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ABSTRACT
Query-based sampling is a commonly used approach to model
the content of servers. Conventionally, queries are sent to a
server and the documents in the search results returned are
downloaded in full as representation of the server’s content.
We present an approach that uses the document snippets
in the search results as samples instead of downloading the
entire documents. We show this yields equal or better mod-
eling performance for the same bandwidth consumption de-
pending on collection characteristics, like document length
distribution and homogeneity. Query-based sampling using
snippets is a useful approach for real-world systems, since it
requires no extra operations beyond exchanging queries and
search results.

1. INTRODUCTION
Query-based sampling is a technique for obtaining a re-

source description of a search server. This description is
based on the downloaded content of a small subset of doc-
uments the server returns in response to queries [8]. We
present an approach that requires no additional download-
ing beyond the returned results, but instead relies solely on
information returned as part of the results: the snippets.

Knowing what server offers what content allows a central
server to forward queries to the most suitable server for han-
dling a query. This task is commonly referred to as resource
selection [6]. Selection is based on a representation of the
content of a server: a resource description. Most servers
on the web are uncooperative and do not provide such a de-
scription, thus query-based sampling exploits only the native
search functionality provided by such servers.

In conventional query-based sampling, the first step is
sending a query to a server. The server returns a ranked
list of results of which the top N most relevant documents
are downloaded and used to build a resource description.
Queries are randomly chosen, the first from an external re-
source and subsequent queries from the description built so
far. This repeats until a stopping criterion is reached [7, 8].
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Figure 1: Example snippets. From top to bottom:
each snippet consists of an underlined title, a two
line summary and a link.

Disadvantages of downloading entire documents are that
it consumes more bandwidth, is impossible if servers do not
return full documents, and does not work when the full docu-
ments themselves are non-text: multimedia with short sum-
mary descriptions. In contrast, some data always comes
along ‘for free’ in the returned search results: the snippets.
A snippet is a short piece of text consisting of a document
title, a short summary and a link as shown in Figure 1. A
summary can be either dynamically generated in response
to a query or is statically defined [16, p. 157]. We postulate
that these snippets can also be used for query-based sam-
pling to build a language model. This way we can avoid
downloading entire documents and thus reduce bandwidth
usage and cope with servers that return only search results
or contain multimedia content. However, since snippets are
small we need to see many of them. This means that we
need to send more queries compared with the full document
approach. While this increases the query load on the remote
servers, it is an advantage for live systems that need to sam-
ple from document collections that change over time, since
it allows continously updating the language model, based on
the results of live queries.

Whether the documents returned in response to random
queries are a truly random part of the underlying collection
is doubtful. Servers have a propensity to return documents
that users indicate as important and the number of in-links
has a substantial correlation with this importance [1]. This
may not be a problem, as it is preferable to know only the
language model represented by these important documents,
since the user is likely to look for those [3]. Recent work
[5] focuses on obtaining uniform random samples from large
search engines in order to estimate their size and overlap.
Others [20] have evaluated this in the context of obtaining
resource descriptions and found that it does not consistently
work well across collections.



The foundational work for acquiring resource descriptions
via query-based sampling was done by Callan et al. [7, 8].
They show that a small sample of several hundred docu-
ments can be used for obtaining a good quality resource de-
scription of large collections consisting of hundreds of thou-
sands of documents. The test collection used in their re-
search, TREC123, is not a web data collection. While this
initially casts doubt on the applicability of the query-based
sampling approach to the web, Monroe et al. [18] show that
it also works very well for web data.

The approach we take has some similarities with prior
research by Paltoglou et al. [19]. They show that download-
ing only a part of a document can also yield good modelling
performance. However, they download the first two to three
kilobytes of each document in the result list, whereas we use
small snippets and thus avoid any extra downloading beyond
the search results.

Our main research question is:

“How does query-based sampling using only snip-
pets compare to downloading full documents in
terms of the learned language model?”

We show that query-based sampling using snippets offers
similar performance compared to using full documents. How-
ever, using snippets uses less bandwidth and enables con-
stantly updating the resource description at no extra cost.
Additionally, we introduce a new metric for comparing lan-
guage models in the context of resource descriptions and a
method to establish the homogeneity of a corpus.

We describe our experimental setup in section 2. This is
followed by section 3 which shows the results. Finally, the
paper concludes with sections 4 and 5.

2. METHODOLOGY
In our experimental set-up we have one remote server

which content we wish to estimate by sampling. This server
can only take queries and return search results. For each
document a title, snippet and download link is returned.
These results are used to locally build a resource description
in the form of a vocabulary with frequency information, also
called a language model [7]. The act of submitting a query
to the remote server, obtaining search results, updating the
local language model and calculating values for the evalua-
tion metrics is called an iteration. An iteration consists of
the following steps:

1. Pick a one-term query.

(a) In the first iteration our local language model is
empty and has no terms. In this case we pick a
random term from an external resource as query.

(b) In subsequent iterations we pick a random term
from our local language model that we have not
yet submitted previously as query.

2. Send the query to the remote server, requesting a max-
imum number of results (n = 10). In our set-up,
the maximum length of the document summaries may
be no more than 2 fragments of 90 characters each
(s ≤ 2 · 90).

3. Update the resource description using the returned re-
sults (1 ≤ n ≤ 10).

Table 1: Properties of the data sets used.

Name Raw Index #Docs # Terms # Unique

OANC 97M 117M 8,824 14,567,719 176,691

TREC123 2.6G 3.5G 1,078,166 432,134,562 969,061

WT2G 1.6G 2.1G 247,413 247,833,426 1,545,707

WIKIL 163M 84M 30,006 9,507,759 108,712

WIKIM 58M 25M 6,821 3,003,418 56,330

(a) For the full document strategy: download all the
returned documents and use all their content to
update the local language model.

(b) For the snippet strategy: use the snippet of each
document in the search results to update the local
language model. If a document appears multiple
times in search results, use its snippet only if it
differs from previously seen snippets of that doc-
ument.

4. Evaluate the iteration by comparing the unstemmed
language model of the remote server with the local
model (see metrics described in Section 2.2).

5. Terminate if a stopping criterion has been reached,
otherwise go to step 1.

Since the snippet approach uses the title and summary of
each document returned in the search result, the way in
which the summary is generated affects the performance.
Our simulation environment uses Apache Lucene which gen-
erates keyword-in-context document summaries [16, p. 158].
These summaries are constructed by using words surround-
ing a query term in a document, without keeping into ac-
count sentence boundaries. For all experiments the sum-
maries consisted of two keyword-in-context segments of max-
imally ninety characters. This length boundary is similar to
the one modern web search engines use to generate their
summaries. One might be tempted to believe that snippets
are biased due to the fact that they commonly also con-
tain the query terms. However, in full-document sampling
the returned documents also contain the query and have a
similar bias, although mitigated by document length.

2.1 Data sets
We used the following data sets to conduct our tests:

OANC-1.1: The Open American National Corpus: A het-
erogeneous collection. We use it exclusively for
selecting bootstrap terms [14].

TREC123: A heterogeneous collection consisting of TREC
Volumes 1–3. Contains: short newspaper and
magazine articles, scientific abstracts, and gov-
ernment documents [12]. Used in previous ex-
periments by Callan et al. [7]

WT2G: Web Track 2G: A small subset of the Very Large
Corpus web crawl conducted in 1997 [13].

WIKIL: The large Memory Alpha Wiki.
http://memory-alpha.org

WIKIM: The medium sized Fallout Wiki.
http://fallout.wikia.com

http://memory-alpha.org
http://fallout.wikia.com
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Figure 2: Kernel density plot of document lengths
up to 10 Kilobytes for each collection.

The OANC is used as external resource to select a boot-
strap term on the first iteration: we pick a random term out
of the top 25 most-frequent terms (excluding stop words).
TREC123 is for comparison with Callan’s work [7]. WT2G
is a representative subset of the web. It has some deficien-
cies, such as missing inter-server links [2]. However, since
we use only the page data, this is not a major problem for
this experiment.

Our experiment is part of a scenario where many sites
offer searchable content. With this in mind using larger
monolithic collections, like ClueWeb, offers little extra in-
sights. After all: there are relatively few websites that pro-
vide gigabytes or terabytes of information, whereas there is
a long tail that offers smaller amounts. For this purpose we
have included two Wiki collections in our tests: WIKIL and
WIKIM. All Wiki collection were obtained from Wikia, on
October 5th 2009. Wikis contain many pages in addition
to normal content pages. However, we index only content
pages which is the reason the raw sizes of these corpora are
bigger than the indices.

Table 1 shows some properties of the data sets. We have
also included Figure 2 which shows a kernel density plot
of the size distributions of the collections [21]. We see that
WT2G has a more gradual distribution of document lengths,
whereas TREC123 shows a sharper decline near two kilo-
bytes. Both collections consist primarily of many small doc-
uments. This is also true for the Wiki collections. Especially
the WIKIL collection has many very small documents.

2.2 Metrics
Evaluation is done by comparing the complete remote lan-

guage model with the subset local language model each it-
eration. We discard stop words, and compare terms un-
stemmed. Various metrics exist to conduct this compari-
son. For comparability with earlier work we use two metrics
and introduce one new metric in this context: the Jensen-
Shannon Divergence (JSD), which we believe is a better
choice than the others for reasons outlined below.

We first discuss the Collection Term Frequency (CTF)
ratio. This metric expresses the coverage of the terms of the
locally learned language model as a ratio of the terms of the
actual remote model. It is defined as follows [8]:

CTFratio

“
T , T̂

”
=

1

α
·
X
t∈T̂

CTF (t,T ) (1)

where T is the actual model and T̂ the learned model. The

CTF function returns the number of times a term t occurs
in the given model. The symbol α represents the sum of the
CTF of all terms in the actual model T , which is simply
the number of tokens in T . The higher the CTF ratio, the
more of the important terms have been found.

The Kullback-Leibler Divergence (KLD) gives an indica-
tion of the extent to which two probability models, in this
case our local and remote language models, will produce the
same predictions. The output is the number of additional
bits it would take to encode one model into the other. It is
defined as follows [16, p. 231]:

KLD
“
T ‖ T̂

”
=
X
t∈T

P (t | T ) · log
P (t | T )

P
“
t | T̂

” (2)

where T̂ is the learned model and T the actual model. KLD
has several disadvantages. Firstly, if a term occurs in one
model, but not in the other it will produce zero or infinite
numbers. Therefore, we apply Laplace smoothing, which
simply adds one to all counts of the learned model T̂ . This
ensures that each term in the remote model exists at least
once in the local model, thereby avoiding divisions by zero
[3]. Secondly, the KLD is asymmetric, which is expressed
using the double bar notation. Manning [17, p. 304] argues
that using Jensen-Shannon Divergence (JSD) solves both
problems. It is defined in terms of the KLD as [9]:

JSD
“
T , T̂

”
= KLD

 
T ‖T + T̂

2

!
+KLD

 
T̂ ‖T + T̂

2

!
(3)

The Jensen-Shannon Divergence (JSD) expresses how much
information is lost if we describe two distributions with their
average distribution. This distribution is formed by sum-
ming the counts for each term that occurs in either model
and taking the average by dividing this by two. Using the
average is a form of smoothing which avoids changing the
original counts in contrast with the KLD. Other differences
with the KLD are that the JSD is symmetric and finite. Con-
veniently, when using a logarithm of base 2 in the underlying
KLD, the JSD ranges from 0.0 for identical distributions to
2.0 for maximally different distributions.

3. RESULTS
In this section we report the results of our experiments.

Because the queries are chosen randomly, we repeated the
experiment 30 times.

Figure 3 shows our results on TREC123 in the conven-
tional way for query-based sampling: a metric against the
number of iterations on the horizontal axis [7]. We have
omitted graphs for WT2G and the Wikia collections as they
are highly similar in shape.

As the bottom right graph shows, the amount of band-
width consumed when using full documents is much larger
than when using snippets. Full documents downloads each
of the ten documents in the search results, which can be po-
tentially large. Downloading all these documents also uses
many connections to the server: one for the search results
plus ten for the documents, whereas the snippet approach
uses only one connection for transferring the search results
and performs no additional downloads.

The fact that the full documents approach downloads a
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Figure 3: Results for TREC123. Shows CTF, KLD,
JSD and bandwidth usage, plotted against the num-
ber of iterations. Shows both the full document and
snippet-based approach. The legend is shown in the
top left graph.

lot of extra information results in it outperforming the snip-
pet approach for the defined metrics as shown in the other
graphs of Figure 3. However, comparing this way is unfair.
Full document sampling performs better, simply because it
acquires more data in fewer iterations. A more interesting
question is: how effectively do the approaches use band-
width?

3.1 Bandwidth
Figures 4 and 5 show the metrics plotted against band-

width usage. The graphs are 41-point interpolated plots
based on experiment data. These plots are generated in a
similar same way as recall-precision graphs, but they con-
tain more points: 41 instead of 11, one every 25 kilobytes.
Additionally, the recall-precision graphs, as frequently used
in TREC, use the maximum value at each point [11]. We
use linear interpolation instead which uses averages.

Figure 4 shows that snippets outperform the full docu-
ment approach for all metrics. This seems to be more pro-
nounced for WT2G. The underlying data reveals that snip-
pets yield much more stable performance increments per
unit of bandwidth. Partially, this is due to a larger quan-
tity of queries. The poorer performance of full documents is
caused by variations in document length and quality. Down-
loading a long document that poorly represents the under-
lying collection is heavily penalised. The snippet approach
never makes very large ‘mistakes’ like this, because its doc-
ument length is bound to the maximum summary size.

TREC123 and WT2G are very large heterogeneous test
collections as we will show later. The WIKI collections are
more homogeneous and have different document length dis-
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Figure 4: Interpolated plots for all metrics against
bandwidth usage up to 1000 KB. The left graphs
show results for TREC123, the right for WT2G.
Axis titles are shown on the left and bottom graphs,
the legend in the top left graph.

tribution characteristics. In Figure 5 we see that the per-
formance of snippets on the WIKIL corpus is worse for the
JSD, but undecided for the other metrics. For WIKIM per-
formance measured with CTF is slightly better and unde-
cided for the other metrics. Why this difference? We con-
ducted tests on several other large size Wiki collections to
verify our results. The results suggest that there is some
relation between the distribution of document lengths and
the performance of query-based sampling using snippets. In
Figure 2 we see a peak at the low end of documents lengths
for WIKIL. Collections that exhibit this type of peak all
showed similar performance as WIKIL: snippets performing
slightly worse especially for the JSD. In contrast, collections
that have a distribution like WIKIM, also show similar per-
formance: slightly better for CTF. Collections that have a
less pronounced peak at higher document lengths, or a more
gradual distribution appear to perform at least as good or
better using snippets compared to full documents.

The reason for this is that as the document size decreases
and approaches the snippet summary size, the full docu-
ment strategy is less heavily penalised by mistakes. It can
no longer download very large unrepresentative documents,
only small ones. However, this advantage is offset if the
document sizes equal the summary size. In that case the
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Figure 5: Interpolated plots for all metrics against
bandwidth usage up to 1000 KB. The left graphs
show results for WIKIL, the right for WIKIM. Axis
titles are shown on the left and bottom graphs, the
legend in the top left graph.

full document approach would actually use double the band-
width with no advantage: once to obtain the search results,
with summaries, and once again to download the entire doc-
uments which are the same as the summaries in the search
results.

3.2 Homogeneity
While WIKIM has a fairly smooth document length dis-

tribution, the performance increase of snippets over full doc-
uments with regard to the JSD and KLD metrics is not the
same as that obtained with TREC123 and WT2G. This is
likely caused by the homogeneous nature of the collection.
Consider that if a collection is highly homogeneous, only
a few samples are needed to obtain a good representation.
Every additional sample can only slightly improve such a
model. In contrast, for a heterogeneous collection, each new
sample can improve the model significantly.

So, how homogeneous are the collections that we used?
We adopt the approach of Kilgariff and Rose [15] of split-
ting the corpus into parts and comparing those, with some
slight adjustments. As metric we use the Jensen-Shannon
Divergence (JSD) explained in Section 2.2 and also used by
Eiron and McCurley [10] for the same task. The exact pro-
cedure we used is as follows:

Table 2: Collection homogeneity expressed as
Jensen-Shannon Divergence (JSD): Lower scores in-
dicate more homogeneity (n = 100,σ = 0.01).

Collection name µ JSD

TREC123 1.11
WT2G 1.04
WIKIL 0.97
WIKIM 0.85

1. Select a random sample S of 5000 documents from a
collection.

2. Randomly divide the documents in the sample S into
ten bins: s1 . . . s10. Each bin contains approximately
500 documents.

3. For each bin si calculate the Jensen-Shannon Diver-
gence (JSD) between the bigram language model de-
fined by the documents in bin si and the language
model defined by the documents in the remaining nine
bins. Meaning: the language model of documents in
s1 would be compared to that of those in s2 . . . s10, et
cetera. This is known as a leave-one-out test.

4. Average the ten JSD scores obtained in step 3. The
outcome represents the homogeneity. The lower the
number, the more self similarity within the corpus,
thus the more homogeneous the corpus is.

Because we select documents from the collection randomly
in step 1, we repeated the experiment ten times for each
collection. Results are shown in Table 2.

Table 2 shows that the large collections we used, TREC123
and WT2G, are more heterogeneous compared to the smaller
collections WIKIL and WIKIM. It appears that WIKIL is
more heterogeneous than WIKIM, yet snippet-based sam-
pling performs better on WIKIM. We conjecture that this
is caused by the difference in document length distributions
discussed earlier: see Figure 2. Overall, it appears that
query-based sampling using snippets is better suited towards
heterogeneous collections with a smooth distribution of doc-
ument lengths.

4. CONCLUSION
We have shown that query-based sampling using snippets

is a viable alternative for conventional query-based sampling
using entire documents. This opens the way for distributed
search systems that do not need to download documents at
all, but instead solely operate by exchanging queries and
search results. Few adjustments are needed to existing op-
erational distributed information retrieval systems, that use
a central server, as the remote search engines and the cen-
tral server already exchange snippets. Our research implies
that the significant overhead incurred by downloading docu-
ments in today’s prototype distributed information retrieval
systems can be completely eliminated. This also enables
modeling of servers from which full documents can not be
obtained and those which index multimedia content. Fur-
thermore, the central server can continuously use the search
result data, the snippets, to keep its resource descriptions
up to date without imposing additional overhead, naturally
coping with changes in document collections that occur over



time. This also provides the extra iterations that snippet
query-based sampling requires without extra latency.

Compared to the conventional query-based sampling ap-
proach our snippet approach shows equal or better perfor-
mance per unit of bandwidth consumed for most of the test
collections. The performance also appears to be more sta-
ble per unit of bandwidth consumed. Factors influencing
the performance are document length distribution and the
homogeneity of the data. Snippet query-based sampling per-
forms best when document lengths are smoothly distributed,
without a large peak at the low-end of document sizes, and
when the data is heterogeneous.

Even though the performance of snippet query-based sam-
pling depends on the underlying collection, the information
that is used always comes along ‘for free’ with search results.
No extra bandwidth, connections or operations are required
beyond simply sending a query and obtaining a list of search
results. Herein lies the strength of the approach.

5. FUTURE WORK
We believe that the performance gains seen in the var-

ious metrics leads to improved selection and merging per-
formance. However, this is something that could be further
explored. A measure for how representative the resource
descriptions obtained by sampling are for real-world usage
would be very useful. This remains an open problem, also
for full document sampling, even though some attempts have
been made to solve it [4].

An other research direction is the snippets themselves.
Firstly, how snippet generation affects modeling performance.
Secondly, how a query can be generated from the snippets
seen so far in more sophisticated ways. This could be done
by attaching a different priority to different words in a snip-
pet. Finally, the influence of the ratio of snippet to docu-
ment size could be further investigated.
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