
PF/Tijah: text search in an XML database system

Djoerd Hiemstra, Henning Rode, Roel van Os and Jan Flokstra
University of Twente

Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE Enschede

The Netherlands

{d.hiemstra, h.rode, r.vanos, j.flokstra}@cs.utwente.nl

ABSTRACT
This paper introduces the PF/Tijah system, a text search
system that is integrated with an XML/XQuery database
management system. We present examples of its use, we
explain some of the system internals, and discuss plans for
future work. PF/Tijah is part of the open source release of
MonetDB/XQuery.

Keywords: Information Retrieval, XQuery, XML Databa-
ses, Open Source Systems

1. INTRODUCTION
PF/Tijah is a research project run by the University of Twen-
te with the goal to create a flexible environment for set-
ting up search systems by integrating the PathFinder (PF)
XQuery system [3] with the Tijah XML information retrieval
system [11]. The PF/Tijah system is part of the open source
release of MonetDB/XQuery developed in cooperation with
CWI Amsterdam and the University of München. The sys-
tem is available from SourceForge.1

PF/Tijah will include out-of-the-box solutions for common
tasks like index creation, stemming, result ranking (sup-
porting several retrieval models), and relevance feedback,
but it remains the same time open to any adaptation or ex-
tension. On the one hand, the system aims to be a general
purpose tool for developing information retrieval (IR) end-
user applications using XQuery statements with text search
extensions. On the other hand, the system aims to be a play-
ground for the information retrieval scientist and advanced
user to easily set up and test new search systems. Advanced
users can hook in the system at an intermediate level that
provides the database scripting language MIL [4] and several
pre-defined operations on terms and XML elements called
Score Region Algebra operators [12].

1http://sourceforge.net/projects/monetdb/
http://monetdb-xquery.org

Second International Workshop on Open Source Information Retrieval
(OSIR), 10 August 2006, Seattle, USA.

The PF/Tijah system has a number unique selling points
that distinguish it from most other open source information
retrieval systems.

• PF/Tijah supports retrieving arbitrary parts of the tex-
tual data, unlike traditional information retrieval sys-
tems for which the notion of a document needs to be
defined up front by the application developer. For in-
stance, if the data consist of scientific journals one can
query for complete journals, journal issues, single arti-
cles, sections from articles or paragraphs with no need
to adapt the index or any other part of the system
configuration;

• PF/Tijah supports complex scoring and ranking of the
retrieved results by means of so-called NEXI queries.
NEXI [15] stands for Narrowed Extended XPath: a
query language similar to XPath that only supports
the descendant and the self axis step, but that is ex-
tended with a special about() function that takes a
sequence of nodes and ranks those by their estimated
probability of relevance to the query;

• PF/Tijah supports ad hoc result presentation by means
of its query language. For instance, when searching
for a special issue of a journal, it is easy to print any
information from that retrieval result on the screen in a
declarative way (i.e., not by means of a general purpose
programming language), such as the special issue title,
its date, the editors and the preface. This is simply
done by means of XQuery element construction;

• PF/Tijah supports text search combined with tradi-
tional database querying, including for instance joins
on values. For instance, one could search for employ-
ees from the financial department that also worked for
the sales department and that sent an email about “tax
refunds” (for an example, see below).

This paper is organised as follows. Section 2 presents sev-
eral usage examples. Section 3 discusses practical design
decisions and open problems. Section 4 concludes the pa-
per.

2. SIMPLE USAGE EXAMPLES
PF/Tijah comes with several functions for indexing and re-
trieving XML data and for managing collections of XML

documents. In this paper, we will focus on the search func-
tionality. We present two usage scenarios: Performing IR-
only queries, and performing combined IR and database
queries.

2.1 Performing IR-only queries
In order to understand how to use PF/Tijah, it is necessary
to have some basic knowledge about using XQuery as for
instance described by Katz et al. [9]. XQuery is a database
query language for XML data that provides similar func-
tionality as SQL does for relational data. XQuery is built
around XPath, a simple path query language. In XPath, a
path query such as /html/head/title selects from the root of
an XML document first all elements tagged as <html>, then
inside those all tagged as <head>, and finally inside those ele-
ments all <title> elements. PF/Tijah extends XQuery with a
small number of user-defined functions, mainly the function
tijah-query() that takes a sequence of nodes and a NEXI
query and produces a sequence of nodes that is ranked by
the estimated relevance to the query. NEXI [15] is a path
language that supports an additional about() function that
performs information retrieval queries on XML elements.

At several points in this paper, we will compare PF/Tijah to
the draft XQuery full-text search standard that is currently
under development by the World Wide Web Consortium [1].
PF/Tijah fulfills many goals of that standard and we might
support parts of XQuery full-text in the future. Instead of
putting all text search functionality inside user-defined func-
tions as done by PF/Tijah, XQuery full-text extends XQuery
with new language constructs for text search. This allows for
a more natural way of embedding text search into XQuery.
However, the XQuery full-text draft has problems as well:
As shown below, XQuery full-text makes the end-user partly
responsible for result scoring and ranking.

We will not explain XQuery, XQuery full-text, XPath and
NEXI any further in this paper; instead we show some of the
functionality of PF/Tijah by example queries, for instance:

let $c := doc("mydata.xml")

for $res in tijah-query($c, "//html[about(., ir db)];")

return $res/head/title

This query searches for all XML elements tagged as <html>

using the text query “ir db”. The query returns a ranked
list of titles from those elements.2

The following example is slightly more complicated, and in-
volves searching in two different parts of the data. Suppose
we are interested in the following: Give me paragraphs about
XQuery in web pages about IR and DB. This might be ex-
pressed as:

let $c := doc("mydata.xml")

for $res in tijah-query($c,

"//html[about(., ir db)]//p[about(., xquery)];")

return $res

The query returns a ranked list of paragraphs. The top

2For historical reasons, the current implementation requires
NEXI queries to end with a semi-colon

ranked paragraphs are most likely about “XQuery” and they
are contained by web pages that are most likely about “IR”
and “DB”. So, the ranking is based on a final score that
combines scores from the information retrieval query on
<html> elements with the query on <p> elements. PF/Tijah
combines scores of multiple about() functions in a – for the
end user – transparant way, that is, the end user does not
have to worry about scoring, score combination, and rank-
ing. Using the W3C XQuery full-text standard, the query
above might be expressed as:

(: XQuery full-text instead of PFTijah :)

let $c := doc("mydata.xml")

for $res score $s in $c//p[. ftcontains "xquery" and

./ancestor::html ftcontains "ir" && "db"]

order by $s

return $res

Here, the user needs to explicitly tell the system to score the
query results (by score $s), and the user needs to explicitly
tell the system to rank the results (by order by $s).

By embedding NEXI into XQuery, PF/Tijah follows a differ-
ent philosophy. In our opinion, result ranking is the single
most important requirement of a search extension. There-
fore, the default behaviour of a PF/Tijah text search query
is to return a ranked sequence of nodes. Of course, the de-
fault behaviour might still be changed by using the order

by clause, for instance if the user wants to order the results
by their date of publication. In XQuery full-text, the de-
fault behaviour seems to be to return all matching nodes
in document order, which is probably suboptimal in most
applications.

An interesting question is how to combine the scores result-
ing from both about() functions in the PF/Tijah example
query above. There are several acceptable ways to do so.
Experiments have shown that the best methods for combin-
ing and propagating scores depend on the retrieval model
that is used to calculate the scores in the first place [13].
PF/Tijah’s default behaviour uses so-called language model-
ing scoring and the best performing combination and prop-
agation methods for this model based on [13]. Advanced
users can configure PF/Tijah such they can change the de-
fault behaviour of scoring; See Section 3.4. However, there
are several problems with PF/Tijah’s NEXI extension as well.
Section 3.5 will address these further.

Currently, the old Tijah system is used mainly by ourselves,
i.e., researchers that participate in scientific search evalua-
tions organised by for instance the Text Retrieval Confer-
ence (TREC) [18] and the Initiative for the Evaluation of
XML retrieval (INEX) [10]. We are aiming to support the
same functionality with PF/Tijah to test for instance the ef-
fectiveness of information retrieval models, such as language
modeling approaches. As an example, consider the eval-
uation task organised in the TREC video workshops [17],
that provide a collection of videos and MPEG-7 XML an-
notations on those videos. The MPEG-7 annotations in-
clude text annotations from large-vocabulary speech recog-
nition on the audio and optical character recognition on the
video. The following query, taken from TRECVid topic
149, returns the identifiers of the top 1000 shots (tagged

as ‘videosegment’) that contain Condoleeza Rice and their
scores.

<videoSearchTopicResult tNum="0149"> {
let $c := doc("trecvid.xml")

let $q := "//VideoSegment[about(.//TextAnnotation,

condoleeza rice)];"

let $result := tijah-query-id($c, $q)

for $node at $rank in tijah-nodes($result)

where $rank <= 1000

return <item seqNum="{$rank}" shotId="{$node/@id}"
score="{tijah-score($result, $node)}" /> }

</videoSearchTopicResult>

In the example above, the returned item elements contain
an attribute score.3 Returning the scores of each node in
a node sequence is a challenging problem when integrat-
ing XQuery with text search functionality. The XQuery
data model supports sequences of simple types, but no se-
quences of complex types such as a sequence of sequences or
a sequence of node/score pairs. In order to make scores
available to the user, we introduce two functions: First,
tijah-queryid() which executes the query and returns a re-
sult container (actually, the container is just an identifier,
hence the name tijah-queryid()) that contains a sequence
of scored nodes. Second, tijah-nodes() which takes the
result container and returns a ranked sequence of nodes.
So, the statement tijah-nodes(tijah-query-id()) is equal
the function tijah-query() introduced previously. The con-
tainer, however, gives access to the scores of nodes as well by
means of the function tijah-score(), which gives access to
the scores of each retrieved element by returning the score
of a node (or by returning a sequence of scores for a node
sequence).

The use of separate score and node sequences is advocated
by the XQuery full-text standard as well. The following
expression of a for clause that contains an XQuery full-text
score variable provides a nice integration of node selection
and node scoring:

(: XQuery full-text instead of PFTijah :)

for $result score $score in Expr

...

Currently, our system does not support any special lan-
guage constructs, i.e., our queries are pure XQuery with
user-defined functions. We might however support XQuery
full-text syntax by evaluating the above as though it is re-
placed by the following expression, where $id and $score are
new variables not appearing elsewhere:

let $id := tijah-query-id(Expr)

for $result in tijah-nodes($id)

let $score := tijah-score($id, $result)

...

We believe most users will never actually need these con-
structs, because the actual scores are often unimportant:
It is the ranking of results by their score that is important.
We like to stress again that PF/Tijah’s text search extensions

3For TRECVid, the score of an item does not need to be
returned, but we included it here for illustrative purposes.

return ranked results; The user does not have to rank the
results explicitly using order by, so there is often no need to
have the actual scores of the retrieved nodes.

The XQuery-fulltext standard [1, Section 4.3.2] suggests an-
other interpretation of their syntax for returning scores.
They suggest to evaluate the expression as though it is re-
placed by:

(: XQuery full-text instead of PFTijah :)

let $scoreSeq := fts:scoreSequence(Expr)

for $result at $rank in Expr

let $score := $scoreSeq[$rank]

...

Here as well, $scoreSeq and $rank are new variables, not
appearing elsewhere. In this case, the query without the
W3C language extension of the for clause results in a rather
awkward XQuery statement which includes the text search
query “Expr” twice.

2.2 Performing combined IR and
XML database queries

PF/Tijah makes it possible to process queries that combine
the results of an IR part (e.g. a text search query expressed
in NEXI) and an DB part (expressed in XQuery). A sim-
ple example query for this case might perform a restrictive
database selection, for instance give me all documents writ-
ten by a certain author, and do an IR query only on the
publications of that author, so From a database with research
papers, give me titles of documents that the author Vojkan
Mihajlovic wrote about “open source XML retrieval”., which
might be expressed as:

let $vm := doc("source1.xml")/DOC[author =

"Vojkan Mihajlovic"]

for $res in tijah-query($vm,

"//text[about(.,open source xml retrieval)];")

return $res/title/text()

Similar functionality is provided by many other search en-
gines, i.e., this will rank papers about “open source XML
retrieval” on top, but the ranking includes only the papers
by Vojkan Mihajlovic.

More advanced examples might use joins. A join combines
information from two or more items in the database by
putting together those items that share the same value for
a data item. Query processing in relational databases heav-
ily depends on joining tables on the values of columns. An
example of a query that probably cannot be processed by
most of todays search engines is the following: From Shake-
speare’s plays, give me all speakers from the second part of
Henry the Sixth, that speak about a “bloody murder”, and
that also spoke in first part of Henry the Sixth. This might
be formulated as:

for $doc in tijah-query(doc("hen vi 2.xml"),

"//SPEECH[about(.,bloody murder)];")

where $doc//SPEAKER = doc("hen vi 1.xml")//SPEAKER

return $doc//SPEAKER

This query ranks the requested speakers by the probabil-

ity that they in fact talked about a bloody murder. Such
a query might seem a bit far-fetched for searching Shake-
speare’s plays, but similar queries would be helpful in enter-
prise search scenarios. For instance, suppose the chief ex-
ecutive officer of a large multinational looks for people that
have experience at both the financial department and the
sales department and are an expert on “sales tax refunds”.
He or she might search the enterprise data for the following:
From our enterprise database, give me all employees from
the financial department, that sent an email about “sales
tax refunds” and that also worked for the sales department.
Obviously, this would be formulated in a similar way as the
Shakespeare query above.

As another example, consider the following information need
taken from INEX topic 14 [10]: Find figures that describe
the Corba architecture and the paragraphs that refer to those
figures. Retrieved components should contain both the figure
and the paragraph referring to it. This might for instance
be expressed as:

let $doc := doc("inex.xml")

for $p in tijah-query($doc,

"//p[about(.,corba architecture)];")

for $fig in $p/ancestor::article//fig

where $fig/@id = $p//ref/@rid

return <result> { $fig, $p } </result>

Interestingly, the figures and the paragraphs that refer to
them might be relatively far apart in the XML data. This
query will find figures that do not mention “corba” and “ar-
chitecture” in their caption (for instance the caption might
contain “Object management architectural overview”), but
that do mention “corba architecture” in the paragraph when
referring to the figure. INEX topic 14 was released in 2002,
but was at that time considered to be too difficult by the or-
ganisers, or at least, topic 14 at that time needed function-
ality that none of the participating systems implemented.
Another problem with such queries is that they might be
hard to assess, that is, it might be hard to determine what
elements are good answers. Although there has been an
INEX conference each year since 2002, INEX has not taken
up the challenge of join queries until today.

3. DESIGN ISSUES AND OPEN PROBLEMS
Started as completely independent academic research pro-
jects, Pathfinder and Tijah followed quite different goals –
the first one to become an efficient XQuery compiler, the sec-
ond to work as an XML IR engine. However, both systems
share similar internal data models of the XML content and
both have been implemented and tested mainly to work on
the MonetDB backend. PF/Tijah is a module of Pathfinder
that is based on the old Tijah system and developed by we
following six general design constraints in order of their im-
portance:

1. Keep Pathfinder untouched by our extension;

2. Use existing Pathfinder functionality as much as pos-
sible;

3. Support generalized retrieval methods instead of spe-
cialized (document) retrieval;

4. Enable fast retrieval;

5. Minimize redundant storage of data;

6. Use existing Tijah functionality as much as possible.

3.1 Putting things together
PF/Tijah is compiled as a module in Pathfinder. We are
using the following elements from Pathfinder:

The document shredder: when loading documents into
collections, these documents are shredded by the Path-
finder shredder. This way we inherit all of Pathfinder’s
document loading properties: speed, loading from any
URL, caching, DTD processing, etc.

The XML serializer: when documents have been shred-
ded by Pathfinder, they must be indexed by PF/Tijah.
We have constructed a new driver for the existing doc-
ument serializer in Pathfinder that creates the PF/Tijah
index.

The loop-lifted descendant step implementation: in-
stead of using Tijah’s containment join implementa-
tion we re-use the Pathfinder descendant-step imple-
mentation, to minimize the size of the PF/Tijah mod-
ule. Furthermore, PathFinder staircase joins might be
faster than the old Tijah containment joins as they
have been well-studied [5, 7].

We are using the following elements from Tijah:

The NEXI query processor: Tijah uses the NEXI query
language to express structured information retrieval
queries. The module translates NEXI queries into
SRA expressions.

Score Region Algebra (SRA): SRA is an algebra for ex-
pressing structured information retrieval queries at a
logical level [12], i.e, between the query language (con-
ceptual layer) and the database engine and index (phys-
ical layer). SRA expressions are independent of the
database back-end or storage scheme that is used.

Pathfinder and the old Tijah system use a similar data-
model. Pathfinder uses a pre-/post-order encoding of the
XML documents [3], whereas Tijah uses a so-called region
data model, i.e. a start-end encoding of the XML document
[6], where the region starts are in pre-order and the region
endings in post-order. However, PF/Tijah cannot directly
run on the Pathfinder index. The main difference is the
need to index words instead of nodes. Every occuring word
has to be assigned to a new pre-order identifier, not like in
Pathfinder where a whole text node is regarded as one unit.
PF/Tijah therefore splits text strings into word tokens while
keeping their order with the pre-order numbering. This al-
lows to perform simple keyword queries as well as phrase
and proximity search.

For integrating the 2 systems, the following points took the
most consideration:

PF-light index: The index structure of PF/Tijah is a light
version of the Pathfinder index. It is created next to
the existing Pathfinder index, which is still used for the
normal XQuery evaluation. Apart from indexing single
words here instead of whole text nodes, it knows ad-
ditional inverted structures sorted on term identifiers

to accelerate the selection of term occurrences in the
collection. On the other hand, it is still a light index
in the sense that it doesn’t replicate the full document
content. Attributes, Processing Instructions, etc. are
kept in the normal Pathfinder index only, since they
will not be addressed with NEXI queries.

A further problem arising, working with 2 different in-
dices, is the translation between both. A sequence of
nodes created by an arbitrary XQuery expression that
is further used in a search process, has to be trans-
lated from Pathfinder pre-order identifiers to their cor-
responding ones in the PF-light index. The same vice
versa for passing the ranked result sequence back and
assigning them to an XQuery variable.

SRA operator implementations: All SRA operators
needed a new implementation on the physical layer
now working on the new PF-light index. Special atten-
tion was given here to enable fast term selection and to
employ the highly performance trimmed containment-
join operators coming with the Pathfinder system.

3.2 The MonetDB backend
In contrast to many other open source IR environments like
Lucene [8], Lemur/Indri [14], or Terrier [16] our system is
set up on a light database backend, the MonetDB system.
Whereas pure IR systems can profit from highly specialized
algorithms, PF/Tijah gains a lot flexibility by abstraction
from the physical layer. Search extensions are easily pro-
grammed as database scripts, pre- and post-processing of
the data can be done without the need to extend the system.
Furthermore, since database operations are highly tuned to
efficient data processing, many IR operations can keep up
with, or even beat, the efficiency of specialized IR systems.

The used database backend, MonetDB [4], is an open source
main memory database system. It is a light-weight sys-
tem compared to common commercial products, but allows
highly effective data processing. If required, new database
operations can be added to the database kernel. The main
limitation of the system is its restriction to process queries
completely in main memory. Our IR tools manage collec-
tions up to several gigabytes on a single machine, currently.
This limitation will be overcome by a new version of the
database backend [19].

3.3 Collection handling
PF/Tijah comes with additional functionality for handling
collections of a large number of smaller XML documents.
This functionality includes naming a collection (or database)
adding a document to the collection, and finalizing the col-
lection, that is, building the inverted files. Additionally,
PF/Tijah can be configured in such a way that the XML data
is not loaded in the Pathfinder system at index time. In this
way, only PF/Tijah’s Pathfinder light index is built. At query
time, if for instance information has to be returned of a top
10 retrieved by a NEXI query, Pathfinder loads only those
XML documents that are actually returned by the query.

3.4 System configuration
The functions tijah-query() and tijah-query-id() allow the
inclusion of any number of options by means of a special
empty XML element <TijahOptions/> as follows.

let $opt := <TijahOptions algebraType="COARSE2"

txtmodel model="NLLR" />

let $c := doc("mydata.xml")

for $res in tijah-query($opt, $c, "//html[about(., xml)];")

return $res//title

With these options, the user can overwrite the default be-
haviour for query plan generation (using the algebraType at-
tribute), for scoring in an about clause (using the attribute
txtmodel model), but also for score combination and propa-
gation, etc.

3.5 Problematic effects of the NEXI language
embedding

Currently, NEXI queries are embedded as strings in XQuery
expressions. The NEXI query string remains a black box
for XQuery, so no variable usage or static type checking and
syntax checking is possible in XQuery. A tighter integration
is desirable, for instance as recommended by the XQuery
full-text standard.

Another problem is that NEXI and XQuery share some ex-
pressiveness. Both formalisms are able to process simple
path queries. For example, the following queries are cur-
rently equivalent:

let $c := doc("test.xml")

return tijah-query($c//DOC//TEXT, "//P[about(.,XML)];")

and

let $c := doc("test.xml")

return tijah-query($c, "//DOC//TEXT//P[about(.,XML)];")

In future versions of the system, the text search functions
could be less expressive. This however, might introduce
problems with scoring complex queries as shown in Sec-
tion 2.1.

4. CONCLUSIONS
PF/Tijah aims at supporting search applications for highly
structured, heterogenous content on medium-sized XML col-
lections. The system can be used to quickly develop retrieval
applications. It is part of the open source release of Mon-
etDB/XQuery (version 0.13.1 and higher) and available from
SourceForge.

To develop PF/Tijah, we made choices that are currently
not recommended by the XQuery full-text draft standard.
Our choices are driven by a focus on ranking search results.
In our opinion, result ranking is the single most important
requirement for text search. If the ranking procedures are
not effective, advanced features like implicit sentences and
paragraphs, thesaurus queries, queries across elements, etc.
will be of limited use. Currently, XQuery full-text only gives
limited thought to scoring. In the W3C use cases draft [2]
only one of 16 use case sections is devoted to result rank-
ing. The other sections assume that elements of text search
queries are returned in document order.

Note that we do not advocate to define scoring in any way by
the standard: On the contrary, scoring must be implementa-
tion-defined, and users should not be bothered by explicit

ranking of the results using XQuery order by and not be bo-
thered by explicit combination of scores: The tijah-query()

function of the PF/Tijah module returns a ranked sequence
of nodes, and the NEXI query language supports simple axis
steps to enable powerful score combination.

For research at the University of Twente, PF/Tijah serves
as our “Swiss knife” for research into information retrieval
and research into the integration of information retrieval
and databases. With PF/Tijah, it is relatively easy to ex-
periment with new retrieval approaches, and it is relatively
easy to test the implications and limitations of approaches
to XML information retrieval: those advocated by XQuery
full-text as well as those advocated by for instance the INEX
workshops.

More information on PF/Tijah is currently available from
the project wiki at: http://monetdb.cwi.nl/projects/trecvid
/MN5/index.php/PFTijah Wiki

Acknowledgements
This research is funded by the Dutch BSIK progamme Mul-
timediaN. Many thanks to Vojkan Mihajlović, Thijs Wes-
terveld (CWI Amsterdam), Georgina Ramı́rez (CWI Ams-
terdam), and Arjen de Vries (CWI Amsterdam) for helpful
advice and for testing the system.

5. REFERENCES
[1] S. Amer-Yahia, C. Botev, S. Buxton, P. Case,

J. Doerre, M. Holstege, D. McBeath, M. Rys, and
J. Shanmugasundaram. XQuery 1.0 and XPath 2.0
full-text. Technical report, Word Wide Web
Consortium. working draft 1 May 2006,
http://www.w3.org/TR/xquery-full-text

[2] S. Amer-Yahia and P. Case. XQuery 1.0 and XPath
2.0 full-text use cases. Technical report, Word Wide
Web Consortium. working draft 1 May 2006,
http://www.w3.org/TR/xmlquery-full-text-use-cases/

[3] P.A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and Jens Teubner. MonetDB/XQuery: A
fast XQuery processor powered by a relational engine.
In Proceedings of the ACM SIGMOD Conference on
Management of Data, 2006.

[4] P.A. Boncz. Monet: A Next-Generation DBMS Kernel
for Query-Intensive Applications. PhD thesis,
University of Amsterdam, 2002.

[5] P.A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. Loop-lifted staircase
join: from XPath to XQuery. Technical Report
INS-E0510. CWI, Amsterdam, 2005.

[6] F.J. Burkowski. Retrieval Activities in a Database
Consisting of Heterogeneous Collections of Structured
Texts. In Proceedings of the 15th ACM SIGIR
Conference on Research and Development in
Information Retrieval, 1992.

[7] T. Grust, M. van Keulen, and J. Teubner. Staircase
join: Teach a relational DBMS to watch its (axis)
steps. In Proceedings of the 29th Conference on Very
Large Databases (VLDB), 2003.

[8] E. Hatcher and O. Gospodnetic. Lucene in action.
Manning Publications, 2005.

[9] H. Katz, D. Chamberlin, D. Draper, M. Fernandez,
M. Kay, J. Robie, M. Rys, J. Simeon, J. Tivy, and
P. Wadler. XQuery from the Experts: A Guide to the
W3C XML Query Language. Addison Wesley, 2003.

[10] M. Lalmas and G. Kazai. Report on the ad-hoc track
of the INEX 2005 workshop. SIGIR Forum
40(1):49–57, 2005.

[11] J. List, V. Mihajlovic, G. Ramirez, A.P. de Vries,
D. Hiemstra, and H.E. Blok. Tijah: Embracing
information retrieval methods in XML databases.
Information Retrieval Journal 8(4):547–570, 2005.

[12] V. Mihajlovic. Score region algebra: A framework for
structured information retrieval. In SIGIR Doctoral
Consortium Workshop, 2005.

[13] V. Mihajlovic, H.E. Blok, D. Hiemstra, and
P.M.G. Apers, Score Region Algebra: Building a
Transparent XML-IR Database. In Proceedings of the
14th International Conference on Information and
Knowledge Management (CIKM), 2005

[14] P. Ogilvie and J. Callan. Experiments using the
Lemur toolkit. In Proceedings of the tenth Text
Retrieval Conference (TREC), 2001.

[15] R. A. O’Keefe and A. Trotman. The simplest query
language that could possibly work. In Proceedings of
the 2nd Initiative for the Evaluation of XML Retrieval
(INEX). ERCIM workshop proceedings, 2004.
http://www.cs.otago.ac.nz/postgrads/andrew/2003-
4.pdf.

[16] I. Ounis, G. Amati, V. Plachouras, B. He,
C. Macdonald, and D. Johnson. Terrier information
retrieval platform. In Proceedings of the 27th European
Conference on Information Retrieval (ECIR), 2005.

[17] A.F. Smeaton, P. Over, and W. Kraaij. TRECvid:
evaluating the effectiveness of information retrieval
tasks on digital video. In Proceedings of ACM
Multimedia, pages 652–655, 2004.

[18] E.M. Voorhees and D. Harman, editors. TREC:
Experiment and Evaluation in Information Retrieval.
MIT Press, 2005.

[19] M. Zukowski, S. Heman, A.P. de Vries, and P. Boncz.
Efficient and Flexible Information Retrieval Using a
Relational Database Engine. submitted, 2006.

