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ABSTRACT
Today, semantic concept based video retrieval systems of-
ten show insufficient performance for real-life applications.
Clearly, a big share of the reason is the lacking performance
of the detectors of these concepts. While concept detectors
are on their endeavor to improve, following important ques-
tions need to be addressed: “How good do detectors need
to be to produce usable search systems?” and “How does
the detector performance influence different concept com-
bination methods?”. We use Monte Carlo Simulations to
provide answers to the above questions. The main contri-
bution of this paper is a probabilistic model of detectors
which outputs confidence scores to indicate the likelihood
of a concept to occur. This score is also converted into a
posterior probability and a binary classification. We inves-
tigate the influence of changes to the model’s parameters on
the performance of multiple concept combination methods.
Current web search engines produce a mean average pre-
cision (MAP) of around 0.20. Our simulation reveals that
the best performing video search method achieve this per-
formance using detectors with 0.60 MAP and is therefore
usable in real-life. Furthermore, perfect detection allows the
best performing combination method to produce 0.39 search
MAP in a artificial environment with Oracle settings. We
also find that MAP is not necessarily a good evaluation mea-
sure for concept detectors since it is not always correlated
with search performance.

1. INTRODUCTION
Content based video retrieval currently mainly focuses on

the improvement of detectors of semantic concepts in video
shots. Here, semantic concepts are events of which a user
can judge the occurrence or absence, for example Outdoor

and Singing. Semantic concepts are also often referred to
as High Level Features [18, 7], because of their meaning to
humans, and as visual concepts [8], because of their pre-
dominate occurrence in the visual part of the video. On
the other hand, there is research on combining the output
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of the concept detectors to answer the information needs of
users. This search strategy is promising since it attempts to
separate the concept based retrieval problem from the de-
tection of the concepts. However, currently the performance
of such retrieval systems often prohibits their application in
reality. Clearly, the performance of the overall system heav-
ily depends on the performance of the detectors. However,
we also need to answer the questions “How good do the de-
tectors need to be to generate a satisfying overall search
performance?” And “What is the effect of the detector per-
formance on different proposed combination methods?” This
paper investigates the application of a Monte Carlo Simula-
tion based approach to answer these questions by simulating
detectors using a probabilistic model of them.

Hauptmann et al. [7] were the first to use a simulation
based approach to predict achievable performance of con-
cept based video retrieval systems. There, noise is intro-
duced into the known occurrences and absences of concepts
by randomly flipping their states. Therefore, detectors are
assumed to be binary classifiers which only differentiate be-
tween occurrence and absence. While the model of a binary
classifier was useful to study the general applicability of con-
cepts for search, most retrieval systems today employ con-
fidence scores or a probability measure based on this score.
The reason is that errors in binary classifications are fre-
quent and the information of “shot x contains concept y
with a confidence of z” needs to be exploited. For example,
the concept Barack Obama is clearly useful for the query
“Talks from the current U.S. President”. However, the cor-
responding detector might never positively classify a shot
for the concept Barack Obama but may find few shots more
likely to contain Barack Obama than others, which could be
exploited. Therefore, the simulation approach in this pa-
per generates confidence scores for each shot and concept
in a lexicon which then can be transformed into probability
measures as well as classifications.

Our approach follows the Monte Carlo Method [10] to es-
timate the detector and search performance of a retrieval
system given certain detector characteristics. For the sim-
ulation we define a probabilistic model of detectors: First,
we assume that detectors are independent from each other
and that each detector emits for each shot a single, real
valued, confidence score. Second, we make the assumption
that these confidence scores are normally distributed in the
set of shots where the concept occurs and likewise where it
does not (the positive and negative class). This assumption
is supported by studies of actual detector outputs in this
paper and Hastie in [22]. Based on this model and a col-



lection with known concept occurrences we generate a set
of randomized detector scores on which we execute differ-
ent search runs using different state-of-the-art combination
methods. To rule out random effects we repeat the pro-
cess multiple times to calculate the expected mean average
precision (MAP), defined for example in [7], of each combi-
nation method using the given parameters. We then grad-
ually change the parameters of the model and therefore the
performance level of the detectors to investigate the effect
of the changed detector characteristics to the overall search
performance.

This paper is structured as follows: In Section 2 we give
an overview of related work in this area. Section 3 describes
our approach to assess the necessary detection performance
through simulation. In Section 4, we investigate the results
of the simulation on a collection with concept annotations
and relevance judgments. Section 5 concludes this paper
and proposes future work.

2. RELATED WORK
In this section we review related work. This paper pro-

poses a simulation approach based on Monte Carlo Simula-
tions [10]. In literature, the term Monte Carlo Simulation is
used for a wide variety of different methods. Here, we use
it for a general procedure to calculate the expected outcome
of a deterministic calculation based on a probabilistic model
of the inputs. The procedure can be described in the fol-
lowing steps: (1) The definition of a probabilistic model of
the inputs to the simulation, the confidence scores and their
distribution based on their class in our case. (2) Random
generation of a concrete set of inputs using the model, a set
of concrete confidence scores in this paper. (3) Execution
of a deterministic computation using the generated inputs,
in our case the execution of the search and its performance
evaluation and (4) Repetition of (2) and (3) to produce mul-
tiple results. Finally, (5) average the results of the individual
computations into the final result. This calculation is guar-
anteed to converge with increasing number of repetitions to
the expected outcome based on the model.

The majority of current concept detectors are using Sup-
port Vector Machines (SVM) [20, 26]. Therefore, we adapt
our model to the characteristics of SVMs: A SVM is trained
on vectors of low level features from positive and negative
examples. The training phase selects so-called support vec-
tors which specify a hyper-plane which should separate pos-
itive and negative instances. During the prediction phase,
the confidence score of the new shot, represented by its low
level feature vector x, is calculated as follows, see also [13]:

o(x) =
X

i

yiαik(x,xi) + b

Here, x is the feature vector of the new shot, yi the label
and αi the weight for the ith support vector xi and k(·, ·) a
kernel function between two feature vectors. b is constant.
The result of the function o(·) is the confidence score of the
SVM for the new shot. For simplicity, we drop the notation
as a function and write o instead of o(·) in the following. If
the SVM is treated as a binary classifier, a decision criterion
is used to derive a classification from o. However, as men-
tioned above, in video retrieval it is more common to use the
confidence score, which can be seen for example in [23] and
from the fact that the concept detectors are currently eval-

uated using MAP [18] - a rank based method. The reason is
that classification errors are commonly too high, especially
for rare concepts. The confidence score can be seen as an
indicator of the likelihood that the current shot contains the
concept in question.

For many applications it is useful to use a normalized
probability for the class membership of a shot instead of an
uncalibrated confidence score. Hastie proposes in [22] that
the confidence scores are normally distributed in the posi-
tive and negative class. Together with a prior these param-
eters can be used to calculate the posterior probability of
encountering a concept after observing a confidence score o.
However, the resulting posterior probability function P (C|o)
is not monotonically increasing with o. This is unrealistic,
since some negative instances with lower confidence scores
than others would have a higher posterior probability for the
positive class. Platt proposes in [13] a method which instead
fits a sigmoid function to the confidence scores of training
examples which can then be used as a posterior probability
function. The sigmoid function has the advantage of being
always monotonic. In this paper we will use a modified ver-
sion of Platt’s fitting algorithm suggested by Lin et al. [9],
which is also used in many SVM implementation, for exam-
ple libSVM [6].

Hauptmann et al. [7] were the first to use a simulation
based approach to investigate achievable concept based search
performance. In their work, a detector is assumed to be
a binary classifier. As a search method they use a linear
combination of concept occurrences: score(si) =

P

j
λjfi,j .

Here, score(si) is the retrieval score of shot si, λj is a con-
cept specific coefficient and fi,j is the state of concept j
in shot si. The coefficients λi are separately set for each
query. The coefficient setting which optimize the average
precision is found by solving a bounded constrained global
optimization problem [24]. The retrieval performance with
realistically set coefficients is assumed to achieve 50% of the
performance with optimal settings. Concept labels of shots
are randomly flipped until the precision recall break even
point is reached. We argue that this approach can be im-
proved since the current retrieval systems most often use
confidence scores and an uniform break even precision-recall
point assumes the same performance among all detectors
which is clearly unrealistic.

Furthermore, Hauptmann et al. [7] find that the Mutual
Information from Information Theory [3] between a concept
and relevance to be the best weight for the influence of a
concept. We will use this finding to select the most influen-
tial concepts for a query and for setting their combination
weights. However, perfect estimation of the weights is infea-
sible in reality. Therefore, we also employ a concept selection
method which can be employed in real systems. There are
several works on concept selection, see [12] for an overview.
Here, we use a recently proposed method by Aly et al. [1]
which uses textual descriptions of an annotated collection to
estimate the probability of a concept occurring in relevant
shots. Together with an estimate of the probability of en-
countering a relevant shot the Mutual Information of a con-
cept and relevance can be calculated from this probability.
We use this concept selection method since it also provides
an estimate for the occurrence probability of a concept in
relevant shots - which is used as a parameter in multiple
concept combination methods.

We chose following concept combination methods to study
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Figure 1: Distributions of Confidence Scores

their behavior under changed detector characteristics: The
first method is Borda Count Fusion [4], which is often called
reranking. See for example Snoek et al. [21] for its appli-
cation to video retrieval. After a concept selection method
identified influential concepts their detector scores are used
in a voting scheme. A shot is ranked the higher it occurs
in the rankings of the concepts. The concepts can be as-
signed weights to emphasize their importance to the query.
Zheng et al. introduce in [27] a method which ranks a shot
by the product of the point-wise Mutual Information gain
of a concept occurrence and the probability that the con-
cept is present in the current shot. Since the authors did
not give a name to the method, we refer to this method
as the Entropy method. The Probabilistic Retrieval Frame-
work for Uncertain Binary Events (PRFUBE) [2] considers
for each concept both possible cases of occurrence and ab-
sence in the scoring function to calculate the probability of
relevance. In case the detectors are used as binary classifiers
the Binary Independence Model (BIM) [15] can be applied
where the detected concept occurrences are treated as term
occurrence in the BIM model. Since the PRFUBE and BIM
method are derived from the Probability Ranking Princi-
ple [16] they guarantee optimal performance under some in-
dependence assumption. The Borda Count Fusion does only
depend on the rank of the confidence score in an ordered list
of shots while Entropy, BIM and PRFUBE also depend on
the quality of the posterior probability.

Yan proposes in [23] a probabilistic concept combination
method based on the confidence scores which is based on lo-
gistic regression. It relies on training data for so-called query
classes which are used to decompose the query. The training
data consists of relevance judgments to example queries and
confidence scores. While this is one of the most recent works
on concept combination we do not include it into our study
since the available training data for the method overlaps
with our search collection, the TRECVID 2005 development
collection, and therefore would result in over fitting.

In this paper we will assess the effects of the different
detector performances on the above combination methods.
Note that the Entropy, PRFUBE and BIM combination
methods have an optimal “Oracle” weight setting which can
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Figure 2: Detector Model

be easily determined by counting shots using relevance judg-
ments and concept occurrence information. The Mutual In-
formation can be determined likewise. For the Borda Count
Fusion we assume that the Mutual Information as a weight
for each concept to also deliver a kind of perfect weight set-
ting.

3. DETECTOR SIMULATION
In this section we describe the simulation process of the

concept detectors. In Section 3.1 we describe our model of an
SVM based concept detector. Section 3.2 describes how we
calculate from the confidence score a posterior probability.
Finally, Section 3.3 explains how the actual randomization
in the simulation is performed.

3.1 Detector Model
In this section we describe our probabilistic model of a

detector, which is later used for the randomization of confi-
dence scores. Figure 1 shows the confidence score histograms
of the concepts Anchorman and Outdoor for both classes
from a base line detector set, described in [20]. The differ-



ent score ranges and the resulting probability density mag-
nitudes are caused by the detector’s ability to discriminate
between positive and negative examples. We see that both
densities have roughly a Gaussian shape. This shape was
also proposed by Hastie [22]. A χ2 goodness of fit test re-
vealed that 31 of the 101 detectors in the lexicon could be
accepted as gaussian at a significance level of 0.05. Most of
them were concepts with many training examples which sug-
gests that the gaussian shape would also become evident for
other concepts, once we had more training examples avail-
able for them. Furthermore, Sangswan and Nwankpa argue
in [17] that a non-perfect fitting shape of a model only in-
creases the variance of the Monte Carlo estimator, but still
allows a trustworthy simulation outcome.

Given these observations, we define a probabilistic model
of a detector set: We assume that the confidence scores of
different detectors for a single shot are independent from
each other and that they are normally distributed in the pos-
itive and negative class. Each concept C has a different prior
probability P (C). To simplify the model, we assume that all
concepts share the same mean µ1 and standard deviation σ1

for the positive and µ0 and σ0 for the negative class respec-
tively. Note, that this assumption is strong and certainly
does not hold in reality. However, because we focus here on
the principle behavior of the detectors we leave the explo-
ration of a more realistic model, which investigates different
parameter settings for each detector, to future work. Also,
while the investigation of different means and deviations is
an important aspect for building detectors, we argue that
the intersection of the areas under the probability density
curves has a much higher influence on performance than the
absolute ranges of the confidence scores. Clearly, the more
the area of the intersection decreases the better the detector
is. Our model can adequately simulate this effect by either
moving the means apart or by varying the deviation of the
classes.

Figure 2 shows the model of a single detector. We also plot
the posterior probability of observing the concept given the
confidence score using two different priors, one of P (C) =
0.01 and one for P (C) = 0.50. Considering a confidence
score of 15 the posterior probability for a concept with the
prior of 0.50 is close to certainty while for a concept with a
prior of 0.01 it is undecided (50%) - with all other parameters
equal. Therefore, our model does not have the limitation
that all detectors have the same performance as in [7].

3.2 Posterior Probability
As noted by Platt [13], the assumption of two Gaussians

for the negative and positive class can lead to unwanted
effects, namely a non-monotonic posterior probability func-
tion. Figure 3 shows the posterior probability functions of
two hypothetical concept detectors defined by the standard
formula for posteriors:

P (C|o) =
p(o|C)P (C)

p(o|C)P (C) + p(o|C̄)P (C̄)

We see that with a standard deviation of σ1 = 15, the
posterior probability increases for a confidence score smaller
o = −3. Furthermore, the posterior probability function
with σ1 = 2 assigns to shots with confidence scores higher
than 20 a posterior probability of practically 0. This con-
tradicts our intuition and the definition of SVMs (where the
classes should be linearly separable). To prevent this effect
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we use an improved version of the algorithm from Platt [13],
suggested by Lin et al. [9], to fit a sigmoid function to the
confidence scores. The sigmoid function is defined by the
two parameters A and B:

P (C|o) =
1

1 + exp (A o + B)

Combination methods which depend on the probabilis-
tic output of the concept detectors therefore suffer from a
poorly fitted posterior function. To investigate the influence
of the quality of the fit on the search performance, we use
S hypothetic samples for the fitting process and randomly
generate ⌈S P (C)⌉ confidence scores from the positive class
and S − ⌈S P (C)⌉ from the negative class.

3.3 Simulation Process
In this section we discuss the actual simulation process

which is defined in Algorithm 1. The algorithm uses an an-
notated collection (which carries 0/1 labels for each concept
in each shot). The input parameters of the algorithm are
the means µ0, µ1 and standard deviations σ0, σ1 of the posi-
tive and negative class and the number of training examples
to fit the posterior function. A Gaussian distribution with
mean µ and standard deviation σ is denoted as N(µ, σ).

From the annotated collection we calculate the prior prob-
ability P (C) of the dataset. We then generate confidence
scores for the positive and negative class using the prior
probability and S samples. Now we use the algorithm de-
scribed by Lin et al. [9] to fit the sigmoid posterior probabil-
ity function to the generated samples. After the determina-
tion of the sigmoid parameters we iterate over all shots in the
annotated collection. For each shot we determine for each
concept in the lexicon whether it occurs and draw a random
confidence score o from the corresponding normal distribu-
tion. Afterwards, we calculate the posterior probability of
this concept in the shot using the sigmoid function with the
previously determined parameters AC and BC . For combi-
nation methods which use binary classifications we assume a
positive occurrence if the posterior probability is above 0.5.
This is justified by decision theory, see for example [5].

After the randomization, we determine the detector per-



Data: Annotated Collection C, Lexicon L
Input: N, S, µ0, σ0, µ1, σ1

Result: Randomized collection

// Randomize Prior Estimate
foreach Concept C in Lexicon L do

Calculate P (C) from annotations in C
generate ⌈S P (C)⌉ positive samples from N(µ1, σ1)
generate S − ⌈S P (C)⌉ negative samples N(µ0, σ0)
determine AC and BC according to [9]

end
// Randomize Detection Output
for Repetition i ∈ [1..N ] do

foreach Shot s in Collection C do
foreach Concept C in Lexicon L do

if C occurs in s then
draw o from N(µ1, σ1)

else
draw o from N(µ0, σ0)

end
// Calculate Posterior according [13]
P (C|o) = 1

1+exp(ACo+BC)

// Transform to Binary Value
if P (C|o) > 0.5 then

C = 1
else

C = 0
end

end

end
Calculate Detector Performance DMAPi

Run Search with Combination Method
Calculate Search Performance SMAPi

end

Report DMAP =
P

i
DMAPi

N
, SMAP =

P

i
SMAPi

N

Algorithm 1: Algorithm for a Simulation Run. N : Num-
ber of Repetitions, S: Sample size for Sigmoid fitting,
µ0, σ0, µ1, σ1: Model parameters

formance MAP of the detector output (DMAPi). We then
execute a search run for each combination method using the
randomized collection. We then evaluate the resulting rank-
ing using relevance judgments to obtain the search MAP
(SMAPi) for this run. This process is repeated N times to
rule out random effects and the results are averaged.

4. SIMULATION RESULTS
In the following we describe the results of the simulation

runs. Section 4.1 specifies the setup of the simulations.
In the following Section 4.2 we describe what parameter
changes are investigated in our experiments. Section 4.3
investigates the comparability of the detector model to a set
of real detectors. Section 4.4 presents the results of increas-
ing the distance of the two means and Section 4.5 does the
same for the increase of standard deviation. The effects of
the number S of training samples for the sigmoid fitting on
the search performance are described in Section 4.6 and we
discuss the results of the simulations in Section 4.7.

4.1 Simulation Setup
We perform our simulation on the TRECVID 2005 devel-

Table 1: Collection Statistics
Name Videos Shots
tv2005.dev 141-277 43907
mm.dev 141-238 30630
mm.test 239-277 13277

opment collection since, to the author’s knowledge, this is
the only suitable dataset where both concept annotations
and relevance judgments are available1. We use 24 origi-
nal queries from TRECVID 2005. To prevent over-fitting
when performing realistic concept selections we divide the
collection according to the MediaMill Challenge setting [20]
into the sub-collections mm.dev and mm.test. The statis-
tics for the collections are summarized in Table 1. We use
two concept lexicons in our simulation to ensure that our
results are not lexicon specific. The MediaMill lexicon [20]
comprises 101 concepts while the LSCOM lexicon [11] has
374 concepts.

We use a Java based (pseudo) random number generator2

implementation following a standard algorithm described
in [14]. For every simulation run we use a new seed for the
generator to ensure a high quality of randomness. To reduce
random effects in the results we repeat every simulation run
N = 25 times. The experiments showed that the simula-
tion results did not change anymore after this number of
repetitions. We use in the following the common expression
MAP, instead of emphasizing every time that the number is
actually obtained as an average over 25 runs.

To give an indication of the quality of the detectors we
report the achieved detector MAP on the provided annota-
tions. We used the same standard cut-off level of 2000 as
done for the High Level Feature task in TRECVID [19] to
maintain comparability to other results. However, this cut-
off level sometimes leads to counter intuitive results since
some frequent concepts occur more than 2000 times and
consequently even a perfect detector would have an average
precision of less than 1.0. Therefore, we consider a maxi-
mum of 2000 shots containing the concept.

As mentioned earlier we use the four concept combination
methods Borda Count Fusion [4], Entropy [27], BIM [15]
and PRFUBE [2]. The latter three require the probability
of concept occurrence given relevance as a parameter for the
combination weight. For Borda Fusion Count we assume
that a wait of the Mutual Information is an ideal setting.
The mutual information can be calculated using the three
parameters P (C), P (R) and P (C|R). We perform one ex-
periment using ’Oracle’ weight settings, where we used the
concept annotations and relevance judgments, which we de-
termine by counting.

Furthermore, we perform another experiment of a real-
istic scenario where we use the concept selection method
from Aly et al. [1] which is based on an annotated training
corpus. To use this estimation method without introducing
over fitting effects we use the collection mm.test for weight
estimation and later execute the search only on mm.dev. We
determined the prior probability from the dataset assumed
for P (R) a small constant. We also have to set the number

1The relevance judgments were kindly provided by Rong
Yan formally at Carnegie Mellon University [25]
2http://www.ee.ucl.ac.uk/ mflanaga/java/PsRandom.html



Table 2: Model Coherence Statistics
Measure Simulation

Result
Simulation
Max

Real
Detectors

Detector MAP 0.13 0.16 0.15
Search MAP 0.06 0.11 0.10

of concepts which should be used for the search. As this
is not the focus of this paper we tried multiple numbers of
concepts with a maximum of 20 together with the results of
using all concepts in the lexicon.

4.2 Simulation Parameter Variation
As our goal is to study the influence of the detector be-

havior over the different model parameters we vary them
piecewise to see the effect of each parameter on the overall
search performance. In the following we describe each kind
of variation and the characteristics of the set of detectors
resulting from it: (1) We increase the mean of the positive
class – further away from the negative class. In reality, this
is the case if the low-level features become increasingly dis-
criminative. (2) We increase the standard deviations of the
positive class. The effect is that detectors with a higher stan-
dard deviation have more extreme results: for many shots
the system is nearly certain that the concept occurs while
for many other shots the uncertainty rises. Finally, (3) We
increase the number training samples for fitting the sigmoid
posterior probability function, which investigates the influ-
ence of a lower quality of fit, caused by a low number of
training examples, on the search performance.

4.3 Model Coherence
In this section we exemplary investigate the coherence of

our model with a real detector set described in [20]. We first
fit the model parameters to this detector set. We expect that
average detector performance is close to the performance of
the real detectors. However, the average search performance
of the model does not have to be similar to the real detectors
search performance, because of the random distribution of
relevant shots. On the other hand, the real search perfor-
mance should also not be too far off from the performance
produced by the model.

First, we train detectors for the MediaMill lexicon using
the features provided by the Challenge Experiment 1 [20]
using the mm.dev collection and then perform the evalua-
tion on the mm.test dataset. Since we are only interested
in the influence of the detector performance on the search
performance we use the PRFUBE combination with Ora-
cle weights and 10 concepts. Furthermore, we estimate the
model parameters from the confidence scores of the real de-
tectors and set this time each mean and deviation individu-
ally. We calculate the mean and the deviation for each class
x ∈ {0, 1} and concept c by:

µxc =

PNxc

i=1 oic

Nxc

, varxc =

PNxc

i=1 (oic − µxc)
2

Nxc − 1
, σxc =

√
varxc

where Nxc is the number of samples of the class x and
oic is the observed confidence score of shot i and concept
c. We perform N = 30 simulation runs. The results of the
comparison are shown in Table 2. We see that the average
detector performance of the model (0.13) is lower than the

one of the real detectors (0.15). However, the maximal per-
formance achieved by the model exceeds the performance
of the real detector (0.16). Our investigations revealed the
lower average performance was due to a high correlation of
the confidence scores among many shots (≈ 2000) in the
mm.test collection because they were near duplicates. Since
we generate the confidence scores independently our model
is not able to capture these dependencies. However, we ar-
gue that the inclusion of this correlation in our model is also
not desirable since near duplicates can be handled separately
and will not be as frequent in other collections. The search
performance of our model is also lower compared to the real
detectors, which means that relevant shots were distributed
in favor for the real detector set. However, 6 simulation runs
achieve an equal or higher performance to the real detectors.
We conclude that our model is sufficiently realistic to explain
a current, realistic retrieval setting, except the handling of
near duplicates.

4.4 Change of Mean

4.4.1 Oracle Combination Weights
Figure 4 (a) and (b) show the simulation results of in-

creasing the mean of the positive class with (a) the Medi-
aMill lexicon and (b) the Vireo lexicon under Oracle com-
bination settings. The Y-Axis shows in all following figures
the achieved search MAP of the depicted search runs. The
X-Axis shows the mean µ1 together with the detector MAP
which resulted from this setting. The mean of the nega-
tive class is kept constant at µ0 = 0 and therefore is µ1

also the distance of both means. An increasing distance be-
tween the means leads to an increase of the detector MAP.
Consequently, the performance of all concept combination
methods increases with a growing distance. From a distance
of 8.5 the detection can be considered a perfect classifica-
tion. The Entropy combination method reaches with ten
concepts a MAP of 0.15. Borda Count Fusion also performs
best when limited to the ten most influential concepts. It
achieves an optimal performance of 0.27. The BIM method
has a slow start and only reaches a performance of 0.05 MAP
at µ1 = 2 which corresponds to a detector MAP of 0.29.
Afterwards, its performance increases faster than the two
previously mentioned methods and reaches at µ1 = 8.5 a
MAP of 0.33. PRFUBE consistently shows a better per-
formance than all other combination methods and achieves
with µ1 = 8.5 a search performance of 0.35 MAP. The latter
two combination methods performed best with the usage of
all concepts in the lexicon.

Figure 4 (b) shows the results of simulation runs using the
LSCOM lexicon. The results are similar to the usage of the
MediaMill lexicon. Notable is that this time the Entropy
method achieves a better performance than Borda Count
Fusion. The reason is probably the existence of more only
positive influential concepts - which can be exploited by the
Entropy method. The higher number of concepts allows
PRFUBE to increase its performance to 0.39.

4.4.2 Realistic Combination Weights
In Figure 4 (c) and (d) the search performance of the com-

bination methods on the mm.dev collection is shown. The
combination weights were realistically estimated from the
mm.test collection. Sub-figure (c) shows the performance
using the MediaMill lexicon. Because the weights are now
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Figure 4: Change of Mean µ1 (µ0 = 0.0, σ0 = 1.0, σ1 = 1.0)

estimated by a realistic concept selection method, the perfor-
mance is clearly lower. An exception is the Entropy method
which stays very close to its Oracle MAP of 0.15. The per-
formance of the search methods relative to each other stays
approximately the same. Noticeable is that Borda Count Fu-
sion is not able to leverage its performance gain compared
to the Entropy method as in the Oracle setting. Sub-figure
(d) shows simulation runs using the LSCOM lexicon. All
methods perform worse compared to using the MediaMill
lexicon. A likely explanation is that with a growing con-
cept lexicon the chance of selecting bad concepts or wrong
weights increases.

4.5 Change of Standard Deviation
Figure 5 (a) shows the results of a change of the stan-

dard deviation of the positive class using Oracle weight set-
tings. We fix all other model parameters as follows: µ0 =
0, µ1 = 3, σ0 = 1. Therefore the performance at σ1 = 1
corresponds to the performance of Figure 4 at µ1 = 3. An
increase of the standard deviation of the positive class in-

creases the uncertainty and therefore the difficulty of the
search. Consequently, all combination methods show a lower
performance with an increasing deviation. After an initial
loss of 0.07 MAP the rank based combination method Borda
Count Fusion performs equally with the PRFUBE method
from σ1 = 4 onwards. The Entropy method quickly stabi-
lizes at MAP 0.05. The two methods PRFUBE and BIM
show a continuous performance loss.

Sub-figure 5 (b) shows the increase of the standard devia-
tion with weights from a realistic concept selection method.
For both Lexicons the PRFUBE method stays around 0.03
above the other combination methods. The Entropy method
shows a worse performance than Borda Count Fusion and
BIM. It is interesting that in both Sub-figures (a) and (b) the
detector MAP only changes by around 5% while the search
performance reduces by around 50%. This yields that the
MAP of detector scores is not always a good indicator of
search performance.

4.6 Sigmoid Fitting
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Figure 6: Influence of Training Size S using the
MediaMill lexicon / Oracle Concept Weights (µ0 =
0.0, σ0 = 1.0, µ1 = 3.0, σ1 = 1.0)

Figure 6 shows the results of an increasing number of
training samples S used in the fitting procedure for the
posterior probability function. Here we used the MediaMill
lexicon together with Oracle concept weight settings. The
X-Axis shows the training size S on a log-scale since smaller
training sizes are of higher interest. Except of small random
effects, the Borda Count Fusion method shows constant per-
formance since it does not depend on the probabilistic out-
put.

For the BIM and Entropy combination method the search
performance decreases until a sample size of S = 100. The
reason is that in very small training samples of S = 5 the
minimum number of one positive example drastically over
represents the positive class. Therefore, the posterior prob-
abilities are strongly biased towards higher values and the
true positive classifications rise. Since the false negatives are
the biggest problem for the BIM method its performance

rises. The same holds for the Entropy method because the
ranking formula only considers the probability of concept
occurrence in the shot. With an increasing training set size
this effect diminishes. However, the fitting errors due to the
still relatively small sample persist. This causes the posteri-
ors to be randomly too high or too low which decreases the
performance of both methods. Beyond a minimum perfor-
mance the performance rises again due to a more represen-
tative and bigger sample. The performance of the BIM and
Entropy method stabilizes after S = 5000 because of increas-
ingly accurate estimates of the parameters for the sigmoid
function.

The PRFUBE method improves linearly from 0.15 search
MAP using 5 training samples to 0.24 search MAP with
5000 samples. Beyond 5000 samples it stays approximately
constant. It is the most affected by “upwards” biased pos-
terior probabilities with a small sample size. However, its
performance then increase despite random estimation errors
of the sigmoid parameters at sample sizes around 100.

4.7 Discussion
The question of “How good do concept detectors have to

be?” can be best answered from Figure 4 (c) and (d) since
we want to evaluate the applicability of the search system
in real-life. We see that for the MediaMill lexicon a detector
performance of 0.60 MAP results in a search performance of
the best performing combination method PRFUBE of 0.20
MAP, which is similar to todays web search engines. For the
LSCOM lexicon, this performance is never reached due to
the difficulty of selecting good concepts from a bigger lex-
icon. Furthermore, Figure 5 shows that it is important to
keep the deviations of the positive and negative class small,
since otherwise a high detector MAP will not positively in-
fluence the search performance as much.

The PRFUBE combination method consistently performs
best while the BIM method achieves approximately the same
performance after a slow start. The Borda Count Fusion is
often better than the BIM methods in lower performance
regions but stabilizes at a lower performance level when the
detectors approach certainty. The Entropy method can not



gain as much performance from the increased detector per-
formance. However, with a detector performance close to
certainty it sometimes performs better than Borda Count
Fusion.

For combination methods which rely on a posterior prob-
ability (or on a derived classification thereof) the number
of training examples to fit the sigmoid function is of im-
portance. From Figure 6 we see that with less than 5000
samples fitting errors lead to performance decreases. How-
ever, beyond 5000 samples the performance is stable.

The realistic concept combination with the LSCOM lex-
icon in Sub-figure 4 (d) showed that the used concept se-
lection method suffers from a too wide choice of concepts.
While the performance with the MediaMill lexicon had only
a moderate decrease compared to the Oracle settings the
LSCOM lexicon decreased by 50%.

An interesting finding in the change of standard deviations
is that the increase of the detector MAP is not strongly
correlated with the search performance. While the detector
performance in Sub-figure 5 (d) only mildly decreases over
the displayed interval the search performance decreases by
50%. Therefore, a measure for the “amount of overlap” of
the scores from the positive and negative class seems to be
more useful.

5. CONCLUSION AND FUTURE WORK
This paper investigated a Monte Carlo Simulation based

approach to answer two important questions, which can not
be answered with current concept detectors. We first defined
a model of a concept detector and used it to generate con-
fidence scores of a given characteristic. We then executed
a search run on the generated output and determined the
detector and search performance. Multiple repetitions were
used to reduce random effects.

For the first question “How good do detectors need to
be?” we found that the best today’s search method would
achieve a MAP of 0.20 using a detector set with an approxi-
mate MAP of 0.60. This is a typical performance of current
Web search engines and therefore sufficient for real-life ap-
plication. We conclude that concept detector still need to
be improved. However, the focus on the improvement can
be shifted away at a performance around 0.60 MAP - which
is still far from perfect classification.

On the question “How does the detector performance in-
fluence the search performance of individual concept com-
bination methods?”, we found that the two retrieval models
based on the probability of relevance principle [16], BIM
and PRFUBE, can exploit the full concept lexicon under
an Oracle combination weight setting. However, the search
performance of BIM increases much slower due to a high
misclassification rate in the beginning. Borda Count Fu-
sion first showed similar performance as BIM but reaches a
lower search MAP. The Entropy method has a lower per-
formance than the other methods. The maximum reached
performance is 0.39 search MAP by the PRFUBE and the
LSCOM lexicon. Additionally, PRFUBE showed in most
experiments the best performance among the four combina-
tion methods. Furthermore, we investigated the influence
of fitting errors of the posterior probability function. While
Borda Count Fusion was unaffected - since it does only de-
pend on the detector’s ranking, all other combination meth-
ods showed decreased performance beneath 5000 training
samples.

We also found that the mean average precision of detectors
is not necessarily a good indicator of the search performance.
Since the increase of the standard deviation of the positive
class causes a sever search performance decrease while the
detector performance only changes slightly. Therefore, we
plan to investigate other measures which consider the over-
lap of the score distributions from the positive and negative
class, such as the Kullback Leibner Divergence [3], in future
work.

In this paper we focused on the main characteristics of
a concept detector. However, we plan to add more diver-
sity to our model to further improve its fit with reality in
future work. Furthermore, the simulation approach in this
paper can be used as a way to evaluate concept combina-
tion techniques without the (immediate) need of real detec-
tor outputs. This lowers the entry costs for new researchers
interested in concept combination methods and enables all
researchers to study the behavior of the algorithms using
different detector characteristics. Therefore, we also plan to
investigate ways to release the output of this framework to
the community in the future. Finally, we also plan to ap-
ply our detector simulations to other datasets outside the
TRECVID framework.
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