CIRQuL - Complex Information Retrieval Query Language*

Vojkan Mihajlovic, Djoerd Hiemstra, Peter M.G. Apers

University of Twente, CTIT, Enschede, The Netherlands

Abstract

In this paper we will present a new system
for the retrieval of XML documents. We
will describe the extension for existing query
languages (XPath and XQuery) geared to-
ward ranked information retrieval and full-
text search in XML documents. Furthermore
we will present language models for ranked in-
formation retrieval and describe the ultimate
goal of our research.

1 Introduction

Information Retrieval (IR) theory is developed to over-
come the task of searching for information in flat un-
structured documents. The theory and the tools used
in conventional IR systems usually do not consider the
structure of a document. However, with rapid prolif-
eration of structured, and especially semi-structured
documents, a new research area for the IR commu-
nity has been drawn. It can be defined as follows:
formalizing a broad powerful query language that can
be used for querying XML documents both, on struc-
ture and content, and building a powerful execution
engine, that will be able to retrieve a (ranked) list
of XML documents or fragments of XML documents,
given the query.

The definition of XML as a structured (mark-up) lan-
guage [5] implies the presence of structure informa-
tion, besides content. Therefore, the data in XML can
be displaced into two broad categories: (1) data that
represents information about XML document struc-
ture, and (2) data that represents content information
in XML documents. Content of XML documents is
much more complex than the content of a flat text

*The work presented in this paper is funded by the Nether-
lands Organization for Scientific Research (NWO)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003

documents. This is because each content word has its
scope which is defined by structure, and bears a dif-
ferent kind of information depending on its position in
XML document. Thus, XML brings more opportuni-
ties for querying and searching tasks. It also enables
more precise definition of search intentions of a user, in
terms of defining the search space for computing rele-
vance score and defining the retrieved portions of XML
document. In other words, richer query languages have
to be formalized, in respect to standard (flat-file) IR
systems.

The structure queries can be expressed using XQuery
[8] and XPath [7] (which is an integral part of XQuery)
capabilities. Queries in the traditional IR style or Full-
Text Search (FTS) [11, 9] queries are currently gaining
more popularity in the research community. However,
most of the proposed XML query languages and re-
trieval engines or XML database management systems
are oriented toward single aspect of XML documents
(e.g. XPath and XQuery are focused on structure
part). Only few of them try to threat structure part
in conjunction with ranked retrieval and FTS. For ex-
ample in [12, 13] FTS in semi-structured documents is
used, while in [2] authors try to support retrieval of rel-
evant parts of a document using containment queries.
In [16, 14] another approach is presented which mostly
supports IR-like query execution over XML databases.
Recently, a proposal for XML full-text search is
drafted, consisting of requirements [11] and use-cases
[9]. Together with already developed structured query
languages and current XML IR state of the art, the
icon of the future query language has been drawn.
Therefore, our aim will be to develop a powerful com-
plex query language on top of a database that will
enable us to define database operators, that can exe-
cute all three types of queries, and that can provide
the user with the desired information. For ranking
we will use statistical Language Models (LM) for IR,
extended with new capabilities to enable modeling of
complex query expressions and the structural nature
of XML documents.

Here we will define some terms that we will use in this
paper. Following the conventional IR theory ([10]) we
can define XML documents as separate XML files, and
XML collection which consists of all the data extracted

Data type | Description |

node-set A collection of nodes (no duplicates)
boolean true or false

number A floating point number

string A sequence of characters

Table 1: XPath data types

from the XML documents (including meta-indexes).!
At the lowest level of granularity, we can define content
of an XML document which represent all the words in
XML that are not mark-up (i.e. text() nodes). On
higher level we can define XML elements that corre-
spond to one XML tag and all the encompassed in-
formation in it (including other descendant tags, their
attributes and content information). Since there might
be more than one sibling element with the same tag
name in an XML tree model, we additionally introduce
the concept of XML fragments which corresponds to
the node-set construct in XPath. Using the notion
of XML fragment we can define XML documents and
even XML collection as “high level” XML fragments.
For query formulation we will use XPath and extend
it with complex IR query facilities, as we will see in
the next section. In section three the language mod-
els used for XML fragments relevance score computa-
tion will be explained. Finally, the closing section will
summarize the benefits of the proposed complex query
language (CIRQuL) and give a notion of future work.

2 Structured Query Language Exten-
sions for IR-like and FTS Queries

We will start from the XPath syntax, since we con-
sider XPath as a good base for introducing the com-
plex query extension. Furthermore, XPath is included
in the XQuery definition, and therefore the complex
query language we propose can be easily incorporated
as an extension to XQuery.

For the notation we will use Syntax Graphs (SG) as
a graphical representation of Extended Backus-Naur
Form (EBNF).

2.1 XPath Capabilities

The expressions defined in XPath [7] are evaluated
against a tree model which represents the logical struc-
ture of an XML document. The basic types of expres-
sions in XPath are location paths. The main goal of
XPath is to enable traversing the tree model of an
XML document to find a so called node-set. The no-
tion of node-set represents nodes that are obtained
by XML tree model traversal, and is one of the basic
data types in XPath. Other data types that are sup-
ported in XPath are described in Table 1.

In some cases distinction between XML documents stored
into a database can not be established due to the fact that XML
documents are stored as a part of a large XML collection [3].

XPath_query

| |
il E * -
‘

Figure 1: Syntax graph for XPath query definition

The basic definition of XPath is depicted in Figure 1.
Part of the syntax that is marked by the dashed rect-
angle represents what can be done in each XPath step.
Furthermore, there is a clear distinction between the
structure part of the XPath expression (axis), tests
performed on the fragment of XML document struc-
ture obtained by structure part (node_test) of a query,
and a content part for data manipulation within the
XML fragment (predicate).

The result of each XPath step is an XML fragment
which represents a context node(s) for the following
XPath step. In explaining the complex query language
syntax we will start from predicate, since we consider
it as a proper place for the complex IR query exten-
sion.

predicate
O -0y
B — . S—

rel_expression <

expression
=0 e
L o]~

Figure 2: Syntax graph for predicate

core_function
G
J
l ™ XPath_queryb—‘ ‘

|
[=0 0

Figure 3: Syntax graph for core_function

The aim of the predicate (see Figure 2 for syn-
tax specification) is to enable some basic manipula-
tion with content of XML elements. The syntax of
core_function, as a part of a expression syntax, is
given in Figure 3. Due to its complexity the syntax of
expression is not given in its complete form. We gen-
eralized the complex syntax to be able to represent its
functionality. For full coverage of the core_function
symbol as well as the axis and node_test symbols re-
fer to [7].

Relational expressions used for combining core func-
tions and XPath expressions are given in EBNF below:

rel_expression := or|and|=|!=|<=|>=|<|>|+|-|div|*
The syntax for constant_value parameter, depicted
in Figure 3, represents the constant value of a type
defined by one of the basic XPath data types.

2.2 Extending XPath Toward IR Capabilities

Although some query capabilities that are highly
related to content retrieval exist in XPath (e.g. string
functions like contains, starts-with, substring),
they are hardly sufficient for powerful information
retrieval. This especially stands for proximity queries
(e.g. near, and adjacent) and the need for ranking of
retrieved XML fragments.

Furthermore, XPath (XQuery) is impotent for ex-
pressing queries on word order (except starting-with
clause), or queries that use thesaurus and stemming.
Since these queries form the base for a ranked IR
and FTS, in this paper we introduce an extension
for XPath to enable the formulation of queries in

a Complex Information Retrieval Query Language
(CIRQuL).

core_function

M
J
| xPath_quen]—

[0 | o

Figure 4: Syntax graph for complex core_function

We will start from the syntax graph of core functions
depicted in Figure 4. Comparing it with the Figure 3
it can be noticed that the only difference is in yet
another path with syntax nodes named IR and
IR_query. We introduce an additional core function
to XPath syntax, named IR, which returns a ranked
fragments of XML documents (collection). The
fragments are ranked according to the score functions
that are defined in next section.

IR_query

r XPath_query @W

fand
<J

complex_expression T

Figure 5: Syntax graph for complex IR_query

As depicted in Figure 5, to enable more expressive
power for ranked IR we introduced a recursive call of
XPath in complex query formulation. Thus, we en-
abled combination of more complex IR expressions on
different XML fragments that are typically contained
inside XML fragment defined by the XPath part of an
IR_query. The combination of complex expressions
can be expressed using and or or operators, and

as we will see later, these operators have the same
functionality as operators with the same name inside
a complex_expression part, or even with XPath or
and and operators defined in rel_expressions.

complex_expression

[basic exoression |
basic_

(DL 10

asic.

Figure 6: Syntax graph for complex_expression

The syntax of complex_expression is given in Fig-
ure 6. The complex expression consists of one or more
basic expressions combined with brackets, inclusion
(+) and exclusion (-) operators, and an importance
attribute. Brackets are used to group terms in a sim-
ple expression. The inclusion and exclusion operators
are used for specifying that the XML fragment must
or must not contain basic_expression, respectively.
The importance attribute is used to define the
importance of an expression among all the other
expressions. In cases where the expressions’ impor-
tance is not specified it is equally distributed to every
basic_expression (e.g. 1/#(basic_expression)).

basic_expression

D~ g~
=0 (O
R s S (O
near
Do e~
o)

and

Figure 7: Syntax graph for basic_expression

string_expression

4’j‘—.—’—‘1 string

Figure 8: Syntax graph for string expression

A Basic expressions is formed using traditional
boolean IR operators: and and or, and proximity
operators: adj (adjacent) and near. Additionally,
to enable full power of full-text search as defined in
[9, 11] we introduce operators, operator attributes
and term attributes. The syntax of a basic expres-
sion is depicted in Figure 7, while the syntaxes of
string expression and string symbols, where
term attributes are defined, are depicted in Figure 8
and Figure 9, respectively. The introduction of
string expression depicted in Figure 8 is just a

string

term v 0 term_attributes @—*

7i

Figure 9: Syntax graph for string

syntactic sugar to enable easier formulation of queries
for the end user. For example, the query:

IR(‘‘blue sea’’[any_casel), can be rewritten as:
IR(blue[any_case] adjlorder] sealany_case]).
Similarly, the string expression IR(blue sea) can
be rewritten as IR(blue and sea). The function of
operators + and - and attribute importance depicted
in Figure 8 is the same as described for complex
expressions, except its scope, which is now moved to
query terms, instead of basic expressions.

For the operators we introduced next attributes:
adj_attributes := ’(’word_order[,skip_elem]’)’
and_attributes := ’(’distinct_element[,skip_elem]’)’
near_attributes :=
or_attributes := ’(’distinct_element[,skip_elem]’)’
Operator attribute word order defines whether
query word order should be used as a criteria
for adj and near search, while attribute named
distinct_elements defines whether the and or or
search should be performed in all the sibling elements
(distinct) or each of them separately (same). Oper-
ator attribute win defines the window for near search,
while skip_elem is introduced to cover FTS use-cases
described in chapter 14 of [9]

Furthermore, to enable most of the FTS use-cases [9],
we introduce next set of term attributes:
{case_sensitive, diacritics_support, stemming,
word_division, position, term_expansion,

term prefix, term_infix, term_suffix, skip_tag}
Each one of the term attributes will have attribute
values, defined to support FTS use-cases. For exam-

ple:

case_sensitive := exact_case|lower_case|upper_casel
any_case

term_expansion := no_semblance | thesaurus_narrow|

thesaurus_broad |pronunciation|spelling

term_suffix := suffix °’(’ max [,min] ’)’

We can exert that almost every term attribute can be
resolved using a complex lexicon (thesaurus). As an
illustration for the usage of complex lexicon we can
give next example query:

IR(boat near anchor[use_thesaurus])

which can be expanded to:

IR(boat near (anchor or kedge or grapnel)).

Here terms kedge and grapnel represent terms with
the same meaning as anchor as defined in a complex
lexicon (thesaurus).

Using the complex lexicon and database accessories,
query expansion and rewriting can be performed
in order to avoid adding unnecessary complexity

>(’win[,word_order[,skip_elem]]’)’

in logical operators for explicitly expressing term
attribute values.

Finally, as an illustration of the expressive power of
introduced complex query language we will give next

example:

/book/[IR(author: (’Ernest’ adj[order]
’Hemingway’) and .//paragraph: (’big’ and[same]
’shark’))]

This query will search for all the books whose author
is Ernest Hemingway and which contain paragraphs
such that inside some of the paragraphs terms big
and shark can be found. Using the proposed syntax
many more complex queries like previous one can be
composed.

3 LM for IR in XML documents

The basic idea behind the language modeling approach
to information retrieval is to assign probabilities to
relevance of each document (D) when the query @ is
specified using query terms (Q = ¢1, g2, -..,qn). Here,
we will consider XML elements (E) instead of docu-
ments as a basic retrieval unit. Thus, using Bayes’ rule
we can express the relevance score like ([1]):

P(q1,92, -, 4| E)P(E)

P(E|q1,q2,...,qn) = P(q1 P q)
b) PR n

(1)

where the value of a denominator depends only on
query formulation and thus might be ignored for a
single query relevance score computation. If we as-
sume uniform prior for all the elements in a collection,
the prior P(E) should be ignored. In other words we
assumed that the elements are equally likely to be rele-
vant in absence of a query. Since this is not usually the
case, we must use some some computations and esti-
mate or learn this value. For this purpose the relative
size of an element in an XML collection might be used
(similarly as for documents in [10]). Furthermore, if
we assume that the query terms are independent we
can isolate the single terms of a complex expression
in the numerator and express the probability that a
query term q is drawn from a single element (e € E):
P(q[E).

In defining LMs for complex expressions we will start
from the simple query consisting from one single query
term ¢q. Following the traditional statistical LM for-
malism we can define the relevance assessments of an
element e given the query term q as:

Plgle) = 72” (;Ef)e) @)

Here, tf (¢, €) denotes term frequency of a term ¢ in an
XML element e, and), tf(t, €) represents the total
number of terms in an XML element e, while the equa-
tion (2) define the probability that a term in element

e is . However, considering the hierarchical organiza-
tion of XML documents we might alternatively define

this expression as:

P(gle) =

Z tf(q, content(e;)) Zt tf (¢, ei)

1
Zt tf(t,e) Zt tf (¢, content(e;))

e;Edsc(e)
3)
In this equation we compute the term fre-
quency inside the content of each descen-
dant element of a current context node:
tf (g, content(e;))/ >, tf (t, content(e;)), and mul-
tiply it by a bias factor >, tf(¢t,e)/ >, tf(t,e)
(similar to augmentation factors in [2, 16] and mix-
ture parameters as in [10]).
Using equations (2) and (3) as a starting point we
will define more complex models for operators. Thus,
for operators or, and, near, and adj, that form the
basic expressions we will use next equations:

1 n
P(q1 or g2 or ... or gnle) = p ZP(qﬂe) (4)
i=1

P(q1 and g2 and ... and qnle) = HP(q¢|e) (5)
i=1

P(q1 near g2 near ... near gple) =

= P(q1le)P(qz2]q1,€) - P(gn|gn-1---q1,€)

= %(#(m near qz) ... #(qn near (qgn—1,...,91)))(6)
Lt (s
P(q1 adj g2 adj ... adj gnle) =

= P(q1|e)P(q2/q1,€) - P(gn|qn-1---q1,€)

= < (#(a1 adj 2) - #(gn adj (an-1,5a0)) (7)
Lt (s

Furthermore, to enable execution of operator or or and
with distinct attribute value, we will use weighted
(augmented) sum over all the sibling elements (e;) that
are in a fragment f (€ F):

P(QIf) =D (P(Qle:) Dt (%, er))

ei€f t

1
saen °

Since in our complex query syntax we allowed the us-
age of or and and terms for forming complex expres-
sions, we will support their representation in a logical
algebra in the same fashion as for their counterparts
defined in equations (4) and (5). However, instead of
single query terms ¢; depicted in these equations we
will use term Q; which stands for basic query expres-
sion. Using the language models defined in equations
(2)-(8) we will try to develop all the operators in a log-
ical algebra. Together with the rewriting rules defined
for the query language we will be able to perform score
computation for all the XML fragments in a database
collection.

4 Conclusions and future work

In this paper we presented a Complex Information Re-
trieval Query Language (CIRQuL) whose goal is to

enable ranked retrieval and full-text search in XML
documents. The language is proposed as an extension
to XPath, with the introduction of IR operators, and
operator and term attributes. Furthermore, we ex-
plained how statistical language models can be used to
support the relevance score computation for the sim-
ple one-term queries, as well as for the complex queries
composed with adj, and, near, and or operators.
The ultimate goal of our future research will be to
build a stable database management system with a
powerful language models logical algebra that will
support the execution of complex queries defined in
CIRQuL. Furthermore, we will use scalable storage
schema (similar to [3]) on physical level to support
fast execution of logical algebra operators.

References

[1] D. Hiemstra “A Database Approach to Content-based
XML retrieval” In Proc. of the First Annual Workshop of

INEX, 2003, (to apﬁear .

[2] T. Grabs, H-J. Schek, “ ETH Zrich at INEX: Flexible Infor-
mation Retrieval from XML with PowerDB-XML” In Proc.
of the First Annual Workshop of INEX, 2003, (to appear).

[3] T. Grust, M. van Keulen, J. Teubner, “On Accelerating
XPath Evaluation in Any RDBMS (Even If All You Got is
a Binary Table)” ACM Transactions on Database Systems,
vol. 5, pP- 1-42, 2002.

[4] T. Grabs, H-J. Schek, “Generating Vector Spaces On-the-
fly for Flexible XML Retrieval” In Proc. of the 25th ACM
SIGIR Conference, Tampere, 2002.

[5] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler,

“Extensible Markup Language (XML) 1.0. (Sec-

ond Edition)” Technical Report (TR), W3C, 2000.

http:ﬁ/www.w&orgéXML/TR REC-xml

A. Skonnard, M. Gudgin, “Essential XML Quick Refer-

ence: A Programers Reference to XML, XPath, XSLT,

XML Schema, SOAP, and More” Addison-Wesley, 2001.

[7] J. Clark, S. DeRose, “XML Path Language (XPath)” Ver-
sion 1.0, TR, W3C, 1999. http://www.w3.org/TR/xpath

[8] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, J.

Robie, J. Simeon, “XQuery 1.0: An XML Query Language”

TR, W3C, 2002. http://www.w3.org/ TR /xquery

s.”’ ¢ //P. C / 4XQ /

9] Amer-Yahia, ase, uery and
XPath Full-Text Use Cases” TR, W3C, 2003.
htt% [/www.w3.org/ TR /xmlquery-full-text-use-cases/

[10] D. Hiemstra “Using Language Models for Information Re-
trieval” PhD thesis, University of Twente, 2001.

[11] S. Buxton, M. Rys, “XQuery and XPath
Full-Text Requirements” TR, W3C, 2003.

http://www.w3.org/ TR /xmlquery-full-text-requirements
[12] H. A41/onen, B. Hel/kkinen, 0. H}éinonen, J. Jaakkola, 14

Kilpelainen, G. Linden, H. Mannila, “Constructing Tai-
lored SGML documents” In Proc. of SGML Finland, pp.
106-116, Espoo, Finland, 1996.

[13] H. Hosoya, B. lﬁierce, “Regular Expression Pattern Match-
ing for XML” In Proc. of ACM Symposium on Principles
of Programming Languages, pp. 67-80, London, 2001.

[14] J.E. Wolf, H. Florke, A.B. éremers, Searching and Brows-
ing Collections of Structural Information” In Proc. of IEEE
Advances in Digli\};al LibraryZ p. 141-150, USA, 2000.

[15] T. Schlieder, F. Naumann, “Approximate Tree Embedding
for Querying XML Data” In ACM SIGIR 2000 workshop

on XML and IR, pp. 53-672 Athens, 2000.

[16] N. Fuhr, K. Grossjohann, “XIRQL: A Query Language for
Information Retrieval in XML Documents” In Proc. of the
24th Annual ACM SIGIR Conference on Research and De-

velopment in IR, pp. 172-180, USA, 2001.
[17] R.W.P. Luk, H.V. Leong, T.S. Dillon, A.T.S. Chan, W.B.

Croft, J. Allan, “A Survey in Indexing and Searching XML
Documents” Journal of the American Society for Informa-
tion Science and Technology, vol. 53, pp. 415-437, 2002.

