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ABSTRACT
Bridging the semantic gap is one of the big challenges in
multimedia information retrieval. It exists between the ex-
traction of low-level features of a video and its conceptual
contents. In order to understand the conceptual content of
a video a common approach is building concept detectors.
A problem of this approach is that the number of detec-
tors is impossible to determine. This paper presents a set
of 8 methods on how to combine two existing concepts into
a new one, using a logical AND operator. The scores for
each shot of a video for the combined concept are computed
from the output of the underlying detectors. The findings
are evaluated on basis of the output of the 101 detectors in-
cluding a comparison to the theoretical possibility to train
a classifier on each combined concept. The precision gains
are significant, specially for methods which also consider the
chronological surrounding of a shot promising.

1. INTRODUCTION
Bridging the semantic gap has been declared to be a key

problem in multimedia information retrieval since long [7].
The gap is between the well understood extraction meth-
ods of low level features from media files and the high level
concepts needed to satisfy the information needs of the user
expressed in a query to a search system. That is why de-
tecting the presence of semantic concepts in videos has come
into research focus in the recent years [3]. The set of re-
quired concepts is hard to define and building programs to
detect concepts is difficult and expensive. This paper eval-
uates several methods on how to combine two detectors for
individual concepts to a detector for a combined concept.
The number of available concepts is thus quadratically in-
creased. If multiple combinations are allowed this growth is
exponential.

In this paper we adopt the definition of a semantic con-
cept from Snoek at al. [9]. There, a concept is defined as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

something which must appear clearly in the static key frame
of a video shot. Thus the expression does not cover concepts
which are only represented in the audio content nor purely
abstract concepts like “World Peace”.

The research community seems to have settled to create
for each concept a so called concept detector programs which
assign each shot of a video a certain score representing the
estimated likelihood of the presence of this concept. Many
research groups work on the question on how to best create
these detectors.

The problem of how to determine the set of required detec-
tors applies even for limited domains. The most commonly
used metaphor for this problem is an indefinite “semantic
space”. An established approach is to create detectors for
a certain set concepts which should allow to answer all pos-
sible queries [4]. Besides the problem of selecting the right
concepts for a specific domain, another question is how to
handle requests for concepts which are not directly present
in the set of available concepts. Due to an unknown struc-
ture of the “semantic space” of the domain, it is not an
option to simply increase the number of detectors, until the
point where all requested concepts are covered. Thus, some
concepts have to be expressed as a combination of concepts
for which detectors exist. This problem has not been satis-
factory addressed [9]. One of the subproblems is that tech-
niques which use classifiers on feature vectors suffer from
the few positive examples the combined concepts often have
in the supplied training data.

An example where the combination of concepts are useful
can be found in [8]. Here topics are always mapped to a
single concept detector which is then used for searching the
data set. As the user might have really meant the combined
concept, the use of it would improve the precision of the
answer.

Essentially the task of a detector for a combined concept
is to come up with scores for the presence of this concept
in a given shot. This has to be done by simple methods
as complex methods like classification do not perform well
with few positive examples in the training data, which is
common for combined concepts. The score will be based on
the output from the two underlying detectors and possibly
findings from the results of these detectors on a training set.
An example for the combination of two existing concepts
would be, deriving a detector for “Indoor sports” from the
detectors for “Indoor” and “Sports”. Allowing an arbitrary
number of these combinations would even result in exponen-



tial growth of the number of available concept detectors. A
combination of three concepts could for example be “indoor
sports referee”.

The rest of this paper is structured as follows: In Sec-
tion 2 we present work which has been done on concept
detection and on searching on the resulting data. The fol-
lowing Section 3 describes the proposed methods in detail.
Section 4 describe the experiments which have been carried
out together with a interpretation of the results. The paper
ends with a proposal for future work and a conclusion in
Section 5.

2. RELATED WORK
A lot of work on concept detection has been done in the

context of the TRECVID Workshop [6]. There the expres-
sion “high-level feature” is used, which is treated as a syn-
onym for the expression semantic concept, which is used
here. A task for the participants is to come up with algo-
rithms which compute a sequence of shots ordered by their
likelihood to contain a certain concept. For each concept
out of a predefined set the participants have to return a list
of shots each attributed with a score whether this concept
appears in each shot. The different search tasks could then
use the output to improve their search performance.

The LSCOM workshop aims to build two sets of concept
lexicons. A lexicon is defined as a set of concepts together
with a short description of the shots which should qualify
to the concept and truth judgment for each concept on each
shot. The two lexicons are a light- and a large scale concept
ontology. The LSCOM light ontology [4] consists of truth
judgments for 39 concepts. Whereas the full LSCOM test
environment [2] comprises nearly 1000 concepts of which 317
are already annotated.

There have been several approaches on building detector
for a single concept. Among them are rule based schemes,
Bayesian classifiers, neural network classification, Gaussian
mixture models, finite state machines, support vector ma-
chines and hidden Markov models. Snoek et al. give a good
overview of these methods in [11]. Most of these methods
are classifiers algorithms which are commonly only used to
put items in different classes, in this case ”is present” or
”not”. In an information retrieval setting it is desirable to
know which shot, out of two, is the more likely to contain
a certain concept. With this criteria it is possible to create
a ranking of a set of shots. Thus it is a strong requirement
that the classifiers are also able to return some kind of score
for each shot with which they can be compared. There is
evidence that using a SVM classifier gives the best results
and is most flexible in its application [10] [13].

The area of multi-concept relationships is related to the
presented approach of creating detectors for combined con-
cepts. The idea behind the multi-concept relationships is
to let the scoring process for a semantic concept be influ-
enced by the relationship with other related semantic con-
cepts, for example the likelihood of observing the concept
“bus” is less likely when also observing a “indoor” setting
with a high score. Rong Yan gives a good overview of the
available techniques to do this in [13]. The link between
the two methods is that the multi-concept relationship ap-
proach tries to improve detectors by considering the presence
of related concepts and the presented approach creates new
concepts. Thus both considering multiple concepts.

The MediaMill Group [9] evaluated several ways of com-

bining “low-level” features, namely associated text and color-
histograms, into high-level concept detectors. Each strategy
is based on a vector of certain low-level features. The detec-
tor is a SVM model [12] which gets trained on designated
training data in order to accurately assign scores to shots
from other data sources. The evaluated methods differ in
what the vectors, used for training and estimation, consist
of. The following variations have been researched in the
their experiments: experiment 1) consider only video fea-
tures, experiment 2) only take text features from automatic
speed recognition into account, experiment 3) use both kinds
of low-level features (early fusion), experiment 4) combine
the output of 1) and 2) (late fusion) and finally 5) combin-
ing the output of methods 1-4. For TRECVID 2005 they
trained and evaluated 101 concept detectors on approxi-
mately 30,000 shots. On average method 1) was performing
the best on the TRECVID dataset. That means the textual
features were less beneficial. The reason for this were not
explicitly researched.

3. COMBINATION METHODS
This section describes the proposed methods to combine

two detectors into a detector for a combined concept. Only
the combination by a logical “AND” (i.e. c1 AND c2) is
considered here. This resembles the case that there have to
be two concepts present at the same time. Studies on cases
like c1 AND NOT c2 are planned for the future.

It is required to be able to calculate the scores for the shots
in an online fashion. The reason for this is the big number
of shots and large number of concepts in a realistic scenario
- making it impossible to keep all scores stored on disk, due
to the exponential growth in number of the combinations.

The rest of the section is structured as follows: To lay a
good formal foundation Subsection 3.1 defines a number of
important terms. Afterwards, in Subsection 3.2, the pro-
posed combination methods are defined and discussed.

3.1 Basic Definitions
In the following the most important terms for the prob-

lem of building a combined concept are formally defined.
This should help reason about and defining the methods
presented later.

Def 1 (Video) A Video v is a combination of a stream of

pictures and optionally sound. V is the set of videos on

which the concept detection should be done. Formally: V =
{v1, ..., vm}.

Def 2 (Shot) A shot is a sequence of pictures of a video

being recorded in one go by a camera. si,j stands for the jth

shot of video vi. Following notation is used:

Number of shots Function ns() returns the number of shots

contained by video v. Thus ns(v) ⇒ IN where v ∈ V .

Shots of a video Si is the temporal ordered sequence of all

shots of video vi. Si = [si,1, ..., si,ns(vi)]

All shots S is the set of all shots from all videos. Formally

defined this reads as: S =
Sm

i=1 {si,1, ..., si,ns(vi)}

Def 3 (Set of Concepts) The set of concepts C =
{c1, ..., cn} is the set of semantic concepts which a system

has appropriate detectors for.



Def 4 (Rankingfunction) A ranking function r calculates

real number, a score, for a shot s. The score symbolizes

the likelihood that in shot s a certain concept c is present.

For convenience here ri(s) with s ∈ S is used which means

r(ci, s) with ci ∈ C and s ∈ S. Formally: r(c, s) ⇒ IR with

c ∈ C and s ∈ S;

As each of the two rankings for the individual concepts

does not necessarily contain all shots. Again we define for

each ranking function that does not define a score the to a

shot this score to be 0.

3.2 Proposed Methods
In the following the methods for creating a ranking for

a combined concept are described. The task is to find a
ranking function for the combined concept c = ck AND cl

in a way that it yields the highest precision given relevance
judgments. For convenience a ranking function r for the
above combined concepts c is written as rk,l(s) which means
r(ck AND cl, s),. All the following methods require that the
score of both detectors for a individual shot have to be ef-
ficiently accessible if the score of this shot should be com-
puted.

Add.
The add rankingfunction simply adds the scores of the

base ranking functions together. This way shots get favored
which have a high rank for both concepts.

addk,l(si,j) = rk(si,j) + rl(si,j)

Multiply (mult).
The mult rankingfunction multiplies the ranking values,

thus assuming the independence between the occurrences of
both concepts.

multk,l(si,j) = rk(si,j)rl(si,j)

Combine weighted (cbw).
The combine weighted method uses the average precision

of the underlying detectors on the training data as weighting
factors for each score (here ap(c).

cbwk,l(si,j) =
ap(k)rk(si,j) + ap(l)r′l(si,j)

ap(k) + ap(l)

Neighbor functions.
The family of Neighbor methods do not only consider both

scores of the shot in question but also the scores from the
shots chronological before and after the shot. The neigh-
borhood nh is the number of shots to consider before and
after the actual shot. This method is based on the assump-
tion that a shot is more likely about “indoor sports” if the
surrounding shots also have a higher score. A reason for
this might be that a concept might be presented in a un-
usual form in the current shot, not allowing the concept
detector to recognize it properly in this shot. If the con-
cept is detected in the adjacent shots the probability that
it was present in the current shot is considered high. For
this family of combination methods it is required that the
previous and next shots of a certain base shot can be ac-
cessed efficiently. Once the output of the two detectors can
be accessed by video and chronological sorted shots, an ef-

ficient algorithm using a sliding window of length (2nh) + 2
to calculate the combined score exists.

Neighbor left (nl).
The Neighbor left method considers the score for si and

multiplies it with the summed score of the neighboring shots
of sj .

nlk,l(si,j) = rk(si,j)

min(j+nh,ns(vi))
X

m=max(j−nh,0)

rl(si,m)

The following diagram should visualize the working. Math-
ematically the score can be calculated as follows nh = 2:
r(s2) = in(s2)(

P4
i=0 si);

Neighbor right (nr).
Neighbor right does the equivalent to the Neighbor left

method.

nrk,l(si,j) = rl(si,j)

min(j+nh,ns(vi))
X

m=max(j−nh,0)

rk(si,m)

Neighbor (n).
The general Neighbor method combines the both single

sided Neighbor methods by averaging Neighbor left and Neigh-
bor right.

nk,l(si,j) =
(nlk,l,nh(si,j) + nrk,l,nh(si,j))

2

Neighbor Multiply (nm).
Neighbor Multiply multiplies instead of adding the both

components of the combination together. The rational be-
hind this is to get a more robust ranking. That means in
case a detector sometimes recognizes something wrong there
is still the hope that the other might successful do it’s job.

nmk,l(si,j) = nlk,l,nh(si,j) ∗ nrk,l,nh(si,j)

Neighbor Weighted (nw).
The Neighbor Weighted method is equal to the Neighbor

method only that it does the weighting of both parts of
the Neighbor function by the average precision the source
detector had on the training data with the same meaning of
ap() as in add.

nwk,l(si,j) =
ap(k)nlk,l,nh(si,j) + ap(l)nrk,l,nh(si,j)

ap(k) + ap(l)



4. EXPERIMENTS
This section presents the experiments, which were done to

evaluate the presented methods. All the experiments were
based on the MediaMill data [9] which provides truth judg-
ments, features for each shot and scores for both a train and
a test dataset. For the proposed methods only the scores
and truth judgments from the training set were used to help
creating the scoring for the combined concept on the test
data..

The needed relevance judgments to evaluate the perfor-
mance of a combined concept detector is derived from the
judgments of the underlying concepts ci and cj . It can be
computed from the judgments for ci and cj using the logical
“AND” operator. That means the concept c = (ci AND cj)
is only present if ci and cj are present.

The models for the single concept detectors are trained
using training data. The evaluation of the methods was
done purely on the test data. The cbw and nw methods and
the built SVM used the training data for the calculation
of the average precision or to train a model, in case of the
SVM.

Besides self created scripts which automated the execu-
tion of the experiments, we used two software packages: The
software libsvm version 2.83 [1] was used for support vector
classification. It is important to note that the software needs
specifically to be told to produce probabilities for the sin-
gle classes. The second package was trec eval version 8.1
[5]. This package was used to produce the various quality
parameters used in the evaluation.

In both experiments all Neighbor methods were using a
neighborhood constant nh = 5. Runs on train data con-
firmed that this was a good value to use since it increased the
average precision and was still computational cheap enough
to use it on big datasets.

From the theoretical 101∗(101−1)
2

= 5050 possible com-
bined concepts 443 were selected as possible combinations.
The reason for this selection was that the other concepts
had either in the training or test dataset less than 30 posi-
tive examples. This few positive examples would introduce
too much randomness in the precision calculations.

Two separate experiments were performed, which are de-
scribed in the following sections. Afterwards in Subsec-
tion 4.1 a experiment run is described which compares the
presented combination methods against each other and a
preliminary baseline. Subsection 4.2 presents the results on
comparing the best of the previous evaluated combination
methods with the theoretical reasonable but practically in-
feasible possibility of building a SVM classifier for the com-
bined concept.

4.1 Experiment 1: Method Comparison
The first experiment considered the performance of the

available 443 combined concepts. The aim of this experi-
ment was to compare the proposed methods among them-
selves and against a baseline on the test data. As a baseline
the average of both single concept detectors was used (’sin-
gle’). As a quality measure the mean average precision of
all the produced rankings of a method was chosen. The
left and right alternative of the Neighbor methods were left
out, because it was not expected that they would have bet-
ter performance than the other methods of this class. The
experiment was conducted the examination for the base ex-
periments 1 to 4 see Section 2.

An overview of the results of this experiment is shown in
Table 1. One can see that in all cases the proposed methods
are better than the baseline of a single detector. The finding
from [9], that the usage of detectors considering only visual
features (experiment 1), can also found in the combined con-
cept detectors. It is expected that this means that better
performing input detectors also yield better combined de-
tectors. From the two basic combination methods, add and
mult, the later performs better in all experiments. The rea-
son is probably that it gives a more stable scoring for vary-
ing precision of the input detectors. An explanation for this
can be that the probabilities from underlying detectors are
independent. The cbw method improved the add method
in experiment 2 by 2.3% and worsens it in experiment 2.
Otherwise it stays the same. Thus it is not clear whether
it helps boosting the performance of it base method. The
Neighbor methods n,nm and nw all perform nearly identi-
cal. The multiplying version nm slightly performs better
on the visual only experiment 1 and worse on the text only
experiment 2. This phenomenon is expected to be bound
to the specific instances of the concepts and is not further
investigated. Thus the Neighbor methods n, nm and nw are
assumed to perform the same. The average gain compared
to the base line was 7% absolute which corresponds to a
relative improvement of 78%. A general improvement was
also determined by a Student-t test with a significance level
of 5%.

method ex1 ex2 ex3 ex4

single 0.093 0.050 0.088 0.088
add 0.112 0.058 0.101 0.109
mult 0.142 0.065 0.121 0.127
cbw 0.135 0.056 0.101 0.109
n 0.166 0.074 0.131 0.143
nm 0.167 0.072 0.131 0.143
nw 0.166 0.074 0.131 0.143

Table 1: Mean average precision of all 443 combined
concepts of experiment one to four (ex1-4)

In Figure 1 the precision-recall graph for experiment 1
is shown. As the Neighbor methods nearly had the same
performance only the first presented Neighbor method is
drawn. This graph is supporting the previous statements.
The plots show that the improvement of precision mainly
originates from lower recalls levels. One can also see that the
Neighbor methods are performing best over all recall levels.
The precision-recall graphs from other base experiments do
not reveal any other findings.

4.2 Experiment 2: SVM Classifier
The second experiment was done to evaluate the theoret-

ical alternative of creating classifiers for combined concepts
online. This method is theoretical, as it is not possible to
store and train all models for each combined concept thus
the classifier need to be trained online, which is impractical.
It was benchmarked against the best method from the previ-
ous experiment (n) and the use of the average of the single
detectors ’single’. Due to the limitation of CPU-time re-
sources only random samples of concept combinations were
considered. The not available computer cluster and the
tremendous optimization costs for the classifier models, re-
sulted in a random sample of 20 concept combinations. For
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Figure 1: Precision recall curve for experiment 1

the same reason the experiment was also limited on the base
data of experiment 4 from [9].

The input parameters for the SVMs were optimized as
follows. The optimization’s aim is not the classification
accuracy but the precision of the produced ranking. This
is important as the classification disregards position in a
ranking and could therefore produce different results. The
needed vector for the training and optimization was build
from the two scores of both underlying detectors for con-
cepts c1 and c2 associated with a certain shot. Thus ~xsi

=
(r1(si), r2(si)). This resembles a kind of late fusion con-
sidering the detectors output as a trained output based on
other features.

Following Snoek et al. the used parameters were not γ, a
kernel parameter, an C, a penalty factor for the error term.
Instead the weights of the positive (w+1) and negative (w-
1) examples. First all the input vectors were scaled to the
range of [0..1]. Afterwards a coarse search in steps of three in
the interval [0..100] was performed. Around the best point
a fine search with step size 1 is done. The set of training
vectors is then split in three. On two sets the model is build
with the parameters to test. Afterwards a ranking from the
third set of feature vectors is produced using the generated
model. This is done for all three possible combinations.
Then the produced rankings are concatenated, sorted by
their estimated probability and tested for the precision. The
parameter combination with the highest precision is used to
train the final model.

In Table 2 the mean average precisions of the examined
methods are shown. One can see clearly that the Neighbor
method (n) performs the best. The SVM method is worse
than the single method. The large number of combined
concepts with only few positive examples, which are known
to problematic for SVMs, could be a explanation. That

is why the training on train data does not reflect on the
execution on the test data. Figure 2 (a) shows the (average)
precision recall curve for this experiment. This shows that
the Neighbor method achieves higher precision in the range
of lower recall levels. A reason for this could be that in this
sample of combined concepts the correctly, highly scored
shots lie chronological close to each other, thus increasing
each other’s score.

method ex4

single 0.155
svm 0.068
n 0.208

Table 2: Mean average precision over all 20 com-
bined concepts for experiment four

Figure 2 (b) shows a overview of the achieved precision of
the combined concept detectors using the SVM and Neigh-
bor method in relation to the number of positive examples
in the training data. One can see that the Neighbor method
always performs better than the SVM method. Specially in
the regions with very few positive examples it is still able to
deliver some precision.

5. CONCLUSION & FUTURE WORK
This work presented nine methods on how to create a de-

tector for a semantic concept, logically combined from two
other semantic concepts using the “AND” operator. For
the two base concepts the detectors were assumed to exist.
The main problem was the inability to create an indefinite
amount of detectors, let alone training them at search time.
Nevertheless the presented methods were compared against
a baseline of taking the average of both base scores and
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Figure 2: Precision-Recall Curve and Influence of Positive Examples

creating a classifier online. The presented Neighbor meth-
ods were performing the best. With mean average precision
gains of about absolute 7% against the base line which is a
relative gain of about 78%. This is regarded as a positive
result.These methods require an access structure that allows
to enumerate the shots in an chronological order.

Another big advantage of the methods presented here is
that, even if it was feasible to train a classifier for each pos-
sible combined concept, the quality would not be optimal as
the number of positive examples are much smaller than for
the single concept and therefore, as this is a major problem
of classifiers, their performance degrades.

Future work in this direction should include investigation
on i) using also other operations like negating the presence
of a detector, ii) combine more than just two concepts and
iii) alternative formulas which do not require scores of the
data structures to be enumerated chronologically.
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