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Abstract. Railway systems play a vital role in the world’s economy and move-

ment of goods and people. Rail tracks are one of the most critical components 

needed for the uninterrupted operation of railway systems. However, environ-

mental conditions or mechanical forces can accelerate the degradation process of 

rail tracks. Any fault in rail tracks can incur enormous costs or even results in 

disastrous incidents such as train derailment. Over the past few years, the research 

community has adopted the use of machine learning (ML) algorithms for diag-

nosis and prognosis of rail defects in order to help the railway industry to carry 

out timely responses to failures. In this paper, we review the existing literature 

on the state-of-the-art machine learning-based approaches used in different rail 

track maintenance tasks. As one of our main contributions, we also provide a 

taxonomy to classify the existing literature based on types of methods and types 

of data. Moreover, we present the shortcomings of current techniques and discuss 

what research community and rail industry can do to address these issues. Finally, 

we conclude with a list of recommended directions for future research in the field. 
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1 Introduction 

Railway systems are one of the most important means of transportation and play a crucial 

role in the world’s economy [1]. Compared to other means, railways provide a more com-

fortable experience. Besides, they are more affordable, which make them one the most 

popular way of commuting. Railway tracks are one of the most important components of 

railway systems. However, the continuous impact of repetitive passing of trains, high 

railroad network velocity, axle loads and environmental conditions cause rail deteriora-

tion. The presence of even a small flaw in rail tracks might introduce more severe defects 

and broken rails which can lead to huge maintenance costs and reduce the reliability and 

availability of the system [2]. But more importantly, broken rail track can lead to train 

derailments which subsequently endanger the safety of the passengers and train crews [3]. 

For example, over the past decade, around one-third of all railroad accidents in the US 
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have been caused by track related defects [4]. Thus, to avoid risks and system disruptions, 

rail tracks need to be monitored and maintained regularly [5][6]. However, railway track 

maintenance is one of the most expensive maintenance activities in railway engineering. 

For instance, the estimates reveal that approximately each year half of the maintenance 

budget in the Netherlands is spent only on railway track maintenance activities [7]. There-

fore, to reduce the costs and risk associated with rail track failures and to improve the 

safety and maintenance operations novel techniques and approaches should be developed 

and be adopted. 

Nowadays due to the rapid technological advances and the extensive deployment of 

low-cost connected devices and sensors, the industrial Internet of Things (IoT) plays an 

increasing role in the effective implementation of maintenance strategies across a wide 

range of industries [8]. The railway industry has also embraced the integration of con-

nected devices, sensors and big data technologies to improve their daily maintenance op-

erations [9]. Over the past two decades, machine learning (ML) has revolutionized a wide 

range of fields such as computer vision, natural language processing, and speech recog-

nition. With the explosion in the amount of data collected by advanced monitoring de-

vices such as wireless sensor networks or high resolution video cameras which are being 

widely used to inspect critical railway infrastructure, machine learning is also gaining in 

popularity to improve the operations and reliability of railway systems, and to minimize 

the daily maintenance costs and risks [10]. 

 To address this demand from the rail industry, a great deal of research has been done 

over the past few years and various machine learning models have been employed for 

condition monitoring of rail tracks. Although the application of machine learning for 

maintenance has been reviewed in other domains such as machine health monitoring [8] 

and wind turbines [11], to the best of our knowledge no other paper has surveyed the 

existing literature on the application of machine learning in the rail track maintenance. 

The aim of this paper is to provide a thorough literature review on current machine learn-

ing techniques used for the condition monitoring of rail tracks while also discussing draw-

backs of these methods along with what researchers and industry can do to improve the 

performance and trustworthiness of existing approaches. 

This paper is organized as follows: In section 2, the paper introduces different para-

digms of machine learning. Section 3 discuss what kinds of flaws can be observed in rail 

tracks and which types of tools are utilized to inspect rail defects. Section 4, explores the 

existing machine learning algorithms used in the context of rail track maintenance. In 

section 5, we describe the shortfalls of current techniques and present a set of new re-

search directions. Finally, in section 6 we present our conclusion.  

2 A brief introduction to Machine learning 

An ML algorithm usually defined as an algorithm that can learn the underlying patterns 

from data without being explicitly programmed by human experts. Supervise learning 

algorithms are a subset of ML models that can learn to predict a target variable from a set 

of predictive variables also called as features or attributes. On the other hand, unsuper-

vised learning techniques try to infer the inherent structure or represent the input data into 
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a more compressed and interpretable way without being provided with labeled datasets. 

For instance, principal components analysis (PCA) which is one of the most widely-used 

unsupervised techniques, takes a dataset stored as a set of potentially correlated variables 

and compress the dataset by generating a set of new variables that have no linear correla-

tion. Machine learning techniques can also be divided into shallow algorithms and deep 

algorithms. The main distinction between shallow and deep learning algorithms is in their 

level of representation. Shallow learning-based techniques use hand-crafted features, 

manual feature extraction/selection techniques and algorithms such as Support Vector 

Machines (SVM) [12], Decision Trees [13] and Random Forests [14] for learning the 

mapping between predictive variables and the target [8]. Moreover, this set of algorithms 

often use structured datasets such as tables as an input. For example, a decision tree algo-

rithm incrementally learns a set of decision rules represented as decision nodes and leaf 

nodes from a dataset that has multiple rows and columns. At each decision node, the 

decision tree algorithm splits the observations into smaller subsets based on a feature in 

the dataset that gives higher homogeneity among observations in each subset. A random 

forest algorithm is an ensemble of multiple decision trees. In each iteration of a random 

forest algorithm, a decision tree model is trained on a subset of features and a subset of 

data samples. Then, the algorithm aggregates the outputs of individual trees to make a 

prediction. Random forests can be an extremely powerful machine learning technique 

since they add an extra randomness element to a simple decision tree and they combine 

the predictions of multiple decision trees. 

However, deep learning algorithms rarely require hand-engineered features and they 

can learn the representation directly from the data (e.g. raw images). For this reason, deep 

learning is sometimes referred to as “representation learning” [15]. This property partially 

eliminates the need for feature engineering, which gives deep learning algorithms an edge 

over shallow learning algorithms. Over the past couple of years, the research community 

has also taken advantage of deep learning for rail defect inspection and monitoring. Even 

some researchers believe deep learning may become a potential element in the ultimate 

fully automated rail inspection systems [6].  

Convolutional neural networks (CNN) are a special case of deep artificial neural net-

works (ANN) which have been especially used for computer vision tasks. In CNN mod-

els, the fully connected layers in normal neural networks are replaced by convolutional 

layers. The main difference between the fully-connected and convolutional layer is that 

in a convolutional layer each neuron is not connected to all neurons in the previous and 

next layers and the weights are shared between groups of layers [16]. It has been shown 

that this difference give CNNs a unique property. The early layers of CNNs store low-

level feature like edges and curves, while the last layers of a CNN contain the information 

about the more complex features such as eyes [17]. This is considered to be an interesting 

characteristic of CNNs as it gives the CNN the ability to use the knowledge (weights) 

learnt from solving a problem to solve a new problem, also widely known as transfer 

learning. For example, the weights of a CNN trained on a very large dataset such as 

ImageNet database [18] can be used to train a new CNN network for detecting tumors in 

medical applications [19]. CNNs have been successfully applied to various computer vi-

sion problems and even beat both humans and the existing algorithms in tasks such as 

image classification and object detection [20][21]. In the following section we can also 
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see a surge in the number of publications that trained CNNs to recognize faults in rail 

tracks.  

Besides CNNs there are other classes of deep learning algorithms which have been 

widely used in the literature to predict time series data [22]. For example, long short-term 

memory (LSTM) networks a variant of recurrent neural networks (RNNs)[23], can learn 

the long-term temporal dependencies by utilizing special mechanisms called memory 

cells [24]. Lately LSTM networks have shown promising results in predicting the remain-

ing useful life of industrial equipment using IoT data [25].  

3 Rail track data 

The rail inspection data can differ based on different rail defects and measurement meth-

ods. In addition, rail data can be stored as structured, semi-structured and unstructured 

formats. These differences determine which kind of processing techniques and algorithms 

are more suited for a certain problem. For instance, rail track data such as records of 

previous maintenance activities collected by human operators can be stored as a struc-

tured table and later used by shallow learning algorithm such as random forests. On the 

other hand, deep learning algorithms are the natural choice for dealing with unstructured 

data like images. Therefore, in this section we draw a distinction between different defects 

and data sources which later will be used in our proposed taxonomy.  

3.1 Type of rail track faults 

Rail defects can develop and grow in different parts of a railway track and therefore they 

have been categorized in different ways by the researchers. However, in general, rail track 

defects can be divided into structural defects and track geometry irregularities [1]. Track 

geometry defects such as rail misalignments are characterized by undesirable deviation 

of rail geometric parameters from their designed value. Structural defects describe the 

structural degradations of rail track components such as rail, ballast and fasteners [26]. 

However, It should be noted that not only track geometry irregularities are responsible 

for train accidents and directly impact the safety of the rail network but they can also lead 

to the birth of structural defects [4] [27]. More information on different geometry defects 

can be found in [28]. Readers can also refer to [29] to find a more complete overview of 

different structural rail track defects. 

3.2 Rail inspection methods and tools 

Numerous non-destructive methods and tools are utilized in the rail industry to inspect 

the condition of rail tracks and data collection. These techniques include manual inspec-

tion, ultrasonic devices, high resolution video cameras, 3D-laser cameras, eddy current 

inspection, Magnetic flux leakage etc. A more comprehensive description and compari-

son of rail inspection tools and methods can be found in [10] [30]. While each method 

can be used to detect failures in different parts of the rail track and collect specific infor-

mation about the condition of the rail, not all of them have been used in machine learning 
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literature. However, in recent years, visual inspection systems and particularly video cam-

eras have become one of the most important and effective inspection tools for automatic 

and flexible rail track monitoring [2]. Video cameras mounted on specialized trains can 

capture high-resolution images of rail tracks from different angles. In that case, a large 

number of images are collected which later can be used to train machine learning algo-

rithms to detect anomalies in the rail track. However, large scale deployment of video 

cameras can present some technical challenges as they require a key infrastructure for 

efficient storage and processing of streaming data. For instance, each year video cameras 

collect roughly 10 terabytes of image data in the Dutch railway system [31]. Moreover 

the existence of some residuals such as oil and dust which might be present in the col-

lected images can have a negative impact on the performance of machine learning algo-

rithms [32]. 

4 Machine learning for track defect detection 

In this section, we summarize different machine learning techniques adopted by research-

ers to help the rail industry overcome its maintenance challenges. The current literature 

has been divided into two major classes of techniques based on the taxonomy we have 

presented throughout the paper (Table 1). The first group represents the experiments that 

were carried out with shallow learning algorithms and the second group specifically in-

cludes deep learning-based approaches. Further, Table 1 offers more information on other 

parts of our taxonomy. 

4.1 Shallow learning-based algorithms for rail track maintenance 

Before 2012 and when deep learning made its first breakthrough in the field of computer 

vision by AlexNet [33], researchers mainly used complex features extracted manually 

from images and then trained a shallow learning algorithm such as SVM for image clas-

sification and object detection [15]. Likewise, in classical defect detection literature and 

before the emergence of deep learning techniques, various feature extraction and trans-

formation techniques such as histogram of oriented gradients (HoG) have been applied to 

image datasets [34]. For instance, Xia et al. [35] extracted Haar-like features to detect 

broken fasteners in the railway network by an AdaBoost algorithm. To reduce the dimen-

sionality of the input data, Santur et al. [36] first applied various feature extraction tech-

niques such as PCA, kernel principal component analysis (KPCA), singular value decom-

position (SVD) and histogram match (HM) techniques to a dataset which comprised a 

number of non-defective image and an artificially generated image dataset of non-defec-

tive images. Next, they trained a random forest algorithm on a set of extracted features. 

They concluded that features created by PCA provided the most accurate result. Gao et 

al. [37] merged three different data sources in what they described as ‘combined systems 

method’ which comprised of ultrasonic, eddy current and surface imaging video meas-

urements. Then they fed the features extracted from applying a clustering algorithm on 

their database to an SVM algorithm for detecting squats. Sadeghi et al. [38] employed 

four neural network models with each with one hidden layer to predict the defect density 
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of rail tracks which was defined as the fraction of a rail segment that is defective. To train 

the neural network models they combined various attributes such as track quality index 

of gauges collected through manual inspection. 

In the case of rail geometry defects, using a subset of RAS Problem Solving Competition 

2015 dataset , Hu et al. [39] attempted to use an SVM algorithm to forecast when a less 

severe track defect will develop into a more severe type of defect. Famurewa et al. [40] 

presented a systematic data methodology for rail condition monitoring which consists of 

descriptive, diagnostic, predictive, and prescriptive steps. As a part of their descriptive 

and diagnostic strategy, the authors aimed their attention to detect anomalous patterns in 

sharp curves using PCA algorithm and data acquired by manual inspection from the Swe-

dish railway network. Jiang et al. [41] proposed a hybrid approach to recognize rolling 

contact fatigue from data obtained in laser ultrasonic experiments. In their proposed ap-

proach, the measurement signals were decomposed into a new set of features using a 

wavelet packet transform (WPT). Next, to reduce the dimensionality of data and to re-

move the effect of correlated features. Similarly, to better understand and visualize high 

dimensional track geometry data into a more compressed representation, Lasisi et al.[4] 

applied PCA, a well-known dimensionality reduction algorithm, to a dataset of 31 fea-

tures collected from a section of US Class I railway network KPCA, a nonlinear variant 

of PCA technique, was applied on new features. Finally, the output of the KPCA algo-

rithm was used as an input to an SVM model to detect four kinds of surface defects. 

  Lee et al. [42] made use of artificial neural networks (ANNs) and SVM algorithms to 

predict track quality index (TQI) based on simulation data generated from various im-

portant track parameters such as type of curvatures. They concluded that while the ANN 

algorithm slightly performs better that the SVM algorithm, the difference between these 

two algorithms is mostly insignificant. Furthermore, they stated that at least two years of 

data is required for more stable predictions. 

In some real-world cases, the railway defect dataset might consist of only positive (de-

fective) and unlabeled observations which essentially means that the conventional classi-

fication metrics cannot be computed accurately. Motivated by this problem, Hajizadeh et 

al. [43] introduced a new metric called Positive and Unlabeled Learning Performance 

(PULP) to assess the performance of classifiers on datasets with only defective observa-

tions. They tested their proposed metric on a rail vibration datasets using two SVM mod-

els and stated that a model with a better PULP performance can detect more failures com-

pared to a model with inferior PUPL performance. In another similar work, Hajizadeh et 

al. [44] proposed a semi-supervised technique which added the unlabeled observations to 

the training dataset to improve the balance between the two classes of squat defects and 

non-defects. 

4.2 Deep learning-based algorithms for rail track maintenance 

One of the earliest attempts to employ deep learning techniques for rail defect detection 

was carried out by Soukup et al. [45]. They designed a CNN network with two layers to 

distinguish defective and non-defective cases using photometric stereo images. Since they 

had a relatively small dataset, and the methodology appeared to be vulnerable to over-

fitting, sparse autoencoders and data augmentation were also used in their experiment to 
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tackle this issue. After the successful implementation of CNNs for rail defect detection, 

other researchers gradually started to apply CNNs to other image databases. In [46], Gib-

ert et al. applied a CNN network with 4 convolutional layers to a set of manually anno-

tated images collected on US Northeast Corridor and classified rail track materials. Then 

they used the trained parameters of the CNN model for defect detection and semantic 

segmentation of railroad ties. As an extension of their previous research and based on 

their proposed approach in [47] which used an SVM to classify fastener defects, Gibert 

et al. [6] designed and trained a custom CNN architecture with five convolutional layers 

on the same dataset to categorize the condition of rail fasteners as missing, broken or 

good. To make their machine learning model more robust against unusual situations, they 

also used data augmentation and used re-sampling to add more hard-to-classify images to 

their training dataset. 

 To provide a tool for automatic defects detection in rail surface, Faghih-Roohi et al. 

[34] trained 3 different-sized CNN architectures on a manually labeled image dataset col-

lected from approximately 700 kilometers of rail tracks in the Netherlands. Based on the 

results of their experiment, they concluded that the deepest architecture outperforms the 

other two models on the multi-class classification of squat defects. The designed archi-

tecture for the medium-sized CNN network proposed in this paper is shown in Fig. 1. 

Jamshidi et al. [31] also classified squat defects with different levels of severity using a 

simple CNN architecture and a real-world image dataset. They also assessed the visual 

growth of a defect and its severity using an image database. However, the interesting 

contribution of their work is that not only they used image data for squat defect classifi-

cation but they also analyzed crack growth using data collected from ultrasonic measure-

ments and then combined it with image analysis results to provide a failure risk model. 

 

 

Fig. 1. Illustration of the medium-sized CNN network proposed in [34] 

In one of their other works, Santur et al. [48] proposed 3D laser cameras as a viable solu-

tion for fast and accurate rail inspection. To test their approach they described training a 
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CNN model on data collected through 3D laser cameras to classify rail tracks as either 

"faulty" or "healthy". However, the specification of the CNN architecture (e.g. the num-

ber of convolutional layers) was not mentioned in their research. However, in their next 

experiment, Santur et al. [49] used normal video cameras and proposed a three-stage pipe-

line with a blur elimination step and trained a three-layers CNN model.  

As a part of a more comprehensive big data-oriented methodology, Jamshidi et al. [27] 

in their recent analysis, trained a CNN network on both Axle Box Acceleration (ABA) 

inspection data and a manually labeled image dataset collected from a specific section of 

the Dutch rail network. In the other major contribution of this paper, the output of deep 

learning model, designed to classify the state of rail tracks as a normal, light squat defect 

and sever squat defect, was later used along with input from analysis of degradation fac-

tors and domain experts to define an optimal maintenance strategy. 

Lately, the research community has also adopted more advanced deep learning tech-

niques in railway engineering. For instance, to reduce the maintenance expense and en-

hance the safety of Swiss Federal Railways (SBB) system, Rauschmayr et al. [50] em-

ployed several state-of-the-art deep learning algorithms to detect defect and to locate the 

defective parts on the tracks. First of all, by using a pre-trained faster R-CNN model, they 

segmented track surfaces and clamps to identify anomalies. Then they made use of Gen-

erative Adversarial Networks (GAN) to cluster normal and anomalous observations. In 

this case, if an observation does not belong to certain clusters, more likely it will be a 

defect. Further, they discussed the feasibility of this approach as an alternative to replace 

the manual labeling. Wang et al. [51] also performed an experiment with two well-known 

deep learning architectures and transfer, known as AlexNet and ResNet, to recognize fas-

teners defects using a hand-annotated image dataset acquired from two separate lines of 

rails in the US. They concluded that the pre-trained ResNet not only achieved more ac-

curate and reliable results, but it could generalize well on classification of different track 

lines. To detect geometry defects, Ritika et al.[52] applied several data augmentation 

techniques to generate artificial images with sun kinks defects. Then, they used a pre-

trained Inception V3 CNN architecture to identify sun kinks in rail tracks.  

 
Table 1. An overview of current ML publications for rail track maintenance 

Year Authors Defect type ML class ML algorithm Data Source 

2010 Xia et al. [35] Structural  Shallow learning Ada-Boost Video cameras 

2012 Sadeghi et al. [38]  Structural Deep learning ANN Manual inspection 

2014 Soukup et al. [45] Structural Deep learning CNN/ 

Autoencoders 

Photometric sensors 

2014 Hajizadeh et al. [43] Structural Shallow learning SVM Video cameras 

2015 Gibert et al. [6] Structural  Shallow learning SVM Video cameras 

2015 Gibert et al. [46] Structural  Deep learning CNN Video cameras 

2016 Hajizadeh et al. [44] Structural Shallow learning SVM Video cameras 

2016 Hu et al. [39] Geometry Shallow learning SVM Manual inspection 

2016 Faghih-Roohi et al. [34] Structural  Deep learning CNN Video cameras 

2017 Santur et al. [36] Structural Shallow learning PCA/KPCA/ 

SVD /HM/ 

Random forest 

Video cameras 
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2017 Gibert et al. [6] Structural  Deep learning CNN Video cameras 

2017 Santur et al. [48] Structural Deep learning CNN 3D-laser cameras 

2017 Famurewa et al. [40] Geometry Shallow learning PCA Manual inspection 

2017 Jamshidi et al. [31] Structural Shallow learning CNN Ultrasonic/ 

Video cameras 

2018 Gao et al. [37] Structural  Shallow learning SVM Ultrasonic/ 

Eddy current/ 

Video cameras 

2018 Lee et al. [42] Geometry Shallow learning ANN Simulation 

2018 Santur et al. [49] Structural Deep learning CNN Video cameras 

2018 Rauschmayr et al. [50] Structural Deep learning Faster R-CNN/ 

GAN 

Video cameras 

2018 Wang et al. [51] Structural Deep learning Pre-trained CNN Video cameras 

2018 Lasisi et al.[4] Geometry Shallow learning PCA Manual inspection 

2018 Jamshidi et al. [27] Structural Deep learning CNN Video cameras 

2018 Ritika et al.[52] Geometry Deep learning Pre-trained CNN Video cameras 

2019 Jiang et al. [41] Structural Deep learning KPCA/  

SVM 

Laser ultrasonic 

 

5 Discussion 

As one can observe in Table 1, deep learning algorithms have been the most extensively 

used technique for the detection of structural defects. That has happened thanks to the 

large-scale usage of video cameras by the industry which subsequently provides the re-

search community with a vast amount of data to experiment with more advanced methods. 

The table further demonstrates the extensive applications of shallow learning techniques 

for geometry irregularities. Yet the current state of the literature on the applications of 

machine learning in rail track maintenance suffers from a few shortcomings. To acceler-

ate the machine learning research progress and machine learning adoption in the railway 

systems, it is the responsibility of both the research community and the industry to focus 

on what they can do to address for these shortcomings: 

 Small number of defective observations: One major property of rail defects datasets 

is the highly skewed distribution of defective and non-defective classes. In general, a 

substantial majority of observations belong to the non-defective components while 

only a slim portion of observations are in fact defective (often less than 1 percent). 

This can negatively affect the performance of machine learning models as they often 

favor the majority class [53]. In machine learning literature, various techniques have 

been proposed to deal with imbalanced datasets. For instance, under-sampling and 

over-sampling are the two most common approaches used to mitigate the effect of the 

imbalanced number of classes on training machine learning algorithms [54]. However, 

in rail maintenance literature only a few number of attempts have been made to address 

the class imbalance problem or to study the effectiveness of current techniques on rail 

data. The only known research concerning this issue are carried out by Hajizadeh et al. 

[44]. Thus research community needs to focus more on developing or applying new 
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techniques for overcoming the problem of imbalanced observations in rail defect da-

tasets. 

 Availability of labeled datasets: The performance of machine learning models heav-

ily depends on the availability and quality of a sufficiently large and labeled dataset. 

However, while due to the huge amount of measurements most of the time the size of 

a dataset is not a problem, the presence of enough labeled samples can pose a more 

serious challenge. Especially this issue becomes more visible in image datasets since 

manual labeling of the rail track images is a labor-intensive and expensive process, and 

requires a high level of expertise and domain knowledge. As a result, often the existing 

datasets cannot satisfy the amount of data needed for machine learning systems. Alt-

hough several research papers have been published and a few tools have been devel-

oped to partially automate the dataset labeling problem, these issues have been over-

looked by researchers in the rail domain and in the intelligent maintenance community. 

So far, only Rauschmayr et al. [50] and Hajizadeh et al. [44] have tried to develop 

techniques to automatically label rail images. 

 Lack of a public benchmark dataset: There are several well-known public datasets 

that have been widely used and studied as a benchmark for comparing different tech-

niques and approaches in other maintenance domains [55]. However, only a few small 

datasets are available for rail track defects and often the datasets used by researches 

are proprietary and not sharable. This issue makes training, evaluating and comparing 

the results of machine learning algorithms more challenging. Thus, as long as there is 

no public dataset available, not all machine learning researchers outside the rail indus-

try can contribute to the research progress in this domain which subsequently could 

slow down the progress and stifle the innovation in the domain. Therefore, it is neces-

sary that the rail industry grants the academia access to the rail track data. 

 Explainability of machine learning models: As mentioned at the beginning of this 

section, a significant number of papers published in rail maintenance domain exploited 

CNN models and recommended the use of CNNs for automatic defect detection in 

real-world scenarios. However, CNNs are considered to be black-box models and are 

not inherently interpretable. In other words, the machine learning researcher is not able 

to explain how a CNN model came up with its predictions or prove its trustworthiness 

to the end user [56]. So far the question of how we can trust ML models has not been 

addressed by the research community. Therefore, developing accurate black-box ma-

chine learning algorithms should not be the only goal but actually how these algorithms 

classify defects needs to be taken into consideration.  

 Combining domain knowledge with machine learning models: How defects 

evolve, which factors contribute to the degradation of rail track components and do-

main expert knowledge can significantly influence the effective scheduling of rail 

maintenance operations [27]. For instance, rail track areas with a high concentration 

of light squats can be fixed by a grinding process. However, if these light squats de-

velop into more severe defects, not only a replacement is needed to fix rail track faults, 

but the risk of more serious damages also increases [57]. Fault tree analysis (FTA) is 

a powerful model-based method for risk assessment of complex systems. Fault trees 

have been used by a vast array of industries, to model how malfunctions in system 
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components lead to the failure of the system [58]. ML techniques can be used together 

with fault trees to better learn how a system fails [59]. 

6 Conclusion 

This paper has reviewed major machine learning techniques for fault detection. First of 

all, we have found that especially in the past few years, deep learning algorithms have 

become the prevailing tool for identifying structural rail defects. Similarly, the results of 

our survey show that video cameras are the most popular data source for machine learning 

applications.  

However, the current research publications are exposed to a number of shortcomings 

that we have highlighted throughout our paper. Data quality issues such as highly imbal-

anced datasets, limitation of manual labeling process and the absence of a comprehensive 

public database for training and evaluating different approaches is slowing down the pro-

gress on the side of research community. The issues related to explaining how an algo-

rithm identify defects which is absolutely necessary to earn the trust of the industry and 

incorporating the domain knowledge in ML approaches hinder the progress on the de-

ployment side of ML research. To overcome these shortcomings several research direc-

tions and suggestions have been proposed. We believe that the research community needs 

to focus more on issues including data quality, explainability and trustworthiness of ma-

chine learning algorithms and combining the expert knowledge with their machine learn-

ing models while the industry should provide the academia the access rail track datasets 

to facilitate the progress of ML research and to encourage more researchers to contribute 

and improve the existing methods. 
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