
CHALLENGES OF INDEX EXCHANGE FOR SEARCH ENGINE
INTEROPERABILITY

Djoerd Hiemstra, Gijs Hendriksen, Chris Kamphuis, and Arjen P. de Vries∗

Radboud University, The Netherlands

Abstract
We discuss tokenization challenges that arise when shar-

ing inverted file indexes to support interoperability between
search engines, in particular: How to tokenize queries such
that the tokens are consistent with the tokens in the shared
index? We discuss various solutions and present preliminary
experimental results that show when the problem occurs and
how it can be mitigated by standardizing on a simple, generic
tokenizer for all shared indexes.

INTRODUCTION
Web search is dominated by a small number of giant cor-

porations that effectively hold a monopoly on web search.
Quite worryingly, these corporations control almost every
aspect of web search: They crawl the Web, they build the
index, they provide the actual search results given a query,
they sell advertisements, they provide free web analytics to
get usage statistics, they even own the web browsers and
operating systems that we need to use their search engines.

In our opinion, a single corporation should not control a
large share of these aspects of search. For instance, incen-
tives for providing high quality search results do not align
with incentives to sell advertisements, or to quote Brin and
Page [2]: “The goals of the advertising business model do
not always correspond to providing quality search to users
(...) we expect that advertising funded search engines will
be inherently biased towards the advertisers and away from
the needs of the consumers.”

Two important solutions may help break up these monop-
olies. One is regulation: It should not be legal to run an
advertisement company and a search engine, nor should it be
legal to own large web sites as well as the web browser that
renders them. The second solution (that might help enable
the first) is technical: We should create tools that enable
collaboration between multiple organizations, so they can
develop web search engines together. This paper focuses
on a solution of the second, technical, kind. Specifically,
we discuss the challenges of defining open standards that
support interoperability between search engines to enable
organizations to build web search engines collaboratively.

Building a web-scale search engine is a challenging task.
Crawling the web takes a lot of resources, as does build-
ing the inverted index. Once the index is ready, however,
running queries on the index can be done with relatively
little compute power. We envision a future where organi-
zations collaboratively build a search engine by using open
standards that define the results of each step [6]. We show
these steps in Figure 1. The first step is to (collaboratively)
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crawl the Web and provide it in a standard format, such as
the Internet Archive’s Web Archive (WARC) format [13];
In Step 2, others may build an inverted index to be provided
in the standard Common Index File Format (CIFF) [11]; In
Step 3, yet others take the index and build the search engine
(backend) provided as an API based on the OpenSearch stan-
dard [5]; which is finally used in Step 4 by the organization
that builds the search application (frontend).

This paper discusses the challenges of using the common
index file format CIFF in Step 2. We discuss CIFF and why
it is currently underspecified for the use in a production
search engine in the following section. In the final section,
we present preliminary experiments that demonstrate the
problem in practice, provide a generic solution and report
on experiments showing its adequacy. The code used to run
our experiments is available via a public Git repository1.

THE COMMON INDEX FILE FORMAT
The Common Index File Format (CIFF) was defined in

2020 by researchers and developers of the following open
source retrieval research systems: Terrier, Anserini (which
uses Lucene), PISA, JASSv2, and OldDog [11]. CIFF’s goal
is to improve the reproducibility of information retrieval
experiments by allowing a search system to export the in-
verted index and import it into another system. This way,
researchers can rule out differences in retrieval performance
that are caused by building the index, such as text prepro-
cessing and boilerplate removal, focusing solely on other
aspects, such as the ranking algorithm.

Tokenization challenges of CIFF
To build an inverted index, the document texts need to be

tokenized. When the CIFF index is used in another system,
the queries that are put to the system, should use the tokens
in the index. One of the main challenges of using CIFF in
practice is the following: How do we tokenize the query such
that the tokens are consistent with the tokens in the index?
To ensure consistent tokenization between the indexer and
searcher, Lin et al. [11] exchanged pre-tokenized versions
of the test queries (also known as topics). However, in a
production search engine, there is no way of knowing all
possible queries beforehand, let alone pre-tokenizing them.
Consistent tokenization between index and queries remains
an unsolved problem of index exchange, at least outside the
narrow scope of information retrieval experiments that use
benchmark test collections with a small set of test queries.
We discuss tokenization in information retrieval and three

1 https://opencode.it4i.eu/openwebsearcheu-public/index-sharing



Figure 1: Steps in building and running a search engine. In between each step, data is exchanged conform to a specific open
standard: HTML for web content; WARC for web archives; CIFF for inverted files; and OpenSearch for search results.

possible approaches to achieve tokenization consistency for
CIFF below.

Tokenization in information retrieval
There is surprisingly little research done into tokeniza-

tion for information retrieval. A good overview is given by
Büttcher et al. [3, Chapter 3]. For English and some other
western languages, a simple tokenizer that splits on space
and punctuation usually suffices. Sometimes a stop word
list is used to remove common words. Often several surface
forms are mapped to the same token, for instance acronyms
might be written as EU or as E.U. and the tokenizer may map
them to the same token. For inflective languages, a stemmer
such as Porter’s stemmer for English [17] could map many
different inflections of the same word to a common root, for
instance indexing, indexation and indexes will all be mapped
to a common root: index. Instead of a stemmer, the use of
letter n-grams has been shown to be surprisingly effective
for inflective languages [12], but an n-gram index is less
efficient as queries will have more tokens for which then
(longer) posting lists need to be fetched and merged.

Non-Western languages like Chinese and Japanese use
many more characters than Western languages. Chinese has
thousands of distinct characters. Even though each character
has a meaning by its own, lots of words consist of multiple
characters and those words are not separated by spaces. In-
dexing Chinese documents therefore requires a non-trivial
word segmentation algorithm [22]. Consistent tokenization
for an imported index may therefore be a bigger problem for
Chinese than for English. The Unicode consortium provides
extensive guidelines for text segmentation for many other
languages [4].

Our solution to the tokenization problem should support
all human languages and at least general approaches like
stop words and mapping multiple surface terms to the same
token (including stemmers).

Possible tokenization solutions
How do we make sure that query tokenization is done in

a way that is consistent with the imported index? In this
Section, we discuss possible solutions, including: shipping
the tokenization source code with the CIFF index; providing
a declarative specification of the tokenizer with the CIFF
index; and defining a generic tokenizer that works with any
CIFF index.

Including the tokenizer source code Providing the to-
kenizer code inside (or with) the CIFF index would solve the
tokenizer inconsistency problem, but it also creates several
new questions and problems. One is: What programming
language should be used? Terrier, Lucene and Anserini
use Java. PISA and JASSv2 use C++. Another problem is
that each index may come with their own tokenizer, so the
number of tokenizers that need to be shared would possibly
increase with every CIFF index. This would make CIFF an
easy target of software supply chain attacks, where malicious
code is injected into tokenizers. To conclude, including the
tokenizer source code into CIFF would require the CIFF
developers to agree on a programming language for tokeniz-
ers, and it would require a high level of trust into the shared
code.

Tokenizers in embeddable scripts or bytecode Secu-
rity concerns of including the code of tokenizers can be
partly met by using an embeddable scripting language like
Lua that is designed to run inside applications in a carefully
guarded sandbox. Other options would be to use JavaScript
or WebAssembly, that are both used in web browsers and
therefore heavily guarded against malicious use.

Declarative tokenizers Another option may be to use
the lexers of parser generators like ANTLR [16] as a tool
for specifying a tokenizer and generating the tokenizer for
many programming languages, including the ones men-
tioned above. Parser generators are used to parse program-
ming languages and possibly structured query languages.
They are used in search engines that require complex struc-
tured queries, such as Lemur [14] and PF/Tijah [8] (both are
research systems that are no longer maintained). Specifying
tokenizers this way seems to be a non-trivial, tedious job.
We have not investigated this option further.

A single, generic tokenizer CIFF comes with the com-
plete dictionary containing all possible tokens as part of the
inverted file. The query tokenizer may therefore adapt to the
dictionary, ensuring that the query is tokenized in a way that
best fits the imported index. We will pursue this solution in
the next section.

A generic CIFF tokenizer
Recent advances in neural machine translation and large

language models come with interesting developments for



tokenization. Their tokenizers use a relatively limited vo-
cabulary by splitting uncommon words into word pieces.
This is done for two reasons: 1) to speed up processing and
decrease the number of parameters to be trained; and 2) to
gracefully handle out-of-vocabulary words, which will oc-
cur in unseen data no matter how big of a vocabulary the
model uses. Word piece models are trained on the data to
find the best word piece tokenizer for that data [10, 18]. So,
these tokenizers are generic tokenizers, that are trained or
finetuned on data. The trained vocabulary, possibly with
additional frequency information, and a generic tokenization
algorithm define the tokenizer.

We will use this idea of trained tokenizers to define a
generic tokenizer for CIFF. In this analogy, the indexing step
is the training step. The index, encoded in CIFF, contains
the possible tokens to be used by the generic tokenizer algo-
rithm. This way, every CIFF index will use its own custom
tokenizer, without the need to share the tokenizer source code
or bytecode. Unlike the word piece tokenizers mentioned
above, the CIFF tokenizer will typically use a much larger
vocabulary, although it could as easily use word pieces or,
alternatively, use multi-word units for phrases or named enti-
ties. The generic tokenizer is completely language-agnostic:
It works on any unicode string and does not need to know
about (English or Chinese) character sets. It does not even
know about spaces or punctuation. The generic tokenizer
may be implemented in about 20 lines of code. Example
code for the generic tokenizer is included in the appendix.
Its efficiency may be further improved by building a trie
from the vocabulary [19].

PRELIMINARY EVALUATION OF
TOKENIZATION FOR CIFF

In this section we show preliminary evaluation results
using the TREC Robust 2004 dataset [20]. We made inverted
indexes for two search systems: GeeseDB [9] and Terrier
[15]. Each index was exported to CIFF and imported in the
other system. We then evaluate 1) the original system, 2) the
other system, tokenizing queries with its standard tokenizer,
and 3) the other system with the generic tokenizer. We show
that performance degrades when a mismatch in tokenization
occurs, but that this can be mitigated by using the generic
tokenizer.

For both GeeseDB and Terrier, we rank documents with
BM25, using the parameters b = 0.4 and k1 = 0.9. Stop
words are not removed from the corpus, and no stemming
is applied. We discuss both techniques, and how they can
be handled in CIFF, in more detail in our section below on
future plans.

GeeseDB is configured to use the NLTK tokenizer [1],
and Terrier uses its standard internal tokenizer. These to-
kenizers mostly differ in how they handle certain types of
punctuation. For instance, NLTK leaves tokens intact when
they contain hyphens or periods (like on-line or U.S.), while
Terrier will split these into multiple tokens. To highlight
these differences, we additionally run our experiments on the

subset of only those Robust04 topics that contain a hyphen
or period (19 topics in total).

In all our experiments, we test whether differences are
statistically significant by applying a two-tailed paired t-test.
We use a significance level of α = 0.01.

Results on the Terrier index
Table 1a shows our results on the Terrier index.2 We

see that performance significantly degrades if we use the
Terrier inverted file in GeeseDB out of the box. However,
once we apply the generic CIFF tokenizer, we are able to
correctly adapt GeeseDB to the tokenization used by Ter-
rier. In fact, using the Terrier index in GeeseDB with the
generic tokenizer seems to match (or even slightly surpass)
the performance of Terrier itself.

These results are even more apparent when looking at Ta-
ble 1b, where we zoom in on the topics that contain hyphens
or periods. There is a very large performance drop when
we use GeeseDB with the NLTK tokenizer for query pre-
processing, but this drop disappears when using the generic
tokenizer.

Table 1: Performance of different systems using an inverted
file generated with Terrier. Best results are marked in bold.
Configurations that perform significantly (p < 0.01) better
than the Terrier index imported into GeeseDB (the middle
row) are marked with †.

(a) All Robust04 topics

System Tokenizer MAP nDCG

Terrier Terrier 0.221† 0.480†

GeeseDB NLTK 0.208 0.457
CIFF 0.224† 0.482†

(b) Robust04 topics that contain a hyphen or period

System Tokenizer MAP nDCG

Terrier Terrier 0.234† 0.541†

GeeseDB NLTK 0.081 0.292
CIFF 0.234† 0.541†

Results on the GeeseDB index
Table 2 shows the results of our experiments with the

GeeseDB inverted file. The differences are not as large (or
significant) as they were with the Terrier index, but we still
notice a drop in performance for queries with hyphens or
periods (Table 2b). Again, this drop can be mitigated by
using the generic tokenizer.

Discussion
Our preliminary experiments on Robust04 indicate that

our proposed generic tokenizer could be a useful addition
2 Systems that use a similar tokenizer, like Anserini/Lucene, give similar

experimental results.



Table 2: Performance of different systems using an inverted
file generated with GeeseDB. Best results are marked in bold.
Configurations that perform significantly (p < 0.01) better
than the GeeseDB index imported into Terrier (the middle
row) are marked with †.

(a) All Robust04 topics

System Tokenizer MAP nDCG

GeeseDB NLTK 0.207 0.460

Terrier Terrier 0.208 0.460
CIFF 0.209 0.462

(b) Robust04 topics that contain a hyphen or period

System Tokenizer MAP nDCG

GeeseDB NLTK 0.155 0.433

Terrier Terrier 0.145 0.392
CIFF 0.183 0.474

to the CIFF standard for inverted files. The results show us
that a retrieval system that is tokenized by using a greedy
matching approach on the inverted file’s dictionary is able to
match the performance of the system in which the inverted
file was created.

We also see that the tokenizer used to build the inverted
file matters in terms of retrieval effectiveness. The Terrier
index seems to consistently result in higher performance
than the GeeseDB index. To optimize the effectiveness of
a system using CIFF files, we would need to look at which
tokenizers produce the most useful dictionaries and inverted
files – knowing that the downstream system will use the
generic tokenizer.

CONCLUSION AND FUTURE PLANS
We discuss challenges of using the Common Index File

Format (CIFF) as an open standard for index exchange be-
tween search engines. We propose a generic CIFF tokenizer
that ensures that the tokenization of queries is consistent
with the tokenization that was used to make the CIFF index,
without the need to exchange the tokenizers themselves.

The CIFF generic tokenizer
Preliminary experimental results with two search systems

confirm that exchanging a CIFF index without properly han-
dling tokenization may result in a significant drop in search
quality. This drop happens for instance when a token is split
in multiple pieces at index time (like when on-line is indexed
as on and line) but in one piece at query time (on-line, which
then cannot be found in the index). Experimental results
show that our our generic CIFF indexer fixes this without ex-
plicit knowledge of the pre-processing pipeline of the source
system used to create the index. Together with developers
of search engines, we hope to define a new version of CIFF
that includes the generic tokenizer and that will work for all

languages and a large range of search applications. We plan
to work on the issues discussed below to make this happen.

Towards CIFF version 2
For a version 2 of the CIFF standard, we need more ex-

perimentation and several other adaptations for stop words,
stemming and, possibly, incremental indexing.

Indexing for non-western languages We plan to do
experiments for non-western datasets such as Chinese and
Japanese. Tokenization problems may be much more com-
mon for these languages, because they do not distinguish
words using spaces.

Stop words To allow the proper handling of stop words
and other tokens that are not indexed, CIFF indexes should
include them in the index with an empty posting list. If the
stop words themselves are not included, they will not be
properly tokenized by the CIFF tokenizer (but split up in
shorter tokens that are included in the index).

Using stemmers Supporting stemming in CIFF is not
entirely trivial. The CIFF tokenizer only works on surface
forms of the tokens, not on derived tokens like stems. One
way for CIFF to support stemming, is to include all surface to-
kens that are found in the data into the CIFF index, grouping
them for each stem. So, every posting list could come with
multiple tokens. For instance, the posting list for the stem
pickl (Stemmers do not always produce linguistically correct
stems) will in CIFF contain a set of tokens: pickle, pickled,
pickles, and any other word that stems to pickl. This ap-
proach may be used for many other tokenization challenges
too, like conflating the acronyms EU and E.U. as mentioned
above. Furthermore, it allows for more flexible stemmers,
including stemmers that use lookup tables and corpus-based
stemmers [21]. The approach will make it harder to export
any index to CIFF, because the surface tokens need to be
retained somewhere. It will also give different results for
query terms that do not occur once in the entire data, but of
which the stem does occur. Nevertheless, we believe includ-
ing sets of surface terms is an elegant solution for derived
tokens, including the use of stemmers.

Open indexes for large-scale web search Large web
indexes contain multiple languages and several kinds of data.
This opens up the possibility to use different tokenizers de-
pending on the language of the document, or even depending
on the language of paragraphs in multilingual documents.
This setup would introduce new challenges: For instance,
if multiple surface terms are grouped for one language, as
described above, they will have to be grouped for all lan-
guages. Experiments will have to show how the generic
CIFF tokenizer would handle such a setup.

Index updates A large CIFF web index may be many
gigabytes or even some terabytes in size. Additionally, the
Web changes all the time, so it makes sense to share a large



CIFF index once and share updates for the index regularly
afterwards. We think CIFF should include some rudimentary
way to indicate updates of the index.

Open source implementations A standard is more re-
silient if there are multiple implementations. We imple-
mented several tools for CIFF, including a CIFF importer for
Lucene [7], and tools for merging multiple smaller indexes
into one bigger index.
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APPENDIX
Example Python code for the generic tokenizer.

def tokenize_generic_greedy(self, query):
""" Tokenize a query generically.

self.dictionary contains all tokens from
the inverted file.
self.max_token_length contains the length
of the longest token.

"""
tokens = []
begin = 0
query_length = len(query)
while begin < query_length:

end = begin + self.max_token_length
if end > query_length:

end = query_length
token_found = None
while begin < end:

token = query[begin:end]
if token in self.dictionary:

token_found = token
break

end -= 1
if token_found:

tokens.append(token)
begin = end

else:
begin += 1

return tokens
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