
Free-Text Search over Complex Web Forms

Kien Tjin-Kam-Jet, Dolf Trieschnigg, and Djoerd Hiemstra

University of Twente, Enschede, The Netherlands
{tjinkamj,trieschn,hiemstra}@cs.utwente.nl

Abstract. This paper investigates the problem of using free-text queries
as an alternative means for searching `behind' web forms. We introduce
a novel speci�cation language for specifying free-text interfaces, and re-
port the results of a user study where we evaluated our prototype in a
travel planner scenario. Our results show that users prefer this free-text
interface over the original web form and that they are about 9% faster
on average at completing their search tasks.

Keywords: query processing, free-text interfaces, query translation.

1 Introduction

The internet contains a large amount of information that is only accessible
through complex web forms. Journey planners, real estate websites, online auc-
tion and shopping websites, and other websites commonly require the user to
�ll out a form consisting of a number of �elds in a graphical interface. The
user should �rst interpret the form and then translate his information need to
the appropriate �elds. Filling out these forms can be slow because they require
mixed interaction with both the mouse and keyboard. A natural language inter-
face (NLI) alleviates these problems by allowing the user to enter his information
need in a single textual statement. Rather than navigating between and entering
information in the components of the web form, the user can focus on formulat-
ing his information need in an intuitive way. NLIs require or assume syntactically
well-formed sentences as input, in essence restricting the range of textual input.
However, describing all possible natural language statements and dealing with
query ambiguity can be a time-consuming process [1�4]. Therefore, we introduce
a free-text interface (FTI) which allows the user to freely input text without any
restrictions. In this paper, we describe and evaluate a prototype system for spec-
ifying FTIs to access information behind complex web forms. The system has
been designed to specify �exible FTIs with relatively little e�ort. This work is
a stepping stone for further investigation of a single textual interface to access
the deep web [5]. Ideally, we wish to use these techniques to build a distributed
search system which can search multiple resources, including information behind
complex web forms, simultaneously. The contributions of this paper are as fol-
lows: i) we introduce a speci�cation language for describing free-text interfaces
(FTIs) to complex web forms; ii) as a proof of concept, we show that this lan-
guage can be e�ectively used to describe a �exible FTI to a travel planner web
form; and iii) we demonstrate that users can search faster with an FTI than

with a complex web form, and that they prefer the FTI over the complex web
form. The remainder of this paper is structured as follows: Section 2 describes
the requirements and our prototype framework. Our experiment setup and the
results are described in Sect. 3. Sections 4 and 5 discuss our work and overview
related work. Finally, Sect. 6 concludes our work.

2 A Free-Text Interface to Web Forms

2.1 Requirements

The goal of our FTI is to o�er simple textual access to content behind a web form
that consists of multiple input �elds and options. Given a user's query as free-text
input, the FTI should display a ranked list of plausible interpretations (i.e. ways
to �ll out the complex web form) as results. Kaufmann and Bernstein showed
the importance of guiding the user during the query formulation process [2].
Therefore, the FTI should o�er query suggestions as a means to guide users in
formulating their queries. Lastly, it should be easy for developers to specify the
capabilities of the FTI. Examples of a complex web form for a travel planning
website and an FTI to the same form, are given in Figs. 1 and 2, respectively.

Fig. 1. A complex web form that o�ers
interactive query suggestions, based on
the Dutch Railways site.

Fig. 2. Trajectvinder (`Route Finder'): an
FTI that o�ers interactive query sugges-
tions, tailored to the complex web form.

2.2 Framework

On a high level, our FTI involves three processes: the query interpretation pro-
cess, the query suggestion process, and the result generation process.

Basic query interpretation. Let us �rst de�ne the following: A region is
a contiguous segment or sequence of characters of the user's input. A pattern

expresses relevant information (as pre�x cues, types, and post�x cues; these are
discussed later). An annotation is a label assigned to a region, denoting that the
region contains some (part of a) pattern. Finally, an interpretation is a set of
annotated regions. The query interpretation process consists of �ve steps:

1. Scanning for input regions: the user input is scanned for known patterns
from left to right, on a word-by-word basis (a word is delineated by a white

space). At each word, all matching patterns starting from that word are
stored. Pattern matching is greedy, meaning a pattern will match as much
of the query as possible. This process yields a set of possibly overlapping
input regions, where each region could have several annotations. (A region
could be matched by multiple patterns, e.g. a region containing the token
`2000' could be annotated as: a year, an amount of money, or a car model);

2. Generating non-overlapping region sets: the set Γ , which contains sets of
non-overlapping regions with maximal coverage of the input, is generated;

3. Generating interpretations: for each region set γ ∈ Γ all combinations of
annotations are generated. This yields the set of possible interpretations;

4. Filtering interpretations: �rst, interpretations are `cleaned' by removing ex-
traneous annotations. Examples of extraneous annotations are pre�x anno-
tations that precede annotations which are not speci�ed by the pattern to
which pre�x corresponds, and annotations that exceed the number of times
they are allowed to appear in the underlying web form. Second, interpreta-
tions that are completely subsumed by other interpretations are removed;

5. and,Ranking interpretations: the interpretations are �rst ranked by the num-
ber of annotations they contain, then by the order in which the patterns are
speci�ed in the con�guration �le.

Steps one to four are illustrated in Fig. 3. Say, we are given the query �Wycombe
to shopping paradise Bicester North Camp�. Further, we have two simple pat-
terns p1 (from station), and p2 (to station). Here, from and to are optional
pre�x tokens, and station is a type which denotes a set of tokens. In this exam-
ple, the only valid tokens of the type station are `Wycombe', `Bicester North',
and `North Camp'. Lastly, each pattern may occur once or not at all.

1) Wycombe to shopping paradise Bicester North Camp

r1(p1, p2) r2(pr2) r3(p1, p2)
r4(p1, p2)

2) Γ = { γ1 = {r1, r2, r3} , γ2 = {r1, r2, r4} }

3) γ1 7→ i1 = {p1, pr2, p1} γ2 7→ i5 = {p1, pr2, p1}
i2 = {p1, pr2, p2} i6 = {p1, pr2, p2}
i3 = {p2, pr2, p1} i7 = {p2, pr2, p1}
i4 = {p2, pr2, p2} i8 = {p2, pr2, p2}

4-i) i1 = {p1,pr2, p1} i5 = {p1,pr2, p1}
i2 = {p1, pr2, p2} i6 = {p1, pr2, p2}
i3 = {p2,pr2, p1} i7 = {p2,pr2, p1}
i4 = {p2,pr2, p2} i8 = {p2,pr2, p2}

4-ii) i1 = {p1} i5 = {p1}
i2 = {p1, pr2, p2} i6 = {p1, pr2, p2}
i3 = {p2, p1} i7 = {p2, p1}
i4 = {p2} i8 = {p2}

Fig. 3. An illustration of the basic interpretation process.

Step 1 underlines the regions of the input containing known tokens. The �rst
region r1 is matched by both patterns p1 and p2, and is annotated as such. Region
r2 contains the pre�x of pattern p2, annotated as pr2. The overlapping regions r3
and r4 are split in step 2, yielding the non-overlapping sets of regions γ1 and γ2.
For each set γ ∈ Γ , step 3 generates all possible annotation-combinations. Such
a combination is in fact an interpretation, thus step 3 yields the interpretations
i1. . . i8. Step 4-i removes the erroneous annotations in each interpretation, in
this case, it removes the pre�x pr2 when it is not followed by the pattern p2,
and it removes an annotation if it already occurred. In step step 4-ii, an entire
interpretation is removed if it is a subset of any other interpretation. At the
end of step four, we are left with two interpretations i2 and i6, denoting �from
Wycombe to Bicester North�, and �from Wycombe to North Camp�, respectively.

Generating suggestions. The suggestion process is an extension of the basic
interpretation process, and generates three types of query suggestions: token
expansions, pattern expansions, and relation expansions. The suggestions are
interactive query expansions [6]; they are generated based on the last region,
and �ltered based on the entire interpretation. When the last region denotes a
pre�x of known tokens, all applicable token expansions are shown. When the
last region denotes a complete pre�x of a pattern, this triggers token suggestions
of the expected type, only if the type was de�ned by a list of tokens. If the
expected type was de�ned by a regular expression, no suggestions can be shown.
When the last region denotes the body of some pattern, and if the set of post�x
strings of this pattern is non-empty, then the default (longest) post�x is shown.
Finally, when the last region contains a token (like a car brand) for which there
are related tokens (like the corresponding car models), then those tokens are
shown.

Generating results. The result generation process is also an extension of the
basic interpretation process; each interpretation is post-processed as follows.
First, the default values for all �elds that were not speci�ed by the user are
added to the interpretation. For instance, by default the current time could be
added to the example query given earlier. Second, the interpretation is discarded
if it does not satisfy all constraints in the FTI's con�guration. Third and �nally,
a result snippet is generated according to the FTI's con�gured rules (described
in the next sections).

2.3 Con�gurable Items

Our FTI can be con�gured by specifying the following items: i) the web form's
lexicon; ii) the constraints, iii) the patterns; and iv) the result generation rules.

Lexicon. The input �elds of a web form often syntactically constrain user input,
e.g. limiting the number of characters, or only accepting input from a pre-de�ned
list of tokens. Regular expressions are used to pose even more syntactic restric-
tions, such as, allowing only numbers or zip-codes. Input �elds (e.g. drop-down

menus) may map external strings to internal form values. The lexicon contains
known values (both internal and external): it consists of the regular expressions,
the list of tokens, and the mapping from external to internal values.

Constraints. The constraints denote value restrictions and relations. Example
restrictions are mandatory values (i.e. values that must be found in the input),
or value comparisons (e.g. a price value should be greater than zero). Value
relations are apparent in some web forms. For example, in the car-sales domain,
each value from the class �car brands� can have an associated set of values
from the class �car models�. Whenever a brand is selected, the list of available
models changes accordingly. These relations are useful for: limiting the set of
valid queries, ranking query interpretations, and generating query suggestions.

Patterns. Consider the input query ��nd me a trip to Amsterdam from Paris�.
Here, the values are `Amsterdam' and `Paris', and the contexts are `to' and
`from', respectively. A system that responds with �from Amsterdam, to Paris� in
the �rst place and �from Paris, to Amsterdam� in the second place, is not user
friendly as it generated a false positive and it may have wasted the user's valuable
time. Simply scanning user input for known values, without considering the
context of the extracted values, may lead to unnecessary query interpretations.

Therefore, we adopt a bottom-up approach for capturing the context: a set
of patterns must be speci�ed, one for each input �eld. Each pattern consists
of three parts: a pre�x, a body, and a post�x part. The a�xes (the pre�x and
post�x) each denote a �nite list of strings, including the empty string. Note that
the a�xes can be used to incorporate idioms of natural language. If a particular
value is found (i.e. it matched the body part) as well as a corresponding (non-
empty) a�x, that value is then bound to the �eld to which this pattern belongs.

Two patterns can be combined into a range pattern. A range pattern is
useful for disambiguation. For example, the input `1000 - 2000 euros' would be
interpreted as `minimal 1000 euros and maximal 2000 euros'. Without range
patterns, we would �nd `1000' (it could be a car model, a min price, or a max
price) and `2000 euros' (it could be min price or max price), which would have
to be further processed in order to remove erroneous interpretations.

Fig. 4. Interpretation as result snippets.

Result generation rules. A query in-
terpretation is displayed as a result snip-

pet (see Fig. 4), containing a title, a
description, and a URL. To generate
the title and the description, an ordered
set of �eld templates must be speci�ed.
A �eld template speci�es how a �eld's
value should be displayed. To generate
the URL of the snippet, the web form's
action-URL, the http-request method
(i.e. get or post), and all the form's input �elds must be speci�ed. In the next
section, we show how these con�gurable items �t together.

2.4 An Example Con�guration

Figure 5 depicts an example con�guration �le and shows how the lexicon, the
constraints, the patterns, and the result generation rules, are speci�ed. The
tokens element contains token instances. Each instance belongs to a speci�c
type, has one internal value and a list of external values (treated as synonyms
by the system). Multiple instances can belong to a single type. The pattern el-

<?xml version='1.0' encoding='UTF−8' standalone='yes' ?>
<root>
<tokens>
<instance type='station' internal='1'>
<external>amsterdam amstel</external>
<external>amstel</external>

</instance>
<instance type='station' internal='2'>

...
</tokens>
<patterns>
<pattern id='fromloc'>
<option>
<pre�x>((depart(ing|ure)?)?from)?</pre�x>
<capture>station</capture>

</option>
</pattern>
<pattern id='toloc'>

...
</patterns>
<constraints>
<mandatory_�elds>
<�eldset>
<�eld>fromloc</�eld>
<�eld>toloc</�eld>

</�eldset>
</mandatory_�elds>
<�eld_�eld not_equal='fromloc' to='toloc' />

</constraints>
<results>
<url method='get'>http://www.example.com/search.html?loc1={fromloc}&...</url>
<title max='3' starttext='Example.com: search results for '>
<�eldtemplate id='fromloc' pre�x='from ' post�x=' ' />
<�eldtemplate id='toloc' pre�x='to ' post�x=' ' />
...

</title>
<defaults>
<�eld id='arrivalTime' external='arriving on ' internal='true'/>

</defaults>
</results>

</root>

Fig. 5. An example con�guration �le.

ement's id attribute contains the name of the input �eld to which the captured
value should be assigned. A capture element speci�es the type to be captured.
The prefix and postfix elements specify a �nite list of strings. This list may
be speci�ed by fully writing out all possibilities, or by a Kleene star-free reg-
ular expression, which will be automatically expanded to the list of possible
strings. A pattern's option element relates a particular prefix with a particu-
lar postfix. The use of options is portrayed in the following example. Consider
an input �eld to enter some minimum mileage, and three pre�x-capture-post�x

combinations: �minimum . . . kilometers�, �minimum number of kilometers . . . �,
and �minimum number of kilometers . . . kilometers�. The latter of these combi-
nations is peculiar and it would be parsed if we speci�ed just one pattern op-
tion consisting of: �<pre�x>minimum(number of kilometers)?</pre�x>� and
�<post�x>kilometers</post�x>�. Moreover, the system would also generate
the post�x suggestion �kilometers� if it parsed �minimum number of kilome-
ters . . . �. To prevent this behavior, we could specify two options, one containing
�<pre�x>minimum</pre�x>� and �<post�x>kilometers</post�x>�, and one
containing just the pre�x �<pre�x>minimum number of kilometers</pre�x>�.
The constraints element may contain: i) a list of mandatory �eld combina-
tions; or ii) a list of comparisons, e.g. comparing the value of one �eld to the
value of another or to some constant value. An interpretation is valid if it satis-
�es at least one of the mandatory �eld combinations, and all �eld comparisons.
Lastly, the results element speci�es what the interpretation's title, description,
and URL should look like. Here, a developer could also specify default (internal)
values (with corresponding external values) for input �elds. The url element
speci�es both the action-URL and http-request method. The title element
(just like the omitted description element) contains an ordered list of field
templates. Each template corresponds to exactly one of the form's input �elds,
indicated by the id attribute. The title (as well as the description) is generated
by listing the contents of its start text attribute and concatenating the con-
tents of the active �eld templates, up to the speci�ed max number of templates.
A template is active if the value of the input �eld it refers to is not empty.

3 Experiment and Results

We developed a prototype framework and evaluated it for an existing travel-
planner web form. The web form is as depicted in Fig. 1, the resulting FTI is
depicted in Fig. 2. A total of six information items can be speci�ed in the form:
a departure location, an arrival location, an optional via location, the time, the
date, and a �ag indicating whether the date and time are for arrival or departure.

In this experiment, we tried to answer the following questions: i) do people
prefer to use such an FTI over the existing complex web form in the �rst place?
ii) is searching by means of an FTI faster than searching by means of a complex
web form? iii) how much variation exists in the query formulations? iv) are
people consistent in their query formulations? v) what are the most positive and
negative aspects of the FTI? and vi) why is the FTI better, or worse, than the
complex web form?

3.1 Experimental Setup

Experimental procedure. The experiment consisted of an o�ine part, an on-
line part, and a questionnaire. The information needs were randomly generated,
and shown either graphically as a route on a map; or textually as a random
sequence of (two or three) station names, a date, and a time. Dates were either

relative, such as �next week Wednesday�, or absolute, such as �1-2-2011�. Times
were descibed either alphabetically, such as �half past ten�, or numerically, such
as �17.30�. During the o�ine part, the subjects �rst provided background in-
formation (e.g. age, study). Then, they wrote down their `most recent travel
question' if they could remember it. Next, an information need was shown as a
route on a map, along with a desired date and time. The subjects were asked
to �ll out the complex web form on paper based on this information need. Like-
wise, but based on a di�erent information need, they �lled out the FTI on paper.
Finally, the subjects were shown a �lled out complex web form, and they refor-
mulated that into a question suitable for the FTI. We aimed to collect query
formulations with as little bias to the question as possible. That is why we asked
the subjects to formulate a query from memory, and to formulate a query based
on graphical instead of textual descriptions of the information need. During the
online part, the task was to search for speci�c routes. Each route was described
textually, with a di�erent order of the information items (i.e. the date, time,
and locations), and with di�erent wordings (e.g. ten past one, or 13:10). The
subjects �rst familiarized themselves with the complex interface of the existing
travel planner site. Then, they searched for 5 speci�c train routes and wrote
down the departure and arrival times, while we recorded the total time to �nd
all routes. Next, the subjects familiarized themselves with the FTI. After that,
they searched for 5 speci�c routes and wrote down the departure and arrival
times, and we recorded the total search time. Regarding the questionnaire, all
questions were answered on a �ve-point Likert scale, except for the open ques-
tions and explanatory questions. The subjects indicated whether they thought
the FTI was easy to use, if they could �nd results faster using the FTI, and
whether the results of the FTI were correct. They indicated whether or not
the FTI was nicer and better, and explained why they thought so. There were
two open questions, asking the subjects to indicate the most negative and the
most positive aspects of the system. Finally, they indicated which system they
preferred.

Analysis. We tested whether the task completion times of the FTI di�ered
signi�cantly (p < 0.05) from those of the complex web form, using the Paired
Samples T-Test [7]. We also tested whether the �ve-point Likert scale values
di�ered signi�cantly from neutral (i.e. the number `3'), also using the T-Test.
Further, we evaluated the query formulation consistency by looking at the order
of the information items. Each item was �rst replaced by a symbol as follows.
We replaced the `from' (location) with A, `to' with B, `via' with V, the `date'
with D, and the `time' with T. For example, the input �from Amsterdam via
Haarlem to The Hague, tomorrow at 10am.� was represented as AVBDT. We
then measured the rank correlation between the subject's query formulation and
the task description using Kendall's τ [8]. Lastly, for each subject, we measured
the average Kendall's τ over the combinations of that subject's own formulations.

3.2 Results

The subjects. A total of 17 subjects (11 male, 6 female) participated in the
study. The age distribution ranged from 21 to 66 (median: 27, mean: 32); most
subjects were between the age of 21 and 33. The background of the subjects
ranged from (under)graduate students in various studies to people working in
healthcare, consultancy, and IT-software development. Participation (including
the questionnaire) took around 30 minutes on average for each subject.

The questionnaire. Comparing the free-text interface (FTI) against the com-
plex web form, the subjects indicated on a �ve-point Likert scale whether the FTI
was: faster, nicer, better, and preferred. The results are given in Table 1, where
`1' indicates full agreement, and `5' denotes the opposite. All results di�ered sig-
ni�cantly (p < 0.05) from neutral, except for the third aspect. On average, the
subjects felt they could search a little faster using the FTI than using the com-
plex web form. This was supported by the times measured for the web form and
the FTI, shown in Table 2. The subjects were signi�cantly (p = 0.032) faster,
by about 9%, when using the FTI instead of the complex form.

Table 1. Average results of the question-
naire, comparing the FTI to the complex
web form on a �ve point Likert-Scale from
1 (full agreement) to 5 (full disagreement).
Results in bold are signi�cant (p < 0.05).

Question Score

Faster 2.4

Nicer 1.8

Better 2.5
Preferred 2.0

Table 2. Average time in minutes to
complete all �ve search tasks for each
interface. The results di�er signi�cantly
(p = 0.032).

Average time
Interface in minutes

Free-text interface 6.7
Complex web form 7.3

Speed and success rate. We counted the number of incorrect routes reported
by the subjects. Out of the 170 answers, 14 were wrong: 6 errors were made
using the FTI, and 8 using the complex form. The most likely explanation for
the errors is that the subjects misread the task, and entered a wrong time or
station name. Out of the 17 subjects, 10 subjects made zero errors, 2 subjects
made one error, 3 subjects made two errors, and 2 subjects made three errors.
However, since we did not measure the time per query, we cannot omit the times
for the failed queries for comparing the two systems. Yet if we would use only
the data from the 10 subjects who made no erros, there would still be a 9%
di�erence in time, in favor of the FTI.

Pros and cons. The subjects listed the most negative and most positive aspects
of the FTI. The following negative aspects were mentioned: 24% of the subjects
indicated that there was no example or short manual (forcing the subjects to

`just type in something, and it worked'); 18% indicated that the interface was too
simple, e.g. it lacked pictures; and 12% disliked that they had to explicitly click a
result snippet to view the travel plan, even when only a single result snippet was
returned. The following positive aspects were mentioned: 41% of the subjects
liked how the system `understood' dates like tomorrow and Tuesday, and written
time like `ten past nine'; 41% liked that you only had to type (without clicking
on menus); 35% mentioned the query-suggestions as a useful feature; and 18%
appreciated the fact that the input order of information items (e.g. time, date,
places) did not matter.

Consistency. When considering only the order of the information items1 in a
query, there were 17 di�erent query formulations. As can be seen in Fig. 6, the
three most frequent online query formulations were: ABDT 41%, ABVDT 15%,
and, tied at third place with 6%, were ABTD, DTABV, and TABVD.

Now we inspect whether or not the subjects formulated their queries with the
same order of information items as that of the online task descriptions. The mean
Kendall's τ between the online task descriptions and the query formulations
was 0.42. The task with the highest average τ (0.96) was sequenced ABDT,
the other four tasks were BADT (0.67), TABVD (0.39), DTABV (0.09), and
TBAD (-0.02). Two subjects always followed the same information order of the

ABDT
41%

ABVDT
15%

Fig. 6. Distribution of the most
frequent online query formulations

task descriptions and had an average τ of 1.0
(though they used di�erent wordings). Three
subjects had an average τ between 0.6 and 1.0,
and the remaining twelve subjects had an av-
erage less than or equal to 0.3.

The mean Kendall's τ for the (within sub-
jects) online query formulations was 0.64. Six
subjects always formulated their questions in
the same order, regardless of the task descrip-
tion, and had an average τ of 1; six subjects
averaged between 0.7 and 0.9; and, �ve sub-
jects had an average τ less than 0.2.

Overall, the subjects were highly consistent
in their query formulations individually; how-
ever, there was considerable query variation
between subjects. Further, the task descrip-
tions had little e�ect on the subjects' query formulations; the moderate correla-
tion (0.42) is most probably an artifact caused by subjects consistently formu-
lating their queries as ABDT. This explains the high correlations between the
query formulations and the two tasks ABDT and BADT.

1 i.e. the `date' (D), `time' (T), and the `from' (A), `to' (B), and `via' (V) locations.

4 Discussion

4.1 Methodology and Results

Query variation. We tried to prevent the subjects from mindless copying of
the task descriptions by presenting the tasks on paper instead of on screen.
Nevertheless, the large number of di�erent query formulations we collected was
surprising, since: i) the subjects could have just retyped the task descriptions;
ii) there were only 17 subjects; and iii) the travel-planner web form was relatively
simple. With so much query variation in this limited scenario (in both the order
of information items and wordings used), even higher variation might be expected
in a more complex scenario.

Time di�erence. The paper&pencil-approach demanded manual time mea-
surement. We measured the total time to complete all 5 search tasks, as it would
be more di�cult to obtain accurate measurements for individual tasks. Conse-
quently, we could not determine whether the time per task decreased or not.
Even though we noticed several times that subjects were clearly experimenting
with the free-text interface during the tests (as they were talking out loud, say-
ing `what if I typed...'), the average time of the FTI is still signi�cantly lower
than that of the complex web form.

4.2 Specialized Features

In some cases, it could be handy to invoke a suitable function with the detected
values as arguments. For instance, to extract the actual `dd-mm-yyyy' time
format from the input `next week Friday', some function similar to `getDate()'
should be called to obtain the current date in order to calculate the intended date.
The framework contains several pre-de�ned functions (e.g. for extracting dates
and times) which can be invoked simply by specifying the �eld(s) that accept(s)
a function value. Future versions of the framework will allow developers to add
new functions.

4.3 Practicality of the Framework

For users. Our work could add to the solution of the deep web problem. Given
a free-text search query, we can generate �real-time deep web results� (i.e. result
snippets with valid query-URLs as data-entry points). Deep web search ulti-
mately enhances our search experience by allowing users to search more content
and to specify attribute or facet restrictions, besides merely a list of key words.
Our work may bene�t other search environments as well, particularly when there
is some sort of semi-structured search involved, examples could be desktop search
and intranet search.

For providers. We believe that web companies will be encouraged to create
their own con�guration �les for the following reasons: i) we showed that end users
prefer such an interface; ii) (we claim that) it is easy to write a con�guration
�le; and iii) visibility and user-friendliness are crucial for web companies.

Evidence for the last point can be found in a study by Alba et al. [9], where
they observed that: (1) the revenues of websites depend on the data that users
see on the site's web pages; (2) websites are extremely motivated to ensure
correctness, accuracy, and consistency on the web pages shown to the end user;
and (3) websites do not accord the same level of signi�cance to the data delivered
by the APIs. Alba et al. show that web companies care greatly for their `public
image', since: i) selling products or services is di�cult if users do not know about
you; and ii) online users are more inclined to make a purchase if they feel positive
about the website. Furthermore, the large number of articles on the web about
search engine optimization strongly indicates that web companies make serious
investments to increase their visibility to the users.

Our free-text interface for searching over web forms has the potential to both
increase the visibility of a web site (i.e. deep web search, enabling search over
otherwise uncrawlable data) and to provide more user-friendly search interfaces
for websites that implement this interface.

5 Related Work

A similar problem of �lling out a web form for a given text query was tackled by
Meng [10]. Meng used various statistical disambiguation techniques. However,
a drawback of his statistical approach is that it requires (training) data that
is often di�cult to obtain (e.g. it requires domain-speci�c queries in order to
obtain the `global' statistics, and the data must often be annotated manually).
Instead of statistical disambiguation, we scan for valid pattern combinations and
present a ranked list of alternative interpretations to the user.

Weizenbaum described Eliza [11], one of the earliest systems with a natural
language interface. The input text is parsed using decomposition rules triggered
by keywords. Responses are generated based on reassembly rules pertaining to
the decomposition rule. These rules are stored in a script which can be easily
modi�ed. During a session, a re-triggered decomposition rule may generate a dif-
ferent response. Unlike Weizenbaum, we generate responses depending on a set
of detected patterns instead of a single decomposition rule, and we do not vary
the responses. In the context of keyword-based retrieval systems over structured
data, one of the earliest systems was DataSpot [12]. The DataSpot system used
free-form queries and navigations to explore a hyperbase (a graph of associated
elements) for publishing content of a database on the Web. Recent systems [13�
17] generate a ranked list of structured queries or query interpretations, such
that the user can select the right interpretation. However, most model the query
as a bag of terms, disregarding the context of the extracted values, whereas we
use patterns to capture the context. Further, they use a probabilistic or heuris-
tic approach to rank the interpretations. Other grammar-based natural language

interfaces have been developed [18�21]; however, the majority of these systems
were application-speci�c which made it di�cult to port the systems to di�erent
applications [22]. The di�culty of porting a system from one application (do-
main) to another is also apparent in information extraction systems, i.e. systems
that extract all entities from large bodies of texts. To overcome the di�culty
of porting, Appelt and Onyshkevych [4] propose the Common Pattern Speci-
�cation Language (CPSL). At the heart of the CPSL grammar are the rules.
Each rule has a priority, a pattern and an action. Input matched by the pattern
part can be operated on by the action part of the rule. Ambiguity arises when
multiple rules match at a given input location, and is resolved as follows: the
rule that matches the largest part of the input is preferred, and if two rules
match the same portion of the input, the rule with the highest priority is pre-
ferred. In case of equal priorities of matching rules, the rule declared earlier in
the speci�cation �le is preferred. Like Appelt and Onyshkevych, we propose a
pattern speci�cation language, and the patterns are used to scan the input text.
However, we generate interactive query suggestions and we produce a ranked list
of interpretations instead of a single interpretation.

6 Conclusion and Future Work

We introduced a novel speci�cation language for describing a free-text interface
(FTI) to complex web forms. Our system uses patterns to scan the user input
and extract `bags of key/value-pairs'. The system is capable of both generating
query suggestions on the �y and generating ranked query interpretations.

We carried out a user study to compare the FTI with an existing travel
planner web form. Our results showed that the subjects were signi�cantly faster
at �nding information when using the FTI instead of the complex form by about
9%. Furthermore, they preferred the FTI over the complex web form. The results
also showed that the subjects were highly consistent in their individual query
formulations, and that there was considerable query variation between subjects,
even in such a relatively simple scenario.

In future work we will investigate whether con�guring the FTI is really simple
or not, by building FTIs in di�erent domains and analyzing the builders' opinions
about the con�guration process. Also, we will investigate optimizations of the
parsing process, and examine di�erent ways to combine patterns of multiple
websites in one domain.

Acknowledgment

This research was supported by the Netherlands Organization for Scienti�c Re-
search, NWO, grants 639.022.809 and 612.066.513.

References

1. Sun, J., Bai, X., Li, Z., Che, H., Liu, H.: Towards a wrapper-driven ontology-based
framework for knowledge extraction. In: KSEM'07, Berlin, Heidelberg, Springer-
Verlag (2007) 230�242

2. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query
languages and interfaces to semantic web knowledge bases. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web (2010)

3. Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman, J.D.: A query trans-
lation scheme for rapid implementation of wrappers. In: DOOD'95, London, UK,
Springer-Verlag (1995) 161�186

4. Appelt, D.E., Onyshkevych, B.: The common pattern speci�cation language. In:
Proceedings of a workshop on held at Baltimore, Maryland, Morristown, NJ, USA,
Association for Computational Linguistics (1996) 23�30

5. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google's
deep web crawl. Proc. VLDB Endow. 1(2) (2008) 1241�1252

6. White, R.W., Marchionini, G.: Examining the e�ectiveness of real-time query
expansion. Information Processing and Management 43(3) (2007) 685�704

7. Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied linear statistical mod-
els. 5th edn. McGraw-Hill (2005)

8. Kendall, M.: Rank Correlation Methods. 4th edn. Second impression. Charles
Gri�n (1975)

9. Alba, A., Bhagwan, V., Grandison, T.: Accessing the deep web: when good ideas
go bad. In: OOPSLA Companion '08: Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications,
New York, NY, USA, ACM (2008) 815�818

10. Meng, F.: A natural language interface for information retrieval from forms on the
world wide web. In: ICIS, Atlanta, GA, USA, Association for Information Systems
(1999) 540�545

11. Weizenbaum, J.: Eliza�a computer program for the study of natural language
communication between man and machine. Commun. ACM 9(1) (1966) 36�45

12. Dar, S., Entin, G., Geva, S., Palmon, E.: Dtl's dataspot: Database exploration
using plain language. In: Proceedings of the 24rd International Conference on
Very Large Data Bases. VLDB '98, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1998) 645�649

13. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversi�cation for key-
word search over structured databases. In: SIGIR '10, New York, NY, USA, ACM
(2010) 331�338

14. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation
of keywords for semantic search. In: ISWC'07/ASWC'07, Berlin, Heidelberg,
Springer-Verlag (2007) 523�536

15. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: adapting keyword query
to semantic search. In: ISWC'07/ASWC'07, Berlin, Heidelberg, Springer-Verlag
(2007) 694�707

16. Tata, S., Lohman, G.M.: Sqak: doing more with keywords. In: SIGMOD'08, New
York, NY, USA, ACM (2008) 889�902

17. Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.:
Avatar semantic search: a database approach to information retrieval. In: SIG-
MOD'06, New York, NY, USA, ACM (2006) 790�792

18. Burton, R.R.: Semantic grammar: An engineering technique for constructing natu-
ral language understanding systems. Technical report, Bolt, Beranek and Newman,
Inc., Cambridge, MA. (December 1976)

19. Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Developing a natural
language interface to complex data. ACM TODS 3(2) (1978) 105�147

20. Carbonell, J.G., Boggs, W.M., Mauldin, M.L., Anick, P.G.: The XCALIBUR
project: a natural language interface to expert systems. In: IJCAI'83, San Fran-
cisco, CA, USA, Morgan Kaufmann Publishers Inc. (1983) 653�656

21. Carbonell, J.G., Hayes, P.J.: Dynamic strategy selection in �exible parsing. In:
Proceedings of the 19th annual meeting on ACL, Morristown, NJ, USA, Associa-
tion for Computational Linguistics (1981) 143�147

22. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases � an introduction. Natural Language Engineering 1(01) (1995) 29�81

