided by the total number of words on the page.
Similar generative probabilistic models have been used suc-
cessfully in speech recognition systems [21], for which they
are called “language models”.

The mechanism above suggests that terms that do not oc-
cur in an XML element are assigned zero probability. How-
ever the fact that a term is never observed does not mean
that this term is never entered in a query for which the
XML element is relevant. The problem that events which
are not observed in the data might still be reasonable in a
new setting, is called the sparse data problem in the world
of language models [16]. Zero probabilities should therefore
be avoided. A standard solution to the sparse data prob-
lem is to interpolate the model P (q|X) with a background
model P (q) which assigns a non-zero probability to each
query term. If we additionally assume that query terms are
independent given X, then:

P (q1, q2, · · · , qn|X) =

n∏
i=1

(
(1−λ)P (qi) + λP (qi|X)

)
(2)

Equation 2 defines our basic language model if we assume
that each term is generated independently from previous
terms given the relevant document. Here, λ is an unknown
mixture parameter, which might be set using e.g. relevance
feedback of the user. Ideally, we would like to train the prob-
ability of an unimportant term P (qi) on a large corpus of
queries. In practice however, we will use the document col-
lection to define these probabilities. By some simple rewrit-
ing, it can be shown that Equation 2 can be implemented
as a vector space weighting algorithm [10].

Why would we prefer the use of language models over the
use of e.g. a vector space model with some tf.idf weighting
algorithm as in [22]? The reason is the following: our gen-
erative query language model gives a nice intuitive explana-
tion of tf.idf weighting algorithms by means of calculating



the probability of picking at random, one at a time, the
query terms from an XML element. We might extend this
by any other generating process to model complex informa-
tion retrieval queries in a theoretically sound way that is
not provided by a vector space approach. For instance, we
might calculate the probability of sampling either “maga-
zines” or “books” or “journals” from the XML document by
summing the probabilities P (magazines|X), P (journals|X),
and P (books|X). So, Query 5 from Figure 2 would assign
the following probability to each XML element (ignoring for
a moment the prior P (X) and the linear interpolation with
the background model P (qi) for simplification of the exam-
ple).

P (Query 5) = (P (IT|X) + P (computer|X)) · (P (books|X)
+ P (journals|X) + P (magazines|X))

Interestingly, a similar approach was proposed in 1960 by
Maron and Kuhns [17]. In a time when manual indexing
was still guiding the field, they suggested that an indexer,
which runs through the various possible index terms q that
possibly apply to a document, might assign a probability
P (q|X) to a term given a document instead of making a
yes/no decision. The language modelling equivalent of ‘dis-
junction’ and ‘conjunction’ (i.e. ‘AND’ and ‘OR’ operators)
is motivated by adding a so-called translation model to the
basic model [1, 13, 27].

In CIRQUID we will explore language modelling approaches
that model all structured queries in Figure 2. The interested
reader is referred to [18, 25] for so-called bigram models for
proximity queries, and [12] for mandatory terms. A similar
approach to querying XML data is proposed by List and De
Vries [15], and Ogilvie and Callan [19].

2.3 Relational storage
At the physical level, we will use the ‘good-old’ relational

model for storage of the data. In order to combine XPath
and information retrieval functionality, we somehow have to
combine relational data representations of XML as described
in e.g. [4, 24], and relational representations of information
retrieval indexing structures as described by e.g. [3, 7, 26].
Our starting point for the relational storage of the XML data
is that it should not critically depend on the existence of a
schema or DTD, and that it should be possible to reconstruct
the XML data completely. Our starting point for the storage
of information retrieval indexing structures is that it should
provide the ‘traditional information retrieval’ functionality
as well as term position information to support proximity
queries.

Related work on XML storage
A standard approach to storing hierarchical or nested data,
with or without a schema, is to store each “instance node”
separately in a relational table. This is illustrated in Figure
3, 4 and 5. Figure 4 shows a tree representation of the XML

instance of Figure 3. Each node in the tree is assigned a
node identifier “id”.

Now for each node, we might store its id and the id of its
parent as shown in Figure 5. One can think of numerous
alternative ways to assign the ids to the instance nodes (in
this example they were assigned in pre-order). Similarly,
one can think of many relational schemas that support this
basic idea, by fragmenting the tables of Figure 5 in various
ways. In previous work, we used a full fragmentation in

<article>
<au><fnm>Boudewijn</fnm><snm>Büch</snm></au>
<atl>Kleine blonde dood</atl>
<bdy>

<p>Een schrijver ontmoet een oude bekende.</p>
<p>Er ontstaat een liefdesrelatie.</p>

</bdy>
</article>

Figure 3: Example XML data
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Figure 4: Tree representation of the data

binary relational tables [14] which provides efficient support
for XML querying [24].

tags pcdata
id parent tag name id parent string
1 0 article 4 3 Boudewijn
2 1 au 6 5 Büch
3 2 fnm 8 7 Kleine blonde . . .
5 2 snm 11 10 Een schrijver . . .
7 1 atl 13 12 Er ontstaat . . .
9 1 bdy

10 9 p
12 9 p

Figure 5: Example relational storage of XML data

Related work on the storage of IR indexes
A standard approach to the relational storage of information
retrieval indexes uses two tables. One table stores the docu-
ment term statistics, i.e. for each document-term pair some
statistics related to the number of times the term occurs in
the document. A second table stores the global term statis-
tics, i.e. for each term some statistics related to the total
number of times that a term occurs in the entire collection.
In traditional systems that use a tf.idf term weighting algo-
rithm, the first table contains the tf ’s (term frequencies) and
the second table contains the df ’s (document frequencies).
In the language modelling approach we might store P (q|X)
in the first table and P (q) in the second.

In [3, 7, 26], id refers to a document identifier. For XML

data it should refer to the node id of the XML element as
shown in Figure 4 and 5. A fundamental problem with this
approach is the following. If we include all word-id pairs
in the table local stats of Figure 6, then each word in
the data will occur as often as the average depth of the
XML data. For INEX, the average depth is about 7, so
our information retrieval index would be 7 times as big as



local stats global stats
word id P (word|id) word P (word)
aardvark 43 0.007 aardvark 0.00001
after 3 0.09 after 0.0345
after 42 0.11 affect 0.00055
after 78 0.015 ambient 0.0000001
after 980 0.067 an 0.107
affect 321 0.2 :
ambient 761 0.0001 :

: :
bekende 1 0.031 :
blonde 1 0.031 :
boudewijn 1 0.031 :

: :

Figure 6: Example relational storage of an IR index

the “regular” index that only indexes traditional documents
(e.g. web pages).

A solution to this problem is to let the database admin-
istrator choose the nodes that need to be indexed, the so-
called “indexing nodes” [5, 28], however, this will restrict the
functionality such that queries like //*[. =~ "computational

biology"] (pseudo “XPath+IR” for any element about “com-
putational biology”) would be impossible, or only possible
by inefficient linear scans over all string fields in the pcdata

table of Figure 5.
An alternative solution to this problem is to only store all

leaf nodes of the XML data in local stats as suggested in
[6]. In this case, queries like //article[. =~ "computational

biology"] (any article element about “computational biol-
ogy”) would need a number of repeated joins with the table
tags of Figure 5 in order to determine the id of the article
node that contains the query terms.

Instead of storing the tag name, one could store the com-
plete path in Figure 5. This would solve only part of the
problem, because it would require a special purpose imple-
mentation of regular path matches on attributes.

SELECT id, SUM(f(local stats.p, global stats.p)) AS s
FROM local stats, global stats
WHERE local stats.word = global stats.word

AND (local stats.word = ’computational’
OR local stats.word = ’biology’)

GROUP BY id
ORDER BY s DESC

Figure 7: Traditional IR query in pseudo SQL

Figure 7 shows the typical information retrieval ranking
algorithm expressed in SQL to give the reader a flavour of
how the system uses the tables of Figure 6 at run time. In
practice, we will not use SQL at the physical level. The
function f in the algorithm might be any tf.idf formula. In
case of the language modelling approach, f might be defined
as log(1 + P (q|X)/P (q)) [10].

A first prototype
For our first prototype we implemented the XML storage
scheme proposed by Grust [8]. Grust suggests to assign two
identifiers to each instance node: one id is assigned in pre-
order, and the other in post-order. These ids replace the

explicit parent-child relations as described in the previous
paragraphs.2 The pre and post order assignment of XML

element ids provides elegant support for processing XPath
queries.

<article>1

<au>2<fnm>3Boudewijn4</fnm>5<snm>6Büch7</snm>8</au>9

<atl>10Kleine11 blonde12 dood13</atl>14

<bdy>15

<p>16Een17 schrijver ontmoet een oude bekende.</p>
<p>Er ontstaat een liefdesrelatie.</p>

</bdy>
</article>

Figure 8: Example XML document: assigning ids
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Figure 9: Tree representation: assigning ids

Note that pre and post order assignment can be done al-
most trivially in XML by keeping track of the order of re-
spectively the opening and closing tags as shown in Figure
8 and 9. Both figures also show that position information is
assigned to each word in the data. These positions will be
used in our term position index. This leads to the relational
storage of XML data as shown in Figure 10 and the rela-
tional storage of the information retrieval positional index
as shown in Figure 11.

tags2 pcdata2
pre post tag name pre post string
1 32 article 4 4 Boudewijn
2 9 au 7 7 Büch
3 5 fnm 11 13 Kleine blonde. . .
6 8 snm 17 22 Een schrijver . . .

10 14 atl 25 28 Er ontstaat . . .
15 30 bdy
16 23 p
24 29 p

Figure 10: Relational storage of XML data

Note that exactly one ‘join’ (on the condition: position

> pre and position < post, counting the positions) will
give us a table that is similar to local stats in Figure 6.
Figure 12 expresses this in SQL.

Also note that, unlike the approaches in [6, 28], we are not
interested in the total number of times a term occurs in a
2Actually, [8] store the id of the parent as well. Similarly,
in [24] a field is added to keep track of the order of XML
elements; here we emphasise different view points.



position index global stats
word position word P (word)
bekende 22 bekende 0.00321
blonde 12 blonde 0.00013
boudewijn 4 boudewijn 0.00004
büch 7 büch 0.00001
een 17 een 0.0991
een 20 er 0.0145
een 27 :
er 25
kleine 11

:

Figure 11: Relational storage of the IR positional
index

CREATE VIEW local stats2 AS
SELECT word, pre

CAST(COUNT(position) AS float) / (post - pre) AS p
FROM position index, tags2
WHERE position > pre

AND position < post
GROUP BY word, pre

Figure 12: Combining term information and the
structured information in pseudo SQL

certain XML element type (that is, the so-called ‘document
frequency’ of the term). The language modelling approach
suggests that P (q) is the probability of a term in “general
query English”: It should be the same for all queries. Fur-
thermore, to avoid the sparse data problem, it should be
estimated on as much data as possible. In our case, P (q)
is defined by the total number of occurrences of q in the
entire INEX collection, divided by the total number of term
occurrences in INEX (i.e. the “collection length” measured
in the number of words).

2.4 Optimisation
As an example of a logical optimisation step, let’s have

a look at the fifth query of Figure 2 again. For the second
part of Query 5, P (books OR journals OR magazines|X) is
defined in Section 2.2 as:

P (books|X) + P (journals|X) + P (magazines|X)

Remember that each P (q|X) is defined by the ‘join’ of Fig-
ure 12. This suggests that we have to do the ‘join’ for each
of the words books, journals and magazines, and then group
them by the XML element id, adding the probabilities. In
[11] it is shown that a more efficient approach would be to
first determine the number of occurrences of either (books
OR journals OR magazines) and then compute the proba-
bility by dividing by the length of the XML element. So, we
could first do a selection of (books OR journals OR maga-
zines) on the position index, and then do the ‘join’ with the
tags table. This way we avoid two of the three joins. A sim-
ilar optimisation step is in general not possible in extended
Boolean models [23] and fuzzy set models [20].

To understand what is happening here, note that each oc-
currence of (books OR journals OR magazines) actually has
its own position. At any place in the XML data where either
books, or journals, or magazines occurs, we actually know

its position. We cannot do a similar optimisation for ‘AND’
queries (Note that all queries of Figure 2, except for Query
5, are implicit ‘AND’ queries), that is, the words books, jour-
nals, and magazines occur nowhere in the data on exactly
the same position, for the simple reason that each position
contains exactly one word.

The above example shows a simple, almost trivial, opti-
misation step. A modern database query optimiser should
be able to reason over queries that contain clauses over data
structures that are typically implemented in different exten-
sions of the DBMS. Current, state-of-the-art optimiser tech-
nology can deal with extensions in isolation. In future work,
we will design an inter-object optimiser layer that is able to
bridge the typical orthogonality of database extensions. At
the logical level, the query optimiser will be extended to
handle interacting extensions, including e.g. extensions for
other media.

3. EXPERIMENTAL SETUP AND RESULTS
In this section we describe the experimental setup and the

evaluation results of the system using the INEX testbed.
We describe the tasks and evaluation procedure, the system
setup and research questions, and finally the experimental
results.

3.1 The INEX evaluation
INEX is the Initiative for the Evaluation of XML Re-

trieval. The initiative provides a large testbed, consisting of
XML documents, retrieval tasks, and relevance judgements
on the data. INEX identifies two tasks: the content-only
task, and the content-and-structure task.

The content-only task provides queries of the form: //*[.

=~ "computational biology"] (“XPath+IR” for: any element
about “computational biology”). In this task, the system
needs to identify the most appropriate XML element for re-
trieval. The task resembles users that want to search XML

data without knowing the schema or DTD.
The content-and-structure task provides queries of the form:
//article[author =~ "Smith|Jones" and bdy =~ "software

engineering"] (“XPath+IR” for: retrieve articles written by
either Smith or Jones about software engineering). This task
resembles users or applications that do know the schema or
DTD, and want to search some particular XML elements
while formulating restrictions on some other elements.

For each query in both tasks, quality assessments are
available. XML elements are assessed based on relevance
and coverage. Relevance is judged on a four-point scale from
0 (irrelevant) to 3 (highly relevant). Coverage is judged by
the following four categories: N (no coverage), E (exact cov-
erage), L (the XML element is too large), and S (the XML

element is too small).
In order to apply traditional evaluation metrics like pre-

cision and recall, the values for relevance and coverage must
be quantised to a single quality value. INEX suggests the
use of two quantisation functions: Strict and liberal quanti-
sation. The strict quantisation function evaluates whether
a given retrieval method is capable of retrieving highly rel-
evant XML elements: it assigns 1 to elements that have a
relevance value 3, and exact coverage. The liberal quanti-
sation function assigns 1 to elements that have a relevance
value of 2 and exact coverage, or, a relevance value of 3 and
either exact, too small, or too big coverage.



3.2 System setup and research questions
We evaluate a system that only has limited functionality.

First of all, we assume that λ = 1 in Equation 2, so we do not
have to store the global stats table of Figure 11. The sys-
tem supports queries with a content restriction on only one
XML element, so the example content-and-structure query
in the previous section is not supported: Either the restric-
tion on the author tag, or the restriction on the bdy tag
has to be dropped. The system supports conjunction and
disjunction operators, which are evaluated as defined in the
example of Query 5 at the end of Section 2.2. All queries
were manually formulated from the topic statements.

The experiments are designed to answer the following re-
search question: Can we use the prior probability P (X) (see
Equation 1) to improve the retrieval quality of the system?
We present three experiments using the system described in
this paper, for which only the prior probabilities P (X) dif-
fer. The baseline experiment uses a uniform prior P (X) = c,
where c is some constant value, so each XML element will
have the same a priori probability of being retrieved. A
second experiment uses a length prior P (X) = number of
tokens in the XML element, where a token is either a word
or a tag. This means that the system will prefer bigger el-
ements, i.e. elements higher up the XML tree, over smaller
elements. A third experiment uses a prior that is some-
where in between the two extremes. The prior is defined
by P (X) = 100 + number of tokens in the XML element.
Of course, the priors should be properly scaled, but the ex-
act scaling does not matter for the purpose of ranking. We
hypothesise that the system using the length prior will out-
perform the baseline system

3.3 Evaluation results
This section presents the evaluation results of three re-

trieval approaches (no prior, ‘half’ prior, and length prior)
on two query sets (content-only, and content-and-structure),
following two evaluation methods (strict and liberal). We
will report for each combination the precision at respectively
5, 10, 15, 20, 30 and 100 documents retrieved.

Strict evaluation
Table 1 shows the results of the three experiments on the
content-only queries following the strict evaluation. The
precision values are averages over 22 queries. The results
show an impressive improvement of the length prior on all
cut-off values. Apparantly, if the elements that need to be
retrieved are not specified in the query, users prefer larger
elements over smaller elements.

precision no prior ‘half’ prior length prior
at 5 0.0455 0.0455 0.1909
at 10 0.0364 0.0455 0.1591
at 15 0.0303 0.0424 0.1394
at 20 0.0341 0.0364 0.1318
at 30 0.0364 0.0424 0.1318
at 100 0.0373 0.0559 0.1000

Table 1: Results of content-only (CO) runs with
strict evaluation

Table 2 shows the results of the three experiments on
the content-and-structure queries following the strict evalua-
tion. The precision values are averages over 28 queries. The
baseline system performs much better on the content-and-

structure queries than on the content-only queries. Surpris-
ingly, the length prior again leads to substantial improve-
ment on all cut-off values in the ranked list.

precision no prior ‘half’ prior length prior
at 5 0.1929 0.2357 0.2857
at 10 0.1964 0.2321 0.2857
at 15 0.1976 0.2333 0.2714
at 20 0.1929 0.2232 0.2589
at 30 0.1786 0.2060 0.2607
at 100 0.0954 0.1107 0.1471

Table 2: Results of content-and-structure (CAS)
runs with strict evaluation

Liberal evaluation
Table 3 shows the results of the three experiments on the
content-only queries using the liberal quantisation function
defined above for evaluation. The precision values are aver-
ages over 23 queries. Again, the results show a significant
improvement of the length prior on all cut-off values.

precision no prior ‘half’ prior length prior
at 5 0.1130 0.1391 0.4261
at 10 0.0957 0.1304 0.3609
at 15 0.0957 0.1333 0.3304
at 20 0.1000 0.1152 0.3000
at 30 0.1087 0.1232 0.2812
at 100 0.0896 0.1222 0.2065

Table 3: Results of content-only (CO) runs with li-
beral evaluation

Table 4 shows the results of the three experiments on the
content-and-structure queries following the liberal evalua-
tion. The precision values are averages over 28 queries. The
length prior again shows better performance on all cut-off
values. Note that the content-only task and the content-
and-structure task show practically equal performance if the
liberal evaluation procedure is followed.

precision no prior ‘half’ prior length prior
at 5 0.2429 0.2929 0.4000
at 10 0.2286 0.2823 0.3750
at 15 0.2262 0.2881 0.3738
at 20 0.2268 0.2821 0.3607
at 30 0.2179 0.2583 0.3595
at 100 0.1279 0.1571 0.2054

Table 4: Results of content-and-structure (CAS)
runs with liberal evaluation

4. DISCUSSION AND FUTURE WORK
We presented an initial design and implementation of a

system that supports XPath and complex information re-
trieval queries. In the CIRQUID project we will develop an
algebra that allows us to define complex queries using lan-
guage modelling primitives, like bigrams (proximity) condi-
tional independence, and mixture models.

From the INEX experiments we conclude that it is benefi-
cial to assign a higher prior probability of relevance to bigger
fragments of XML data than to smaller XML fragments, that
is, to users, more information seems to be better informa-
tion.
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A. APPENDIX: THE QUERIES
We formulated the following “XPath+IR” queries from the INEX topics 1–60. The first 30 queries are the content-and-
structure queries, whereas the queries 31–60 are the content-only queries.
query 01: //article[. =~ "description (logic|logics)"]/fm/au

query 02: //ack[. =~ "(funds|funded|fund) (usa|america|darpa|arpa)"]

query 03: //*[. =~ "information (visualization|visualisation) (database|databases|dbms)"]

query 04: //*[. =~ "extreme programming (results|experiences|problems)"]

query 05: //article[. =~ "qbic"]/fm/tig

query 06: //article[. =~ "(tutorial|survery) (programming|software)"]/fm/tig

query 07: //sec[. =~ "(video|mpeg) (retrieval|database|databases|dbms)"]

query 08: //article[. =~ "certificate ibm"]

query 09: //article[. =~ "nonmonotonic reasoning"]

query 10: //p[. =~ "book review"]

query 11: //*[. =~ "(wireless|mobile) (secure|security)"]

query 12: //sec[. =~ "(internet|www|web) search"]

query 13: //article[. =~ "review (virtual|augmented) reality"]/fm/au

query 14: //p[. =~ "(corba|orb) figure"]

query 15: //bb[. =~ "hypercube|mesh|torus"]

query 16: //article[. =~ "concurrency control"]/fm/tig/atl

query 17: //bb[. =~ "croft"]

query 18: //article[. =~ "hypertext information retrieval"]

query 19: //p[. =~ "singular value decomposition formula"]

query 20: //article[. =~ "concurrency control"]//sec

query 21: //p[. =~ "recommender (system|systems|agent|agents)"]

query 22: //article[. =~ "manilla"]/fm/au

query 23: //article[. =~ "xml commerce"]

query 24: //article[fm/au =~ "smith|jones"]

query 25: //article[. =~ "(qos|quality) service"]

query 26: //article[. =~ "xml"]/fm/tig/atl

query 27: //article[. =~ "ieee transactions visualization computer graphics"]//reviewer

query 28: //article[. =~ "special feature ieee micro"]/fm/tig/atl

query 29: //*[. =~ "image retrieval (colour|shape|texture)"]

query 30: //article[. =~ "parallel||parallelism"]//au

query 31: //*[. =~ "(genome|genomics|biology|bioinformatics|protemics|protein) (computation|computer|informatics)"]

query 32: //*[. =~ "(semantic|rdf|ontology|ontologies|meta|services) (web|internet|www)"]

query 33: //*[. =~ "software (patent|patents)"]

query 34: //*[. =~ "(efficient|fast) (search|index|data|access)"]

query 35: //*[. =~ "parallel (query|sql) (optimization|optimization|optimizer|optimiser)"]

query 36: //*[. =~ "(heath|cooling|thermal) (circuit|circuits|chip|chips)"]

query 37: //*[. =~ "temporal (database|databases|query|queries|dbms)"]

query 38: //*[. =~ "(multidemensional|feature|features|vector) (index|indices|access)"]

query 39: //*[. =~ "video demand"]

query 40: //*[. =~ "(content|multimedia|audio|image|images|video) (dbms|database|databases|search|retrieval)"]

query 41: //*[. =~ "(millenium|year) (bug|problems|problem|compliance) (money|spent|spend|budget|financial)"]

query 42: //*[. =~ "enigma"]

query 43: //*[. =~ "(aproximate|partial) (string|strings) (match|matching|algorithm|shift)"]

query 44: //*[. =~ "(social|sociology|sociological|society|culture) (internet|www|web|mail|usenet)"]

query 45: //*[. =~ "(augmented|virtual) (reality|world) (medicine|surgery|health)"]

query 46: //*[. =~ "(firewalls|firewall) (internet|www|web|mail|usenet) (secure|security|authentication)"]

query 47: //*[. =~ "semantic (transaction|transactions) (manager|management|techniques) (simulation|evaluation)"]

query 48: //*[. =~ "(adb|active|trigger|event) (database|databases|dbms) (rule|rules|syntax|speficication|semantics)"]

query 49: //*[. =~ "(query|search|queries|querying) (relaxation|approximate|fuzzy|intelligent)"]

query 50: //*[. =~ "xml (parsing|parser|parsers|edit|editing|editor|editors)"]

query 51: //*[. =~ "(knowlegde|text|data) (mining|textmining|datamining)"]

query 52: //*[. =~ "(ussr|soviet|lebedev|glushkov|besm) history"]

query 53: //*[. =~ "(semistructured|xml) (retrieval|ranking|search)"]

query 54: //*[. =~ "knowledge (building|acquisition|sharing)"]

query 55: //*[. =~ "digital (divide|planning) (city|cities|neighbourhood|community|communities)"]

query 56: //*[. =~ "open (agents|hypermedia)"]

query 57: //*[. =~ "public (key|rsa|dsa|cryptography)"]

query 58: //*[. =~ "(location|locate|find|finding) (mobile|wireless)"]

query 59: //*[. =~ "(schema|schemas) (integration|integrate) (database|databases|dbms)"]

query 60: //*[. =~ "(speed|fast|efficient|performance) (web|www|internet)"]


