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ABSTRACT
This paper follows a formal approach to information re-
trieval based on statistical language models. By introduc-
ing some simple reformulations of the basic language mod-
eling approach we introduce the notion of importance of a
query term. The importance of a query term is an unknown
parameter that explicitly models which of the query terms
are generated from the relevant documents (the important
terms), and which are not (the unimportant terms). The
new language modeling approach is shown to explain a num-
ber of practical facts of today’s information retrieval sys-
tems that are not very well explained by the current state of
information retrieval theory, including stop words, manda-
tory terms, coordination level ranking and retrieval using
phrases.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Theory

Keywords
Information Retrieval, Formal Models, Language Models,
Search Strategies

1. INTRODUCTION
Information retrieval research has a long tradition of ex-

perimental work; most of today’s information retrieval re-
search is firmly based on the scientific method. Over 80 %
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of the papers presented at SIGIR 2001 [6] report some ex-
perimental results.

In their SIGIR paper on the Okapi weighting algorithms,
Robertson and Walker [25] distinguish two forms of ap-
proaches to information retrieval research: Firstly, approa-
ches based on formal models, where the model specifies an
exact formula to be tried empirically; and secondly ad-hoc
approaches, where formulae are empirically tried because
they seem to be plausible. In this paper we follow a third
form of approaches to information retrieval research, sug-
gested by Bruza and Huibers [3]: Approaches based on for-
mal models, where the model specifies an exact formula that
is used to proof some simple mathematical properties of the
model. Such properties do not have to be tried or verified
empirically on some test collection, because their truth can
be shown to hold by some simple mathematics.1

1.1 Information Retrieval in Practice
User surveys show that about 85 % of the users of the

internet use web search engines to locate information [16].
Let’s have a look at some practical situations in which mil-
lions of people find themselves on a daily basis, those of web
search engines.

Web search engines like Google or AltaVista provide their
users with a simple text field to enter some words. They re-
spond by providing a ranked list of references to web pages
that are hopefully relevant to the user. The way this rank-
ing is produced can be modeled reasonably well with a lan-
guage modeling approach to information retrieval, including
for instance Google’s page ranking approach using statistics
on hyperlinks [14]. But the quality of the ranking is not the
main issue here. The main issue is that successful retrieval
engines give the user a sense of control over the system, i.e.
they provide a mechanism that gives users the possibility
to override the basic ranking mechanism. This will be illus-
trated below by two simple web search engine examples.2

If we for instance enter the query IT magazines in Google,
then the system will only retrieve documents containing the
word “magazines”, stating that “IT” is a very common word

1Note that we do not argue in any way that we do not believe
in experimental work. On the contrary, experimentation is
of the utmost importance in information retrieval research!
2Similar mechanisms exist in commercial online services as
provided by e.g. Dialog and LexisNexis.



that is not included in the search.3 It makes perfect sense
to ignore the word “IT” because it matches virtually every
(English) document on the internet. In this case however,
it is clearly wrong. But there is no harm done: The proper
response of the user is now to search for +IT magazines.
By using the ‘+’ operator, the user indicates that “IT” is an
important word for this search that should not be ignored,
even if the search engine would have decided otherwise on
the basis of the word’s statistics.

As a second example, consider e.g. entering the query
compassioned extrovert computers in AltaVista. None
of the web pages indexed by the system matches all three
words, but the system will retrieve lots of documents that
match two words out of three. The top ranked documents
however, are documents that match the two words “compas-
sioned” and “extrovert”, i.e., many documents about peo-
ple that possess these qualities, but no computers. This
makes perfect sense because the word “computers” is much
more frequent than “compassioned” or “extrovert”, and it
is standard practice to rank documents containing words
that occur very frequently in the collection below documents
containing infrequent words (see e.g. [30]). From the user’s
point of view however, it is wrong if it is computers he/she
is looking for. But again there is no harm done if we en-
ter the query compassioned extrovert +computers. As in
the example above, the ‘+’ operator indicates that the word
“computers” is an important word, that should not be ig-
nored on the basis of its statistics. The system will respond
by retrieving only documents that match the words “com-
passioned” and “computers”, or documents that match “ex-
trovert” and “computers”.

1.2 The Limitations of Statistics in Document
Ranking

What’s the point to all this? The examples show that
there are limitations to the performance that can be achieved
by ranking on the basis of word statistics. Often, the impor-
tance of a word for the final document ranking is reflected by
its frequency distribution in the collection. Sometimes how-
ever, the statistics and the rules-of-the-thumb are wrong; as
in the first example where “IT” is erroneously ignored based
on its frequency; and as in the second example where “com-
puters” is erroneously considered as less important than the
other two words based on the fact that it is much more fre-
quent on the world wide web.

Note that the solution to such problems is not developing
even better statistical ranking algorithms. Statistics work
most of the time: That’s the beauty and the curse of statis-
tics! In cases where statistical ranking is clearly wrong, the
user (or perhaps the system) should be able to override the
system’s default behaviour by explicitly stating which words
are the important words in the query. As shown in the ex-
amples, this is standard practice in the popular commercial
retrieval systems already, but it is not reflected in any math-
ematical model of information retrieval.

In the following sections, we extend recent advances on the
use of language models for information retrieval. In Section
2 we extend the language modeling approach to information
retrieval by introducing the concept of importance of a query
term. Our objective is to develop mathematical models that

3Note that most retrieval systems do not distinguish upper
case from lower case, and confuse the acronym “IT” with
the word “it”.

provide the mechanisms described in the examples above. In
Section 3 we show the implications of query term importance
by concentrating on mathematical properties of the language
modeling approach that hold in any empirical setting. In
Section 4, we will further generalize query term importance
to a situation in which there may be different combinations
of multiple models for each term.

2. LANGUAGE MODELING AND TERM
IMPORTANCE

The language modeling approach to information retrieval
defines a simple unigram language model for each document
in a collection [21]. For each document D the language
model defines the probability P (T1, · · ·, Tn|D) of a sequence
of n query terms T1, · · ·, Tn and the documents are ranked
by that probability. Essential in this approach is smoothing
of the probabilities. Smoothing is the task of reevaluating
the probabilities, in order to assign some non-zero prob-
ability to query terms that do not occur in a document.
As such, smoothed probability estimation is an alternative
for maximum likelihood estimation. The standard language
modeling approach to information retrieval uses a linear in-
terpolation smoothing of the document model P (Ti|D) with
a general collection model P (Ti|C) [1, 10, 15, 17, 19, 29].
Linear interpolation smoothing needs a parameter λ which
is set empirically on some test collection, or alternatively
estimated by the EM-algorithm on a test collection [17, 19].

P (T1, · · ·, Tn|D) =

n∏
i=1

(
(1−λ)P (Ti|C) + λP (Ti|D)

)
(1)

There are many other approaches to smoothing language
models (see e.g. [12]), some of which have been suggested
for information retrieval as well, for instance smoothing us-
ing the geometric mean and backing-off by Ponte and Croft
[21]; and Dirichlet smoothing and absolute discounting sug-
gested in a recent study by Zhai and Lafferty [32]. Zhai and
Lafferty evaluated a number of approaches to smoothing on
several large and small TREC collections. They find that
different situations call for different approaches to smooth-
ing. Interestingly, they explain their empirical results by
suggesting that there is more to smoothing than just the
reevaluation of probabilities, which they call the estimation
role of smoothing. A second role of smoothing, which they
call the query modeling role, is to “explain” the common and
non-informative words in a query. All smoothing approaches
have this dual role, but linear interpolation smoothing de-
fines a fixed smoothing parameter across – and independent
of – all documents, which is necessary for query modeling.

The linear interpolation smoothing as defined by Equa-
tion 1 can be explicitly modeled as a two-state hidden Mar-
kov model [17]. So, instead of looking at smoothing as an
alternative to maximum likelihood estimation of probabil-
ities (the estimation role), we can look at smoothing as a
model with some hidden events in which all probabilities are
maximum likelihood estimates (the query modeling role). In
this paper we will take the query modeling role somewhat
further, by explicitly defining a hidden event for each query
term. Such a term-specific smoothing approach can derived
as follows.



First we assume independence between query terms:

P (T1, · · ·, Tn|D) =

n∏
i=1

P (Ti|D)

Then we introduce for each query term Ti a binary random
variable Ii denoting the importance of a query term. Thus,
Ii = 1 if the query term is important and Ii = 0 if the query
term is unimportant. The importance of a query term is a
hidden variable, so we have to marginalize it by summing
over its possible values: 0 and 1.

=

n∏
i=1

( ∑
ii∈{0,1}

P (Ti, Ii = ii|D)
)

Furthermore, let’s assume that the importance of a query
term does not depend on the document model. This is mo-
tivated by the fact that the importance of a query term
will be used to encode the information (and only the in-
formation) about a term that cannot be derived from the
document statistics or the collection statistics.

=

n∏
i=1

( ∑
ii∈{0,1}

P (Ii = ii)P (Ti|Ii = ii, D)
)

If we write the full sum over the importance values we get:

=

n∏
i=1

(
P (Ii =0)P (Ti|Ii =0, D) + P (Ii =1)P (Ti|Ii =1, D)

)
How does this equation relate to Equation 1? We use λi

to denote the unknown probability of term importance, so
λi = P (Ii =1) and therefore (1− λi) = P (Ii =0); We make
the assumption that the probability of an important query
term is determined by the document language model, so we
use P (Ti|D) as a short-hand of P (Ti|Ii =1, D); and we make
the assumption that the probability of an unimportant term
is determined by the collection model, using P (Ti|C) as a
short-hand of P (Ti|Ii =0, D). This gives us:

P (T1, · · ·, Tn|D) =

n∏
i=1

(
(1−λi)P (Ti|C) + λiP (Ti|D)

)
(2)

Equation 2 differs from Equation 1 by the fact that we have a
separate smoothing parameter λi for each query term i. But
maybe the correct view is that we did not use any smooth-
ing of probabilities at all: We just formulated a bit more
complex model, and all of the model’s probabilities are de-
fined by maximum likelihood estimates. This is visualized
in Figure 1.

D

I3I1 I2

T2 3TT1

Figure 1: The language modeling approach as a
Bayesian network

Figure 1 shows a graphical illustration of the model as
a Bayesian network. In a Bayesian network, random vari-
ables are represented as nodes, and the arcs represent the
model’s conditional dependencies. Following the convention
in [13], clear nodes represent unknown, hidden variables,
and shaded nodes represent the observed variables; in this
case the query terms.

3. MATHEMATICAL PROPERTIES OF
TERM-SPECIFIC SMOOTHING

Term-specific smoothing provides the means to explain
the examples described in Section 1. We will do so by first
looking at the extreme values of the probability of term im-
portance.

3.1 Stop words
The probability of term importance λi = 0 implies that we

are absolutely certain that the query term is not important.
It is easy to verify that any query term for which λi =
0, the document model P (Ti|D) can be dropped from the
calculation of the document score (because λiP (Ti|D) will
be zero whatever the value of P (Ti|D)). Therefore, we can
simply ignore the query term all together, as is done with
the word “IT” in the first example described in Section 1.

Words from the query that are ignored during the search
are usually referred to as stop words. Words might be ig-
nored because they occur very frequently in the collection.
Frequent words might not contribute significantly to the fi-
nal document score, but they do require a lot of processing
power. The motivation for stopping is in this case based on
a trade-off between speed and quality: the quality of the
search results might be somewhat worse, but the processing
speed will be much better [2, 4, 20].

Note however that words might be ignored for different
reasons, that is, stop words are not always words that oc-
cur in many documents. Often, words are stopped if they
occur in a list that enumerates words that usually carry lit-
tle meaning, like for instance “the”, “it” and “a”. These
words do also have a high frequency in English, but most
publicly available stop lists contain some words which are
not frequently used at all. For instance the stop list in [22],
contains words like “hereupon” and “whereafter”, which oc-
cur respectively two and four times in the TREC-8 ad hoc
collection.

3.2 Mandatory terms
A query term for which the probability of term impor-

tance λi = 1 results in the following. For this query term,
the collection model can be dropped from the calculation
of the document score, because (1−λi)P (Ti|C) will be zero
whatever the value of P (Ti|C). As a result, the probabil-
ities of the document model are no longer smoothed with
the probabilities of the collection model: Documents that
do not match the query term are assigned zero probability,
and since any multiplication with zero will be zero, the final
document score will be zero as well no matter how well it
matches the other query terms.

Assigning λi = 1 implies that we are absolutely certain
that the relevant documents contain the term. A document
will only get a non-zero probability if it matches the impor-
tant term: Any document that does not contain the impor-



tant term will not be retrieved. We will call a query term
that should occur in every document retrieved a mandatory
term. Usually, it is the user who decides which terms in
his/her query are mandatory terms, for instance by using
the ‘+’ operator as described in the examples of Section 1.

3.3 Coordination level ranking
So, λi = 1 ensures that all retrieved documents contain

the ith query term. This makes us suspect that for values
close to 1, the ranking will be a coordination level rank-
ing. Coordination level ranking is a partial ranking of the
documents such that documents containing n query terms
are always ranked above documents containing n− 1 query
terms.

According to studies of user preferences, users like systems
that obey the conditions of coordination level ranking. Users
have their own mental models of how search engines work or
should work [18]. They may start to question the integrity
of a search engine that ranks a document that matches one
query term above documents that match two query terms;
even if this seems reasonable from the query’s semantics. For
instance, it seems reasonable that for the query big brown

bear, documents containing only “bear” are more likely to
be relevant than documents about big brown ‘whatevers’.
However, users (read: customers) might consider the former
result an error because it does not fit their mental model
of how a search engine should work [27]. Obviously, users
become particularly aware of such rankings if short queries
are used. In a lot of practical situations short queries are
the rule rather than the exception, especially in situations
where there is no or little user training like with web search
engines.

For systems that use some form of tf .idf -like term weight-
ing, it is certainly not uncommon that documents containing
k query terms are ranked below documents containing k− 1
query terms. For some research groups, this is the main mo-
tivation for developing ranking methods that are based on
other statistics, e.g. on the lexical distance of search terms in
documents [5, 8]. As pointed out by experiments of Wilkin-
son et al. [31], some tf .idf measures behave more “like”
coordination level ranking than others. For instance, the
Okapi BM25 algorithm [25] behaves more like coordination
level ranking than the Smart tfc.nfc algorithm [28]. They
showed that weighting measures that are more like coordi-
nation level ranking perform better on TREC experiments,
especially if short queries are used. Following their results, it
might be useful to investigate what exactly makes a weight-
ing algorithm behave like coordination level ranking.

A proof of coordination level ranking ifλ approaches 1
As said, we suspect that high values of λi lead to coordi-
nation level ranking. Let us go back for a moment to the
standard language modeling approach with one fixed λ for
all query terms. This would be the system of our choice if
no information on stop words, on mandatory terms, or on
relevant documents (see Section 3.5) is available. First, let’s
have a look again at Equation 1:

P (T1, · · ·, Tn|D) =

n∏
i=1

(
(1−λ)P (Ti|C) + λP (Ti|D)

)

Dividing the formula by
∏n

i=1((1−λ)P (Ti|C)) will not affect
the ranking because λ and P (Ti|C) have the same value for
each document.

P (T1, · · ·, Tn|D) ∝
n∏

i=1

(
1 +

λP (Ti|D)

(1−λ)P (Ti|C)

)
Any monotonic transformation of the document ranking
function will produce the same ranking of the documents.
Instead of using the product of weights, the formula can as
well rank documents by the sum of logarithmic weights.

P (T1, · · ·, Tn|D) ∝
n∑

i=1

log
(
1 +

λP (Ti|D)

(1−λ)P (Ti|C)

)
The right-hand side of the equation defines a sum of log-
likelihood ratios. Terms that do not match a document do
not contribute to the sum [9, 32]. This gives us an easy way
to formulate the requirement of coordination level ranking in
terms of k matching terms, that is, a document that matches
k terms should always have a higher score than a document
that matches k − 1 terms:

k log
(
1 + m λ

1−λ

)
> (k − 1) log

(
1 + n λ

1−λ

)
The left-hand side of the inequality is the matching score of
a document that contains k query terms. The right-hand
side of the inequality is the matching score of a document
that contains k − 1 query terms. In the inequality, m and
n (n, m > 0) replace the P (Ti|D)/P (Ti|C) ratios of the
matching terms. Note that the P (Ti|D)/P (Ti|C) ratio is
proportional to the frequency of occurrence of the term in
a document and inversely proportional to the frequency of
occurrence of the term in the collection, just as a tf .idf
weight [9, 32]. For the simplicity of the proof, m is taken
as the minumum of the P (Ti|D)/P (Ti|C) ratios of the k
matching terms of the document on the left-hand side, and
n is taken as the maximum of the P (Ti|D)/P (Ti|C) ratios of
the k−1 matching terms of the document on the right-hand
side. Proofing coordination level ranking for the extreme
values of m and n will proof coordination level ranking for
practical cases in which the ratio’s values differ per matching
term. Note that coordination level ranking might not be
fulfilled if n � m.

It is easy to verify that the inequality holds if k = 1. For
k = 1, the right-hand side is zero, and the inequality is true
if λ > 0, no matter what the values of m and n are.

If k > 1, the k’s might be moved to the left-hand side of
the inequality and the rest to the right-hand side, resulting
in:

k

k − 1
>

log
(
1 + n λ

1−λ

)
log

(
1 + m λ

1−λ

)
In the following, we will proof that right-hand side of the
inequality goes to 1 if λ approaches 1. So in the limiting
case, the inequality will be true, because k / (k − 1) > 1 for
any bounded k > 1. So, we only have to show that for any
fixed m and n:

lim
λ→1

log
(
1 + n λ

1−λ

)
log

(
1 + m λ

1−λ

) = 1



This can be shown as follows.

log
(
1 + n λ

1−λ

)
log

(
1 + m λ

1−λ

) =
log

(
1−λ+nλ

1−λ

)
log

(
1−λ+mλ

1−λ

)

=
log(1−λ+nλ)− log(1−λ)

log(1−λ+mλ)− log(1−λ)

Divding the numerator and the denominator by − log(1−λ)
results in:

=

1− log(1−λ+nλ)

log(1−λ)

1− log(1−λ+mλ)

log(1−λ)

which will in fact approach 1 if λ approaches 1, because
limλ→1 log(1 − λ + nλ) = log n, limλ→1 log(1 − λ + mλ) =
log m, and limλ→1 log(1− λ) = ∞.

A value of λ close to 1 results in coordination level rank-
ings. A high value implies that we are pretty confident that
all query terms are important terms, which in general would
be the case with short queries. For longer queries, it might
no longer be justified to assume that all query terms are im-
portant, and a lower value of λ might be a better choice. In
fact, this is supported by the experimental results of Zhai
and Lafferty [32]: A high value of λ is a good choice for
short queries, whereas a lower value is more appropriate for
longer, verbose queries.

3.4 Discussion
The probability of term importance λi provides a mathe-

matical model (or explanation) of a number of simple facts
of information retrieval, if we consider its extreme values
λi = 0, λi = 1 and λi → 1 for all i:

• Sometimes systems ignore words, and the reasons to
ignore them cannot always be explained by statistics.

• Often users/customers may want to restrict the re-
trieved list of documents to documents that match one
or more specific terms, regardless of the frequency dis-
tributions of these terms.

• Users/customers may want to enforce a coordination
level ranking of the documents, regardless of the fre-
quency distribution of the terms.

We showed that it is possible to reason about these facts in
terms of a language modeling approach to information re-
trieval. Note that we do not have to show empirically on a
test collection that our language modeling system supports
stop words, mandatory words and coordination level rank-
ing: We are able to show by using some simple mathematics
that this will be the case in any empirical setting.

3.5 Relevance feedback
As shown above, there are two extremes to explicitly mod-

eling the importance of a term. At one end of the spectrum
terms might be completely ignored if we assume that they
are unimportant. At the other end of the spectrum terms
are mandatory in the retrieved list of documents if we as-
sume that they are important. However, in general we might

expect the optimal values of λi to be somewhere between the
extremes.

Finding optimal values for some unknown parameters in
information retrieval is often addressed from the viewpoint
of relevance feedback [24, 26]. Given some examples of rel-
evant documents, what would be the probability of term
importance for each term that maximizes retrieval perfor-
mance? A standard approach to optimization in the lan-
guage modeling field is the use of the Expectation Maximiza-
tion (EM) algorithm [7]. The EM-algorithm will maximize
the probability of the observed data given some training
data. The EM-algorithm that maximizes the probability of
the query given some relevant documents would be defined
as follows.

E-step: mi =

r∑
j=1

λ
(p)
i · P (Ti|Dj)

(1−λ
(p)
i )P (Ti|C) + λ

(p)
i P (Ti|Dj)

M-step: λ
(p+1)
i =

mi

r

The algorithm iteratively maximizes the probability of the
query T1, · · ·, Tn given r relevant documents D1, · · ·, Dr. Be-
fore the iteration process starts, the unknown parameters λi

are initialized to their default values λ
(0)
i . Each iteration p

estimates a new value λ
(p+1)
i by first doing the E-step and

then the M-step until the value of λ
(p+1)
i is not significantly

different from the value of λ
(p)
i anymore.

Experimental results on a retrospective relevance weight-
ing task show that this algorithm provides a relative per-
formance gain that is as good as relevance feedback via the
traditional probabilistic model [11]. In this study, the per-
formance of the language modeling approach – with and
without relevance feedback – is about 60 % higher than the
performance of the probabilistic model.

4. A GENERALIZATION OF TERM
IMPORTANCE

A simple but powerful generalization of the model pre-
sented so far is allowing the random variable Ii to have
more than two realizations. Such an approach defines a
linear combination of more than one document model and
the background model; combining the standard document
model with e.g. a model of the title words, or e.g. a model
of anchor texts of hyperlinks pointing to the document.

Interesting from this perspective is the combination of the
unigram document model with a bigram document model
to explicitly include the search for phrases, as suggested by
Miller et al. [17] and Song and Croft [29]. The model might
be defined as a multi-state hidden Markov model [17]. Equa-
tion 3 defines such a higher order model.

P (T1, · · ·, Tn|D) =
(
(1−λ1)P (T1|C) + λ1P (T1|D)

)
n∏

i=2

(
(1−λi−µi)P (Ti|C) + λiP (Ti|D) + µiP (Ti|Ti−1, D)

)
(3)

In this case, the importance of a term Ti might be 0 (unim-
portant as before), 1 (important as before) and 2 (the query
term Ti is generated from the bigram model). Similar to
Equation 2, µi is used instead of P (Ii =2) and P (Ti|Ti−1, D)
instead of P (Ti|Ti−1, Ii =2, D). The conditional dependen-



cies now include dependencies between query terms. This is
visualized in the Bayesian network of Figure 2.
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Figure 2: Graphical model of dependence relations
between query terms

In such a generalized model, we have both stop words and
stop bigrams. Consider for example the query last will

of Alfred Nobel. It does not make sense to search for all
possible bigrams in the document collection, because this
might take to much system resources. Based on the term
statistics, the system might e.g. decide that the bigrams
“last will”4, “will of” and “of Alfred” are all ‘stop bigrams’,
that is, µi = 0 for these bigrams. The system might decide
that “of” is a stop word as well, that is, λi = 0 and µi = 0
for this word.

Similarly, users might override the system’s decisions if
they are not satisfied with the search results. For instance,
the query "last will" of Alfred Nobel indicates that
“last will” should not be a stop bigram (µi > 0); and the
query +"last will" of Alfred Nobel indicates that “last
will” is a mandatory bigram, that is, µi = 1 and λi = 0 for
this bigram.

Note that the use of single or double quotes to mark
phrases is standard practice in many information retrieval
systems, for instance web search engines like Google and
AltaVista, and for instance commercial online services like
those provided by Dialog and LexisNexis.

5. CONCLUSION
In this paper we extended the language modeling ap-

proach to information retrieval by explicitly modeling the
importance of a term. By doing so, we are able to define
complex models in which we might decide on a rather ad-hoc
basis that some words are stop words, others are mandatory
words, some pairs of words should be considered as phrases,
some phrases might be mandatory, etc. Any such ad-hoc
decision would override the default ranking algorithm.

Decisions on stop words and stop phrases (bigrams) are
typically taken by the system, based on a trade-off between
search quality and search speed. Including all document
representations in each search would take too much of the
system’s resources, so only a few representations will be con-
sidered in practice by default, including maybe one or two
bigrams.

Decisions on mandatory words and phrases are typically
taken by the user. A user that is not satisfied with the sys-
tem’s default behaviour, or a user that has some experience
with the system, will be able to mark the words and phrases

4Note that “will” is a very frequent word in English.

he/she thinks are important. In such cases it is important
that the user has some idea of how the system works. The
system’s default behaviour should be rather transparent, e.g.
by always providing coordination level rankings.

Today’s statistical ranking algorithms perform quite well
in empirical settings, especially algorithms motivated by the
language modeling approach. However, there will always be
a few exceptions to the good performance: Some queries for
which the statistics are clearly wrong. There might be only
one or two of those examples in test collection with 50 topics.
Whether or not the user’s ad hoc decisions on mandatory
words and phrases will actually result in significantly better
system performance in terms of precision and recall might
therefore be hard to measure. Such cases are addressed by
this paper.

What about the statistical ranking algorithms of the fu-
ture? Now that we have identified ways to model ad hoc de-
cisions on multiple levels of language models in order to con-
struct complex query representations, the next step might
be trying to automate these ad hoc decisions. Such an auto-
matic ad hoc decision (which would then of course no longer
be ‘ad hoc’) might be based on the fact that it describes the
data more parsimoniously [23]. For instance, in a multiple
level language model, some levels might be defined as mod-
els of specific topics. As such, a unigram model of general
language, modified by a small number of topic-specific uni-
gram models, each of which has parameters for only a small
number of topic-specific specialist terms and phrases, would
be a very parsimonious, and possibly quite powerful, model
for a collection of documents. . .
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