
Towards a Generic Model for Classifying Software
into Correctness Levels and its Application to SQL

1st Benard Wanjiru
Software Science

Radboud University
Nijmegen, The Netherlands

benard.wanjiru@ru.nl

2nd Patrick van Bommel
Software Science

Radboud University
Nijmegen, The Netherlands

p.vanbommel@cs.ru.nl

3rd Djoerd Hiemstra
Data Science

Radboud University
Nijmegen, The Netherlands

hiemstra@cs.ru.nl

Abstract—Automated grading systems can save a lot of time
when carrying out grading of software exercises. In this paper
we present our ongoing work on a generic model for generating
software correctness levels. These correctness levels enable partial
grading of students’ software exercises. The generic model can
be used as a foundation for building SQL grading systems that
check for correctness of SQL queries and can be generalized to
different programming languages.

Index Terms—correctness levels, software correctness, auto-
mated grading, assessment, partial marks, SQL query grading

I. INTRODUCTION

Software correctness levels are discrete levels that show
the level of adherence of software to the given specifications
and requirements. The highest level shows that the software
exactly matches those specifications and the lowest level shows
that the software does not match the specifications at all.
Software correctness is an important aspect of software science
and in some cases critical [1]. Whenever we build software,
we accompany it with a list of requirements that we use
to judge the quality of the software. We check whether it
conforms to the specifications and requirements. This also
directly translates to the code that was used to build the
software. As we strive to make sure that the code follows
the programming language requirements like the syntax used,
we also make sure it executes as required and it carries out
the required task.

In a production environment, grading of software can be
very strict [1]. A program that fails its intended purpose
is unusable, but in educational settings, the rules are more
relaxed. Education instructors are mandated to pay attention
to the different levels of understanding the students have on a
topic [2], [3]. As the instructors spend the time increasing these
levels, they must make sure the student can see themselves
improving. This instils and keeps the motivation of acquiring
software engineering skills of making a correct software
product. To accomplish this, the instructor needs to assess the
software written by the student, identify the parts the student
has done well and those that are lacking, generate constructive
feedback that the student will use to improve, and finally award
a grade that the student will be satisfied with. If the instructor
does not pay attention to the level of understanding of the

student shown on the software thereby awarding a very strict
grade that does not factor in the student’s efforts, it may result
in damaging the motivation of the student to keep learning the
topic.

Grading of students software exercises in an education
setting has mainly been characterized by the instructor going
through hundreds of submissions and awarding a grade as
they see fit [4]. By the time they are coming to the last
submissions, the level of concentration has waned resulting
in awarding grades that bring students to their door with
a list of complaints. Because of these challenges and more
[5], the motivation for building automated grading tools has
increased over the years as the number of students that attend
the classes keeps on growing [6]–[11]. These tools have been
envisioned to have the grading capabilities of an instructor
at their best and use the same level of grading for all the
student submissions to be graded such that, at the end, both
the instructor and the student are satisfied.

Our motivation for this paper is to present a generic model
that we have started working on for building automated
grading tools. Tools that identify the different students’ levels
of understanding about a given topic and award a grade based
on this level. Tools than can also award partial grades and use
the missing points as automated feedback to teach students
where they need to improve. We are currently experimenting
with the model discussed for an automatic grading system
of SQL exercises in the first year’s BSc course Information
Modelling and Databases at the Radboud University.

II. RESEARCH GOALS

This paper gives a glimpse of our ongoing work at Rad-
boud University focusing on automated grading of students’
software exercises. We have started our work with SQL as
the main programming language and later generalize to other
languages. Our research goals are:

1) Assigning a piece of software a meaningful discrete level
or measure that shows how correct it is.

2) Normalizing this measure to have a common reference
frame for different programming languages with varying
characteristics.

3) Using this measure in automated grading of SQL exer-
cises.

III. THE GENERIC MODEL

Automated grading tools having a minimum of two correct-
ness levels, correct and incorrect have already been proposed
[7], [12]. Other tools capable of using more than two correct-
ness levels are also available [8]–[11].The greater the number
of correctness levels a tool possesses, the more profound its
understanding. As an illustration, [6] uses 8 correctness levels
to distinguish among syntax, schema, and semantics errors.
The authors employ distinct properties to evaluate correctness
for each of these systems, tailored to their particular objectives.

A generic model serves the purpose of aiding system
developers determine the number of correctness levels needed
for their system to be able to effectively evaluate a given
piece of software according to their needs. It is based on the
following:

1) Properties These are the characteristics of the software
like syntax and semantics that can be used to evaluate
the quality of software.

2) Outcomes These are the possible outcomes that a prop-
erty can take like correct and incorrect.

These are discussed further below.

A. Properties

There are many characteristics of software code that can be
used to evaluate its quality like syntax. Style++ [13] checks
the style of the C++ code written by the students. The concept
of correctness can be extended to include performance [14]
and complexity [15] as fundamental components of overall
software quality. The properties used when implementing a
grading system depends on the goals of the system and the
limitations of the development language. What makes sense
for the language to check or not to check. Some of these
properties are shown in table I. This is not an exhaustive list,
but the number of properties can be added or removed at
will. The syntax is the most fundamental property to check
as this is the starting point to create a piece of software
that can run. Semantics property is used to check whether
the code written can accomplish the given task. The result is
only meaningful for those tasks that have an output. Some
tasks can be accomplished by writing the code in different
ways. Some ways may contain some aspects or elements that
are deemed unnecessary for there may be a simpler way of
doing it. In this situation, checking for complexity may be
necessary. Computing resources are finite and as we develop
software, we need to track how much resources a piece of
software consumes. some of these resources are the time it

TABLE I
SOME PROPERTIES THAT CAN BE USED TO EVALUATE THE QUALITY OF

SOFTWARE.

Property Description
Syntax Rules and grammar defined by the language.

Semantics What the software does.
Result The output from running the software.

Complexity Code quality for maintenance purposes.
Efficiency How much resources the software consumes.

takes to execute, how much memory is consumed and network
bandwidth. For those platforms that are resource sensitive
checking for efficiency becomes important.

B. Outcomes

When we check for the properties discussed above, we
need to give them a measure of quality from a list of
categories. Researchers such as [6] use two categories, correct
and incorrect. The number of categories to use depends on
how sensitive the system developers want the grading system
to be. The more sensitive the system the more categories
needed. Some of these categories are shown in table II. The
highest category i.e., outcome means that the property meets
all the specifications or requirements needed and vice versa.
A grading system with only two outcomes is a binary system
translating to pass or fail. As with the properties, the list in
table II is not an exhaustive list but more outcomes can be
added or removed as needed.

C. Setting the context for the generic model

In this section we shall explain our thoughts about the
generic model. In section III-A we described properties of
software. In the generic model, we will use an underlying
set P to contain the relevant properties. In section III-B we
described outcomes for properties. In the generic model, we
will use an underlying set T to contain relevant outcomes.

The possible outcomes for a specific property is now given
by the following function:

Outcomes : P → P(T) (1)

where P(T) is the powerset of T . For x ∈ P , we then have
that Outcomes(x) gives the possible outcomes of property x.

When specific properties with their outcomes have been
chosen, the correctness levels can be generated. The number
of correctness levels ℓ is based on the Cartesian product as
follows:

ℓ =
∏
x∈P

|Outcomes(x)| (2)

Some of these levels will be unusable as we shall see.

TABLE II
POSSIBLE OUTCOMES FOR THE PROPERTIES SHOWN IN TABLE I. IN THIS
CASE THE HIGHEST OUTCOME IS CORRECT OR HIGH AND THE LOWEST

OUTCOME ABSOLUTELY INCORRECT OR LOW DEPENDING ON THE
PROPERTY. A PROPERTY LIKE COMPLEXITY OR EFFICIENCY WOULD USE

THE OUTCOME high INSTEAD OF CORRECT AND SO ON.

Outcome Description
Correct Property meets full specifications.
High Property meets full specifications.

Minor Incorrect Property has minor errors that can be discarded.
Major Incorrect Property has errors that threaten the quality.

Absolutely Incorrect Property has fatal errors.
Low Property has fatal errors.

IV. THE CHOICE FOR SPECIFIC PROPERTIES

Platforms in which a piece of software is written vary
with differing characteristics. This means, the number of
properties will correspond to the platform and how thorough
the developers of the systems want it to be. For example, a
grading system for evaluating a piece of code written in SQL
might not use the efficiency property. Database management
systems are designed to optimize query execution without the
user having to worry about efficiency [16]. For any platform,
the following procedure shows how to instantiate the generic
model:

1) Choose the properties P that you want applied in the
grading system and the possible outcomes T .

2) For each x ∈ P , choose Outcomes(x).
3) Determine inappropriate levels and remove them.

We now give a specific instantiation of the model for an SQL
platform. At Radboud university, we are experimenting with
an automated grading system that can carry out partial grading
of students’ exercises.

1) Properties: The properties that we have found to be
useful are P = {Syntax, Semantics, Result},

Syntax - Syntactic errors are mainly due to typing errors as
a result of lack of practice or carelessness [17]. A statement
with a misspell of a single character should be differentiated
from a statement with wrong syntax in several clauses when
awarding grades. This is possible by carrying out syntax
analysis. The errors found can be used to generate constructive
feedback for the student. It has been shown that students
improve on their answers when they are given such feedback
[18].

Semantics - Semantic analysis mainly involves testing
equivalence of SQL queries [19]. It involves checking whether
a student’s query has the same meaning as the instructor’s
reference query. With semantic analysis we can also identify
different answering patterns and approaches [20]. This can
help to identify difficult SQL areas so that we can improve
the quality of teaching to help the students learn better.

For an incorrect answer, with semantic analysis we can
identify how far off the student is from what was asked.
Whether they completely have no idea or had the idea well
formulated in their mind but could not fully translate it to the
code.

Result - Analyzing the result is another way of testing
the equivalence of SQL queries [8]. SQL is a language that
allows statements with different query formulations, but which
accomplish the same thing. For those tasks that return a result,
analyzing it can help to narrow down on the grading of how
correct the code was. If the student’s answer has different
syntax from the one of the instructor, checking the result
against multiple databases can aid in identifying if they have
the same meaning. We can analyze incorrect results to get
a glimpse of the student’s level of understanding about the
concept in question.

We do not consider complexity and efficiency as database
management systems feature query optimizations [16].

2) Outcomes: One example of achieving the different levels
of correctness is to check how many edits it would take an
incorrect query to match the correct one. Another example
could be to compare the results of the student’s query with the
results of various other wrong queries. The possible outcomes
we have found for our SQL platform are:
T = {Correct, Minor Incorrect, Major Incorrect},

• Correct - This is the highest level of an outcome in
any scenario. In our case it means the student has fully
grasped the concepts of the properties discussed above.
For example, they have a very good understanding of
SQL syntax.

• Minor incorrect - A student might make simple misspell
errors even though they have complete understanding of
what is being asked. With this outcome, we can appreciate
a student’s effort and knowledge.

• Major incorrect - This is the lowest outcome in our
setting. In this case the student has no understanding of
the concepts of the properties checked.

To illustrate how this example could work, we could use all
the three properties P . And for each property we could use
all the three possible outcomes T .

3) Correctness levels: The list of correctness levels for this
case is as shown in table III. L10 and L19 are unusable. L8
can be avoided by checking the result against varying database
data. Table IV shows an example of how correctness levels can
be assigned to queries. The queries are sourced from some
answers given by students on a quiz at Radboud university
in the class information modelling and databases. Q1 and Q2
are fully correct. Q3 has an extra invalid character , D. Q3
is as a result of students copying DuckDB prompt character ,
D. Q4 searches for a string ending with Nijmegen instead of
containing the word.

V. DISCUSSION

Software correctness levels are important for an effective
grading system. Software grading is done in many areas, and
it begins at the educational level when we are training students
and equipping them with skills to build correct systems.

Manual grading involves applying a mental chart of levels
of software correctness awarding a grade appropriately to each
submission. A correct submission is awarded a full grade.
A submission that misses on all the concepts is be awarded
zero or close to zero points. Lastly, points are distributed
to other works depending on how close to correct the work
is. The challenges of this grading includes inconsistency as
the instructor’s concentration wanes, taking too much time to
go through all the submissions, late feedback to the students
and many more. Due to these challenges, the benefits of
an automated grading system become apparent. The major
requirement of this system is that it should perform grading as
the instructor at their best mental focus and consistently apply
it to all the work in a matter of minutes.

The generic model presented generates discrete levels of
software correctness, enabling an effective partial grading
system. Users must define the properties to be checked and

TABLE III
CORRECTNESS LEVELS OF VARYING SYNTAX, SEMANTICS AND RESULT.

LEVELS WITH * ARE NOT POSSIBLE.

Level Syntax Semantics Result
L1 Correct Correct Correct
L2 Minor Incorrect Correct Correct
L3 Major Incorrect Correct Correct
L4 Correct Minor Incorrect Correct
L5 Minor Incorrect Minor Incorrect Correct
L6 Major Incorrect Minor Incorrect Correct
L7 Correct Major Incorrect Correct
L8 Minor Incorrect Major Incorrect Correct
L9 Major Incorrect Major Incorrect Correct

L10* Correct Correct Minor Incorrect
L11 Minor Incorrect Correct Minor Incorrect
L12 Major Incorrect Correct Minor Incorrect
L13 Correct Minor Incorrect Minor Incorrect
L14 Minor Incorrect Minor Incorrect Minor Incorrect
L15 Major Incorrect Minor Incorrect Minor Incorrect
L16 Correct Major Incorrect Minor Incorrect
L17 Minor Incorrect Major Incorrect Minor Incorrect
L18 Major Incorrect Major Incorrect Minor Incorrect
L19* Correct Correct Major Incorrect
L20 Minor Incorrect Correct Major Incorrect
L21 Major Incorrect Correct Major Incorrect
L22 Correct Minor Incorrect Major Incorrect
L23 Minor Incorrect Minor Incorrect Major Incorrect
L24 Major Incorrect Minor Incorrect Major Incorrect
L25 Correct Major Incorrect Major Incorrect
L26 Minor Incorrect Major Incorrect Major Incorrect
L27 Major Incorrect Major Incorrect Major Incorrect

TABLE IV
CORRECTNESS LEVELS APPLIED TO A FEW QUERIES. THE CORRECT

QUERIES ARE ASSIGNED LEVEL L1.

Q Query Level
SELECT * FROM Scientist WHERE university LIKE

1 ’%Nijmegen%’; L1
SELECT id, name, university, year FROM Scientist

2 WHERE university LIKE ’%Nijmegen%’; L1
D SELECT * FROM Scientist WHERE university LIKE

3 ’%Nijmegen%’; L2
SELECT * FROM Scientist WHERE university LIKE

4 ’%Nijmegen’; L4

their corresponding outcomes, which should align with the
characteristics of the programming language in use. For ex-
ample, SQL code execution time is irrelevant as database
management systems feature query optimizations, and thus
would not be used to grade SQL exercises. The number of
outcomes chosen affects the sensitivity of the grading system,
with a larger number allowing for more differentiation of
correctness levels. A binary grading system with two outcomes
per property would only allow for full marks or none, while
a system with more outcomes provides more granularity in
grading.

Automated grading systems can have positive and negative
impacts on students, but our model addresses concerns around
fairness and accuracy by providing greater granularity in
outcomes and properties.

REFERENCES

[1] N. G. Leveson and K. A. Weiss, “Chapter 15 - software system safety,”
in Safety Design for Space Systems, G. E. Musgrave, A. S. M. Larsen,

and T. Sgobba, Eds. Burlington: Butterworth-Heinemann, 2009, pp.
475–505.

[2] A. Saglam-Arslan and Y. Devecioglu, “Student teachers’ levels of
understanding and model of understanding about newton’s laws of
motion.” in Asia-pacific Forum on science learning & Teaching, vol. 11,
no. 1, 2010.

[3] M. Krell, A. Upmeier zu Belzen, and D. Krüger, “Students’ levels
of understanding models and modelling in biology: Global or aspect-
dependent?” Research in Science Education, vol. 44, pp. 109–132, 08
2013.

[4] D. R. Sadler, “Indeterminacy in the use of preset criteria for assessment
and grading,” Assessment & Evaluation in Higher Education, vol. 34,
no. 2, pp. 159–179, 2009.

[5] B. Cheang, A. Kurnia, A. Lim, and W.-C. Oon, “On automated grading
of programming assignments in an academic institution,” Computers &
Education, vol. 41, no. 2, pp. 121–131, 2003.

[6] S. Dekeyser, M. de Raadt, and T. Y. Lee, “Computer assisted assessment
of sql query skills,” in Proceedings of the Eighteenth Conference on
Australasian Database - Volume 63, ser. ADC ’07. AUS: Australian
Computer Society, Inc., 2007, p. 53–62.

[7] A. Bhangdiya, B. Chandra, B. Kar, B. Radhakrishnan, K. V. M. Reddy,
S. Shah, and S. Sudarshan, “The XDa-TA system for automated grading
of sql query assignments,” 2015 IEEE 31st International Conference on
Data Engineering, pp. 1468–1471, 2015.

[8] B. Chandra, A. Banerjee, U. Hazra, M. Joseph, and S. Sudarshan,
“Automated grading of sql queries,” in 2019 IEEE 35th International
Conference on Data Engineering (ICDE), 2019, pp. 1630–1633.

[9] G. Dambić, M. Fabijanić, and A. L. Ćošković, “Automatic, configurable
and partial assessment of student sql queries with joins and groupings,”
in 2021 44th International Convention on Information, Communication
and Electronic Technology (MIPRO), 2021, pp. 837–842.

[10] M. Fabijanić, G. Dambić, and J. Sasunić, “Automatic, configurable, and
partial assessment of student sql queries with subqueries,” in 2022 45th
Jubilee International Convention on Information, Communication and
Electronic Technology (MIPRO), 2022, pp. 542–547.

[11] J. Kjerstad, “Automatic evaluation and grading of sql queries using rela-
tional algebra trees,” Master’s thesis, Norwegian University of Science
and Technology, 2020.

[12] S. Nalintippayawong, K. Atchariyachanvanich, and T. Julavanich,
“Dblearn: Adaptive e-learning for practical database course — an
integrated architecture approach,” in 2017 18th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), 2017, pp. 109–114.

[13] K. Ala-Mutka, T. Uimonen, and H.-M. Järvinen, “Supporting students
in c++ programming courses with automatic program style assessment,”
JITE, vol. 3, pp. 245–262, 01 2004.

[14] N. R. Tallent and J. M. Mellor-Crummey, “Effective performance
measurement and analysis of multithreaded applications,” ser. PPoPP
’09. New York, NY, USA: Association for Computing Machinery,
2009, p. 229–240.

[15] F. G. Wilkie and B. Hylands, “Measuring complexity in c++ application
software,” Software: Practice and Experience, vol. 28, 1998.

[16] S. Chaudhuri, “An overview of query optimization in relational systems,”
in Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, ser. PODS ’98. New
York, NY, USA: Association for Computing Machinery, 1998, p. 34–43.

[17] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “Students’ semantic
mistakes in writing seven different types of sql queries,” ser. ITiCSE
’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 272–277.

[18] C. Kleiner, C. Tebbe, and F. Heine, “Automated grading and tutoring
of sql statements to improve student learning,” in Proceedings of the
13th Koli Calling International Conference on Computing Education
Research, ser. Koli Calling ’13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 161–168.

[19] S. Chu, C. Wang, K. Weitz, and A. Cheung, “Cosette: An automated
prover for sql,” in CIDR, 2017.

[20] S. Yang, G. L. Herman, and A. Alawini, “Analyzing student sql
solutions via hierarchical clustering and sequence alignment scores,” in
1st International Workshop on Data Systems Education, ser. DataEd ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
10–15.

