
Collection Selection with Highly Discriminative Keys

Sander Bockting
Avanade Netherlands B.V.

Versterkerstraat 6
1322 AP, Almere, Netherlands

sander.bockting@avanade.com

Djoerd Hiemstra
University of Twente

P.O. Box 217
7500 AE, Enschede, Netherlands

d.hiemstra@utwente.nl

ABSTRACT
The centralized web search paradigm introduces several prob-
lems, such as large data traffic requirements for crawling,
index freshness problems and problems to index everything.
In this study, we look at collection selection using highly
discriminative keys and query-driven indexing as part of a
distributed web search system. The approach is evaluated
on different splits of the TREC WT10g corpus. Experimen-
tal results show that the approach outperforms a Dirichlet
smoothing language modeling approach for collection selec-
tion, if we assume that web servers index their local con-
tent.

1. INTRODUCTION
The web search approach of major search engines, like

Google, Yahoo! and Bing, amounts to crawling, indexing
and searching. We call this approach centralized search,
because all operations are controlled by the search engines
themselves, be it from a relatively limited number of loca-
tions on large clusters of thousands of machines. The cen-
tralized web search paradigm poses several problems.

The amount of web data is estimated to grow exponen-
tially [34]. The changing and growing data requires frequent
visits by crawlers, just to keep the index fresh. Crawling
should be done often, but generates a huge amount of traf-
fic, making it impossible to do frequent crawls of all pages.
With an estimated four weeks update interval, updates are
performed relatively slow [25, 35]. Also, it is impossible to
index everything, as the search engine accessible visible web
is only a fraction of the total number of web pages [16].

Callan [5] identified the distributed information retrieval
problem set, consisting of resource description, resource se-
lection and result merging. We believe that distributing the
search efforts may be an approach to solve the problems de-
scribed above. This research focuses on resource description
and resource selection [10, 22]. Resource description, i.e.
indexing of the peers, is distributed; resource selection, or
collection selection, is centralized in our research.

Copyright c© 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of material
from this volume requires permission by the copyright owners. This volume
is published by its editors.
LSDS-IR Workshop. July 2009. Boston, USA.

Client

Peer 1 Peer 2 Peer i Peer n-1 Peer n

1. Query

2. Query 2. Query

3. Result 3. Result

4. Merged result set

Broker

Figure 1: Peers are accessible via a broker to answer
queries from clients

Figure 1 shows three types of entities: peers, brokers and
clients. We assume that peers are collaborative. Every peer
runs a search engine enabled web server. The search engine
indexes the local website(s), but it may also index other
websites. In this scenario, there can be many millions of
peers. When a user has an information need, he can pose
a query at the client. The client sends the query to the
broker. In a response, the broker tries to identify the most
promising peers to answer the query. This has to be a small
amount of peers, e.g. five to ten peers, so not a lot of traffic
is generated. The query is routed to those peers and the
results are returned to the broker. The broker merges the
results and sends the merged list to the client.

Peers and brokers cooperate to enable brokers to identify
most promising peers. Therefore, every peer sends a small
part of its index to the broker. This part cannot be too
small, to still allow for proper judging about the peers’ abil-
ity to satisfactory answer queries. The index part cannot be
too large due to index data traffic scalability.

Techniques have been proposed to manage the index size.
Podnar et al [20] used the concept of highly discriminative
keys (HDKs) for document retrieval in distributed informa-
tion retrieval. An HDK is a set of terms that is highly
discriminative, i.e., that only match a few documents in the
collection. Because the terms are pre-coordinated (they are
combined at index time, not at search time) and because

only a few document match all terms in a pre-coordinated
set, the HDK approach is able to very efficiently retrieve the
top documents for a query. Although searching can be effi-
cient, the HDK indexing process, described in more detail in
Section 3.1, has the negative side-effect that a huge amount
of highly discriminative keys are generated. To reduce the
number of keys, Skobeltsyn [32] proposed a query-driven in-
dexing strategy that uses caching techniques to adapt to
the changing querying behavior of users. The combination
of HDK with query-driven indexing allows for completely
distributed document retrieval that in theory grows to web
scale proportions [31].

This paper contributes to the field of distributed informa-
tion retrieval by the applying HDKs and query-driven in-
dexing to select collections, instead of documents. Such an
approach would in theory scale the distributed search sce-
nario described above to millions of peers: The broker lists
for every HDK a small number of peers to send the query to,
and the peers retrieve the documents; possibly many. Un-
like a traditional inverted file index that typically consists
of huge posting lists and a, in comparison, tiny dictionary
[36], our HDK index consists of a huge dictionary and, in
comparison, tiny posting lists. The system is fitted into the
previously sketched scenario, which allows for control at the
broker. This control can for example be used to prevent
misuse or to allow for domain-specific search.

This paper is organized as follows: the next section dis-
cusses earlier collection selection methods, Section 3 intro-
duces our collection selection system and Section 4 describes
the evaluation. The paper concludes with results and con-
clusions.

2. EARLIER WORK ON COLLECTION SE-
LECTION

Collection selection systems have been developed to se-
lect collections containing documents that are relevant to
a user’s query. The generalized Glossary-Of-Servers Server
(gGlOSS) is such a system [13]. It uses a vector space model
representing index items (document collections) and user
queries as weight vectors in a high dimensional Euclidean
space to calculate the distance (or similarity) between doc-
ument collections and queries [24].

Another well-known approach is CVV, which exploits the
variation in cue validity to select collections [38]. The cue
validity CV i,j of query term tj for collection ci measures
the extent that tj discriminates ci from the other collec-
tions, by comparing the ratio of documents in ci containing
tj to the ratios of documents in other collections containing
tj . The larger the variation in cue validities for collections
with respect to a term, the better the term is for selecting
collections.

This section will describe two collection selection methods
in more detail: inference networks and language modeling.

2.1 Inference networks
cori [7] is a collection ranking algorithm for the inquery

retrieval system [6], and uses an inference network to rank
collections. A simple document inference network has leafs d
representing the document collections. The terms that oc-
cur in those collections are represented by representation
nodes r. Flowing along the arcs between the leaves and
nodes are probabilities based on document collection statis-

tics. Opposed to tf.idf, the probabilities are calculated us-
ing document frequencies df and inverse collection frequen-
cies icf (df.icf). The inverse collection frequency is the
number of collections that contain the term. An inference
network with these properties is called a collection retrieval
inference network (cori net).

Given query q with terms rk, the network is used to obtain
a ranked list of collections by calculating the belief p(rk|ci)
in collection ci due to the observation of rk. The collec-
tion ranking score of ci for query q is the sum of all beliefs
p(rk|ci), where r ∈ q. The belief is calculated using For-
mula 1. In this formula, b and l are constants, cw i is the
number of words in ci, cw is the mean number of words
in the collections and |C| is the number of collections. df
and cf respectively are the number of documents and col-
lections that contain rk. Finally, dt and db respectively are
the minimum term frequency component and minimum be-
lief component when rk occurs in ci.

To improve retrieval, the component L is used to scale
the document frequency in the calculation of T [6, 23]. L
is made sensitive to the number of documents that contain
term rk (using b) and is made large using l. L should be
large, because df is generally large. Proper tuning of these
two parameters is required for every data set, but deemed
impossible as the correct settings are highly sensitive to data
set variations [12]; the value of l should be varied largely even
when keeping the data set constant while varying the query
type.

Further research showed that it is not justified to use stan-
dard cori as a collection selection benchmark. D’Souza et
al. showed that HighSim outperformed cori in 15 of 21
cases [11]. Si and Callan [28] found limitations with differ-
ent collection sizes. Large collections are not often ranked
high by cori, although they often are the most promising
collections.

L = l · ((1− b) + b · cw i/cw)

T = dt + (1− dt) ·
log (df)

log (df + L)

I =
log
(
|C|+0.5

cf

)
log |C|+ 1.0

p(rk|ci) = db + (1− db) · T · I (1)

2.2 Language modeling
A language model is a statistical model to assign a proba-

bility to a sequence of words (e.g. a query) being generated
by a particular document or document collection. Language
models can be used for collection selection in distributed
search, by creating a language model for each collection [29,
37]. They have also been used for collection selection for
other tasks, for instance for blog search [2, 26].

indri is an improved version of the inquery retrieval sys-
tem [33], as it is capable of dealing with larger collections,
allows for more complex queries due to new query constructs
and uses formal probabilistic document representations that
use language models. The combined model of inference net-
works and language modeling is capable of achieving more
favorable retrieval results than inquery [18]. Due to these
differences, term representation beliefs are calculated in an-

other way than with cori (as described in Section 2.1):

P (r|D) =
tf r,D + αr

|D|+ αr + βr

The belief is calculated for representation concept r of docu-
ment node D (in document collection C). Examples of rep-
resentation concepts are a term in the body or title of a doc-
ument. D and r are nodes in the belief network. The term
frequency of representation node r in D is denoted by tf r,D.
αr and βr are smoothing parameters. Smoothing is used
to make the maximum likelihood estimations of a language
model more accurate, which could have been less accurate
due to data sparseness, because not every term occurs in a
document [39]. Smoothing ensures that terms that are un-
seen in the document, are not assigned zero probability. The
default smoothing model for Indri is Dirichlet smoothing,
which affects the smoothing parameter choices [17]. In set-
ting the smoothing parameters, it was assumed that the like-
liness of observing representation concept r is equal to the
probability of observing it in collection C, given by P (r|C).
This means that αr/(αr + βr) = P (r|C). The following
parameter values were chosen:

αr = µP (r|C)

βr = µ(1− P (r|C))

This results in the following term representation belief, where
the free parameter µ has a default value of 2500:

P (r|D) =
tf r,D + µP (r|C)

|D|+ µ

2.3 Discussion
The language modeling approach of indri has a better

formal probabilistic document representation than cori and
indri is an improved version of inquery (which is the foun-
dation of cori). We will use the language model on doc-
ument collections as implemented by indri as our baseline
collection selection system. Si et al. [29] showed that a
language modeling approach for collection selection outper-
forms cori. Furthermore, cori outperforms algorithms like
cvv and gGlOSS in several studies [9, 21].

3. SOPHOS
Sophos is a collection selection prototype that uses HDKs

to index collections. The keys are used to assign scores to
the collections. Using a scoring function, collection scores
can be calculated to rank collections for a particular query.
A general overview is depicted in Figure 2. This section de-
scribes how the broker index is created, explains index size
reduction using a query-driven indexing approach, identi-
fies query result parameters, and concludes with a collection
ranking formula (ScoreFunction in Figure 2).

3.1 Highly discriminative keys
Building the index is done in two phases. First, every

peer builds an index of its document collection and sends
that index to the broker. Second, the broker constructs a
broker index from all peer indices.

3.1.1 Peer indexing
Peer indexing starts with the generation of term set statis-

tics. First, single term statistics are generated by counting

Prune keys with query log

(Query-driven Indexing)

ScoreFunction
Broker

Index

Ranked list of

collectionsQuery

results

Generated

index keys

Stored

index keys

Document collections

Figure 2: General overview of the indexing and col-
lection selection system Sophos

term frequencies of every word in the collection, without
looking at document boundaries in the collection. A term
set is called frequent when it occurs more times than a term
set frequency maximum tf max. Every infrequent single term
is added to the peer index together with its frequency count.
The frequent keys are stored for further analysis.

The next step consists of obtaining double term set statis-
tics. For every frequent term in the collection, frequency
statistics are created for term combinations that consist of
the frequent term and a term that appears after that term
within a window size ws. The result is a list of double terms
with corresponding frequency counts. Once again, the term
set frequency maximum defines which term sets are frequent
and will be used for further analysis, and which term sets
are infrequent and will be stored in the peer index. This
procedure can be repeated as long as the generated term
sets do not contain more than ws terms, or when a prede-
fined maximum number of terms in a term set, hmax, has
been reached.

Summarizing, the peer index consists of tuples with term
sets and corresponding frequency counts.

3.1.2 Broker indexing
The infrequent term sets from the peer indices are sent

to the broker. The broker index contains term sets with
associated sets of collection identifier counters. A collection
identifier counter is a tuple of a collection identifier and a
term set frequency counter. A collection identifier is a short
representation of a collection where the term set occurs.

When a term set is inserted into the broker index, it is
called a highly discriminative key (HDK). The broker index
will contain a maximum number of collections per HDK, de-
noted by the collection maximum cm. As soon as the maxi-
mum number of collections is reached for a particular HDK,
the cm collections with the largest term set frequencies will
be stored in the broker index.

3.2 Query-driven indexing
A list of popular keys can be created by extracting all

unique queries from a query log. Every key that is infrequent
at a peer, and which is present in the unique query list, will
be sent to the broker; the other keys are filtered out to reduce
the broker index size and to reduce traffic.

c sum of query term set occurrence within one col-
lections (grouped by sets with h terms)

h #terms in an HDK
hmax maximum #terms that HDK can consist of
q #terms in query
n #distinct query terms found in a collection
tf max maximum frequency of a term set in a collection

Table 1: Parameter definitions for query result han-
dling

This index pruning strategy was used before by Shokouhi
et al. [27]. It is not the most desirable strategy for query-
driven indexing, because it is unable to deal with unseen
query terms. However, it will give a good idea about the
possible index size reduction and the loss of retrieval perfor-
mance.

3.3 Identifying query result parameters
Once the broker index has been built, the system is ready

to be queried. The broker index contains HDKs with h
terms, where h varies from 1 to hmax. In Sophos, hmax is set
to 3. Every key has an associated posting list, which con-
tains tuples of collection identifiers and counters. A counter
indicates the number of occurrences of a certain key within
the corresponding collection. The counter value cannot ex-
ceed the term set frequency maximum, tf max, as a key would
otherwise have been locally frequent and new HDKs would
have been generated when the maximum number of terms,
hmax, was not yet reached.

When a user poses a query with q terms, e.g. abcde with
q = 5, the query is first decomposed in query term combi-
nations with length hmax (i.e. abc, abd, . . . , bde, cde). This
results in

(
q
h

)
combinations. Each combination is looked up

in the broker index. Note that this introduces additional
load on the broker, but these lookups do not require net-
work access to the peers. The results of each of those smaller
queries are merged by summing the number of occurrences
per collection. The sum of all counters, c, has a potential
maximum of

(
q
h

)
· tf max. It may happen that this procedure

results in little or no collections where an HDK occurs. The
procedure is then repeated for smaller term sets; first term
sets of two terms will be looked up in the index. When even
this gives too few results, single terms will be looked up in
the index. In the case that one collection contains two differ-
ent combinations, e.g. both abc and bce occur in collection
X, the number of occurrences are summed (this is c that was
just introduced). However, it also interesting to note that
4 out of 5 query terms can be found in collection X. The
number of query terms that can be found using HDKs of a
particular length is indicated by n. The different parameters
are displayed in Table 1.

3.4 ScoreFunction: ranking query results
ScoreFunction, given in Formula 2, is a ranking formula

that uses the query result parameters to enforce a collection
ranking conforming to our desired ranking properties. It

calculates a score s for a collection for a given query

s = log10

([
h− 1 +

n− 1

q
+√

c

(hmax+1−h)·(n
h)·tf max

· α(q−n)

q

]
/hmax

)
(2)

It consists of three components; one component per de-
sired ranking property. The properties, and corresponding
components, are listed below in order of importance.

1. Collections that contain longer HDKs should be ranked
higher. Component 1: h− 1.

2. A collection should be ranked higher if it contains more
distinct query terms. Component 2: (n− 1)/q.

3. More occurrences of query term sets within a collection
should result in a higher collection ranking. Compo-

nent 3:

√
c

(hmax+1−h)·(n
h)·tfmax

·α(q−n)

q
.

The general intuition behind this component is that
a collection is more important when it contains more
query terms. This is controlled by a damping factor α.
The term set counts have less impact when they get
closer to tf max, because longer keys would be generated
for a term set in a collection when its frequency exceeds
tf max. We refer to earlier work for a more detailed
explanation about ScoreFunction [4].

An important detail to mention about querying and rank-
ing is that collection X can be found after looking for HDKs
with length h. When the same collection X is found af-
ter looking for HDKs with length h − 1, those results are
discarded as the collection was already found using larger
HDKs. Counts c are only compared with other counts that
are retrieved after looking for HDKs of the same length. The
motivation for this behavior is that smaller HDKs tend to
have higher counts.

Each of the three components has a share in the collec-
tion score. The component share of a less desired property
never exceeds that smallest possible share of a more desired
property’s component value.

4. EXPERIMENT SETUP
This section describes the corpus, query set and query logs

that were used in the evaluation process, and continues to
describe how the collection selection effectiveness of Sophos
was measured.

4.1 Data collections

4.1.1 WT10G corpus splits
The Web Track 10GB corpus (WT10g) was developed for

the Text REtrieval Conference1 and consists of 10GB of web
pages (1,692,096 documents on 11,680 servers). Compared
to regular TREC corpora, WT10g should be more suited
for distributed information retrieval experiments, due to the
existence of hyperlinks, differences in topics, variation in
quality and presence of duplicates [3, 8].

1http://trec.nist.gov/

Four splits of the WT10G document corpus were made to
look at the effect of document corpora on collection selec-
tion. Every split is a set of collections; every collection is a
set of documents. The numbers 100 and 11512 indicate the
amount of collections in the corpus split.

IP Split: Documents are put in collections based on the IP
addresses of the site where a document was residing.
This results in 11,512 collections.

IP Merge 100: A cluster is created by grouping up to 116
collections, which results in 100 collections. Grouping
is done in order of IP address. This split simulates
the scenario of indexing the search engines that index
many servers.

Random 100 and Random 11512: Two random splits
with 100 collections and with 11,512 collections were
created. Documents were randomly assigned to a col-
lection. The number of 11,512 collections was chosen
to be able to compare a random split with the IP Split.

The number of documents in random splits is relatively
constant, but varies in IP based collections from less than 10
up to more than 1000 documents. This is typical for the size
of sites on the Internet; the number of documents per server
follows a Zipf distribution on the Internet [1]. The IP based
splits show signs of conformance to a Zipf distribution [4].
This means that the IP based splits can be compared to the
Internet in terms of distribution of the number of documents
and the sizes of the collections.

The merit of a collection is the number of relevant docu-
ments in a collection for a particular query. The IP based
corpus splits have a larger deviation in merit among the
collections. This contrasts with random splits, which by ap-
proximation have equal merit for each collection [4].

4.1.2 WT10g retrieval tasks
Fifty WT10g informational ‘ad-hoc’ queries were used for

evaluation (query numbers 501–550). The queries have a
query number, title, description and a narrative description
of the result that is considered relevant. The title is a small
set of words which was used as the query text. The narra-
tive descriptions were used by humans to assign relevance
judgments to documents. The relevance judgments can be
used to count the number of relevant documents in the col-
lections, which in turn can be used to measure collection
selection effectiveness.

There are three types of relevance judgments: not rele-
vant (0), relevant (1) and authoritative (2). There can be
multiple authoritative documents in the document corpus
for a query, but for some queries there are no authoritative
documents. All authoritative judgments are converted to 1,
so documents are either relevant or not relevant. This allows
for evaluation of the collected merit.

4.1.3 Query logs
AOL published a query log with 21,011,340 queries [19].

The log has been anonymized and consists of several data
fields: the actual query issued and the query submission date
and time, and an anonymous user ID number. The release
of the anonymized data set was controversial at the time
because it was proven possible to link an ID to a real person.
To respect the anonymity of the users, we used a stripped

version of the query log that only contains the actual queries
issued in random order (and none of the other metadata).

We also used two query logs that were published by Ex-
cite2 that were stripped in the same way. One query log
from 1997 contains 1,025,907 queries and another query log
from 1999 contains 1,777,251 queries.

Finally, a fourth query log with 3,512,320 unique queries
was created by removing all queries from the AOL query log
that were issued only once. This query log will be referred
to as AOL2. The other logs are called AOL, Excite97 and
Excite99.

4.2 Method
To evaluate the performance of our collection selection

system, we adopted the precision and recall metrics for col-
lection selection as defined by Gravano et al. [13]. We start
by obtaining the retrieval system ranking (S) for a query,
which contains up to 1,000 collections. We also create the
best ranking (B) which is the best possible ranking for a
particular query; collections are ranked by their amount of
merit with respect to a query.

Given query q and collection ci, the merit within a col-
lection can be expressed using merit(q , ci). The merit of
the ith ranked collection in rankings S and B is given by
S i = merit(q , csi) and B i = merit(q , cbi).

The obtained recall after selecting n collections can be
calculated by dividing the merit selected by the best possible
retrieval system:

Rn =

∑n
i=1 Si∑n
i=1Bi

(3)

Precision Pn is the fraction of top n collections that have
non-zero merit:

Pn =
|{sc ∈ Topn(S)|merit(q, sc) > 0}|

|Topn(S)| (4)

The precision and recall obtained by Sophos is compared
to the collection selection results from a baseline of Language
Modeling with Dirichlet Smoothing (lmds) as implemented
by indri. The baseline system has one parameter µ that
is set to 2500. Krovetz word stemming is applied to the
collections.

Section 3 introduced Sophos and its parameters. There
are three parameters for peers: the maximum key length
hmax, the maximum key frequency before calling a key fre-
quent (tf max) and the window size ws. Based on num-
bers used by Luu et al. [15], we use the following settings:
tf max = {250, 500, 750} and ws = {6, 12, 18}. The average
query length on the Internet is 2.3 [14, 30]. We use this ob-
servation to set hmax to 3. Setting it smaller would require
many intersections of term sets (with associated collections)
to answer queries. Setting it larger would result in many
term sets that are rarely queried for. For the broker, the
collection maximum cm is tested for values 5, 10, 20 and 50.

To evaluate Sophos, the collections are processed by re-
moving stop words – drastically reducing the number of in-
valuable keys and speeding up term set generation – and
applying Porter word stemming.

Finally, we will look at the precision and recall with query-
driven indexing using four different query logs. By pruning
the keys from the peer indices that do not occur in a query

2http://www.excite.com/

log. At the same time, we will look at the number of term
sets (keys) in the broker index to get an idea about its size.

5. RESULTS

5.1 Index size
Figure 3 shows the number of collection identifier coun-

ters within the broker index for different indexing settings
of indexing the IP Split. Spread over single, double and
triple term set collection identifier counters, the number of
counters are a good indication for the actual broker index
size. The figure shows that the number of counters decreases
when the term set frequency maximum is increased.

107

108

tf250cm
5

tf250cm
10

tf250cm
20

tf250cm
50

tf500cm
5

tf500cm
10

tf500cm
20

tf500cm
50

tf750cm
5

tf750cm
10

tf750cm
20

tf750cm
50

#C
ol

ID
 C

ou
nt

er
s

in
 g

lo
ba

l i
nd

ex

Single terms
Double terms

Triple terms

Figure 3: Number of collection ID counters with IP
Split.

A more substantial reduction of collection identifier coun-
ters – of roughly 70% – can be achieved by using query-
driven indexing, as shown in Figure 4. The figure shows the
number of collection identifier counters after indexing the
Random 11,512 corpus split with or without query-driven in-
dexing. Figure 5 depicts the obtainable index size reduction
by using different query logs. The Excite query logs contain
significantly less query term sets than the AOL query log.
The figure shows that more keys are pruned from the peer
indices, resulting in a smaller broker index. The figure shows
that using Excite query logs instead of the standard AOL
query log can result in roughly 75% less collection identifier
counters.

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3.5e+007

 4e+007

 4.5e+007

Single terms Double terms Triple terms

#C
ol

ID
 C

ou
nt

er
s

in
 g

lo
ba

l i
nd

ex

Sophos without QDI
Sophos with QDI AOL

Figure 4: Number of collection identifier counters
stored per QDI strategy for Random 11512 corpus
split

 0

 1e+007

 2e+007

 3e+007

 4e+007

 5e+007

 6e+007

Single terms Double terms Triple terms

#C
ol

ID
 C

ou
nt

er
s

in
 g

lo
ba

l i
nd

ex

Sophos with QDI AOL
Sophos with QDI AOL2

Sophos with QDI Excite 97
Sophos with QDI Excite 99

Figure 5: Number of collection identifier counters
stored per QDI strategy for IP Split

5.2 Collection selection performance
Table 2 shows the average precision and recall over 50

queries that were calculated with Formula 3 and Formula 4.
The numbers are calculated for four different corpus splits
with which the baseline (lmds) and Sophos were tested.
Sophos was used with the following settings: query-driven
indexing with the AOL query log, tf max = 250, cm = 20
and ws = 6. Due to memory constraints, we were unable
to run Sophos with a window size larger than 6. The table
shows that the baseline outperforms Sophos on the Random
11,512 corpus split, but Sophos outperforms the baseline on
the IP split.

This is displayed in more detail in Figure 6, which shows
the average recall of Sophos and the baseline after selecting
n collections. Sophos was tested using different query logs,
tf max = 250 and cm = 50. Interestingly, pruning with the
smallest Excite query logs results in the best recall figures,
possibly because the queries were logged at the same time
as when the corpus was crawled.

0

0.2

0.4

0.6

0.8

1

1 10 100

R
ec

al
l a

fte
r

se
le

ct
in

g
n

co
lle

ct
io

ns

Number (n) of selected collection

LMDS
Sophos with QDI AOL tf250 cm50 ws6

Sophos with QDI AOL2 tf250 cm50 ws6
Sophos with QDI Excite 97 tf250 cm50 ws6
Sophos with QDI Excite 99 tf250 cm50 ws6

Figure 6: Recall of different collections selection
methods on IP Split

6. CONCLUSIONS
We introduced the collection selection system Sophos that

uses highly discriminative keys in peer indices to construct
a broker index. The broker index contains keys that are
good discriminators to select collections (or peers). To limit

Corpus split Collection selection method P@1 P@10 P@20 P@50 R@1 R@10 R@20 R@50

Random 100 lmds 0.290 0.251 0.249 0.217 0.314 0.435 0.526 0.683
Sophos QDI AOL tf250 cm20 0.330 0.254 0.237 0.208 0.379 0.436 0.493 0.644

Random 11512 lmds 0.140 0.096 0.084 0.069 0.233 0.196 0.186 0.198
Sophos QDI AOL tf250 cm20 0.040 0.036 0.037 0.026 0.067 0.073 0.082 0.073

IP Merge 100 lmds 0.280 0.202 0.188 0.154 0.489 0.489 0.567 0.755
Sophos QDI AOL tf250 cm20 0.300 0.254 0.214 0.160 0.211 0.485 0.626 0.825

IP Split lmds 0.170 0.110 0.083 0.056 0.070 0.149 0.183 0.289
Sophos QDI AOL tf250 cm20 0.170 0.147 0.121 0.091 0.280 0.466 0.466 0.548

Table 2: Average precision and recall over 50 queries after selecting n collections, high scores shown in bold

the number of keys transferred to the broker, and to reduce
the broker index size, we employed query-driven indexing to
only store the keys that are queried for by users. Similar
studies were performed for document retrieval [15], but to
the best of our knowledge, we are the first to apply this
approach for collection selection.

Precision and recall was measured using 50 queries on
the WT10g TREC test corpus and compared to a state-
of-the-art baseline that uses language modeling with Dirich-
let smoothing (lmds). The results showed that our system
outperformed the baseline with the IP split as test corpus.
This is promising, because the IP based splits most closely
resemble the information structure on the Internet. lmds
was better capable of selecting information in random based
splits, because it stores all available information about the
collections. In random based splits, relevant documents (and
their corresponding terms) are mixed over many collections,
making it hard for our approach to select highly discrimi-
native keys that can discriminate collections with relevant
documents.

Query-driven indexing is required to keep the broker index
size manageable; a 70% index size reduction can be obtained
by pruning keys using the AOL query log, another 75% re-
duction is possible by using a smaller query log. Our results
on the IP split showed that pruning using the smaller Excite
query logs resulted in higher precision and recall than with
AOL query logs. The use of any query log resulted in higher
precision and recall than the baseline results. This motivates
further research using more advanced query-driven indexing
strategies, such as described by Slobeltsyn [32], to further
reduce the index size while improving the performance. It
would also be interesting to make tf max depending on the
collection size.

Acknowledgements
We are grateful to the Yahoo Research Faculty Grant pro-
gramme and to the Netherlands Organisation for Scientific
Research (NWO, Grant 639.022.809) for supporting this work.
We would like to thank Berkant Barla Cambazoglu and the
anonymous reviewers for their valuable comments that im-
proved this paper.

7. REFERENCES
[1] L. A. Adamic and B. A. Huberman. Zipf’s law and the

internet. Glottometrics, 3:143–150, 2002.

[2] J. Arguello, J. L. Elsas, J. Callan, and J. G. Carbonell.
Document representation and query expansion models
for blog recommendation. In Proc. of the 2nd Intl.
Conf. on Weblogs and Social Media (ICWSM), 2008.

[3] P. Bailey, N. Craswell, and D. Hawking. Engineering a
multi-purpose test collection for web retrieval
experiments. Inf. Process. Manage., 39(6):853–871,
2003.

[4] S. Bockting. Collection selection for distributed web
search. Master’s thesis, University of Twente, Feb.
2009.

[5] J. Callan. Distributed information retrieval. Advances
in Information Retrieval, pages 127–150, 2000.

[6] J. Callan, W. B. Croft, and S. M. Harding. The
inquery retrieval system. In Proc. of the 3rd
International Conference on Database and Expert
Systems Applications, pages 78–83, Valencia, Spain,
1992. Springer-Verlag.

[7] J. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
SIGIR ’95: Proc. of the 18th annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 21–28, New York, NY,
USA, 1995. ACM.

[8] N. Craswell, P. Bailey, and D. Hawking. Is it fair to
evaluate web systems using trec ad hoc methods. In
Workshop on Web Evaluation. SIGIR’99, 1999.

[9] N. Craswell, P. Bailey, and D. Hawking. Server
selection on the world wide web. In DL ’00: Proc. of
the 5th ACM conference on Digital libraries, pages
37–46, New York, NY, USA, 2000. ACM.

[10] D. D’Souza, J. Thom, and J. Zobel. A comparison of
techniques for selecting text collections. In ADC ’00:
Proceedings of the Australasian Database Conference,
page 28, Washington, DC, USA, 2000. IEEE
Computer Society.

[11] D. D’Souza, J. A. Thom, and J. Zobel. Collection
selection for managed distributed document
databases. Information Processing & Management,
40(3):527–546, May 2004.

[12] D. D’Souza, J. Zobel, and J. A. Thom. Is cori effective
for collection selection? an exploration of parameters,
queries, and data. In Proc. of the 9th Australasian
Document Computing Symposium, pages 41–46, Dec.
2004.

[13] L. Gravano and H. Garcia-Molina. Generalizing
GlOSS to vector-space databases and broker
hierarchies. In International Conference on Very Large
Databases, VLDB, pages 78–89, 1995.

[14] T. Lau and E. Horvitz. Patterns of search: analyzing
and modeling web query refinement. In UM ’99: Proc.
of the 7th international conference on User modeling,
pages 119–128, Secaucus, NJ, USA, 1999.

Springer-Verlag New York, Inc.

[15] T. Luu, F. Klemm, M. Rajman, and K. Aberer. Using
highly discriminative keys for indexing in a
peer-to-peer full-text retrieval system. Technical
report, TR: 2005041, EPFL Lausanne, 2005.

[16] P. Lyman and H. R. Varian. How much information,
2003. http://www.sims.berkeley.edu/
how-much-info-2003, retrieved on April 23, 2008.

[17] D. Metzler. Indri retrieval model overview, July 2005.
http://ciir.cs.umass.edu/~metzler/

indriretmodel.html, retrieved on January 20, 2008.

[18] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Information Processing and Management,
40(5):735–750, 2004.

[19] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In InfoScale ’06: Proc. of the 1st international
conference on Scalable information systems, page 1,
New York, NY, USA, 2006. ACM.

[20] I. Podnar Zarko, M. Rajman, T. Luu, F. Klemm, and
K. Aberer. Scalable peer-to-peer web retrieval with
highly discriminative keys. IEEE 23rd International
Conference on Data Engineering (ICDE), 2007.

[21] A. L. Powell and J. C. French. Comparing the
performance of collection selection algorithms. ACM
Trans. Inf. Syst., 21(4):412–456, 2003.

[22] D. Puppin, F. Silvestri, and D. Laforenza.
Query-driven document partitioning and collection
selection. In InfoScale ’06: Proc. of the 1st
international conference on Scalable information
systems, page 34, New York, NY, USA, 2006. ACM.

[23] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-beaulieu, and M. Gatford. Okapi at trec-3. In
TREC-3 Proc., pages 109–126, 1995.

[24] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, Inc., New York,
NY, USA, 1986.

[25] N. Sato, M. Udagawa, M. Uehara, Y. Sakai, and
H. Mori. Query based site selection for distributed
search engines. Distributed Computing Systems
Workshops, 2003. Proc.. 23rd International
Conference on, pages 556–561, 2003.

[26] J. Seo and W. B. Croft. Umass at trec 2007 blog
distillation task. In Proc. of the 2008 Text REtrieval
Conference. NIST, 2007.

[27] M. Shokouhi, J. Zobel, S. Tahaghoghi, and F. Scholer.
Using query logs to establish vocabularies in
distributed information retrieval. Information
Processing and Management, 43(1):169–180, 2007.

[28] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In SIGIR
’03: Proc. of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 298–305, New York, NY,
USA, 2003. ACM.

[29] L. Si, R. Jin, J. Callan, and P. Ogilvie. A language
modeling framework for resource selection and results
merging. Proc. of the 11th international conference on
Information and knowledge management, pages
391–397, 2002.

[30] C. Silverstein, H. Marais, M. Henzinger, and

M. Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6–12, 1999.

[31] G. Skobeltsyn. Query-driven indexing in large-scale
distributed systems. PhD thesis, EPFL, Lausanne,
2009.

[32] G. Skobeltsyn, T. Luu, I. Podnar Zarko, M. Rajman,
and K. Aberer. Query-driven indexing for scalable
peer-to-peer text retrieval. Future Generation
Computer Systems, 25(1):89–99, June 2009.

[33] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: A language model-based search engine for
complex queries. In Proc. of the International
Conference on Intelligence Analysis, 2004.

[34] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer
information retrieval using self-organizing semantic
overlay networks. Proc. of the 2003 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 175–186, 2003.

[35] Y. Wang and D. J. DeWitt. Computing pagerank in a
distributed internet search system. In Proc. of the
International Conference on Very Large Databases
(VLDB), Aug. 2004.

[36] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

[37] J. Xu and W. B. Croft. Cluster-based language models
for distributed retrieval. Proc. of the 22nd annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 254–261,
1999.

[38] B. Yuwono and D. L. Lee. Server ranking for
distributed text retrieval systems on the internet. In
Proc. of the 5th International Conference on Database
Systems for Advanced Applications (DASFAA), pages
41–50. World Scientific Press, 1997.

[39] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In SIGIR ’01: Proc. of the 24th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 334–342, New York, NY, USA, 2001. ACM.

