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ABSTRACT

We propose a Bayesian extension to the ad-hoc Language
Model. Many smoothed estimators used for the multinomial
query model in ad-hoc Language Models (including Laplace
and Bayes-smoothing) are approximations to the Bayesian
predictive distribution. In this paper we derive the full pre-
dictive distribution in a form amenable to implementation
by classical IR models, and then compare it to other cur-
rently used estimators. In our experiments the proposed
model outperforms Bayes-smoothing, and its combination
with linear interpolation smoothing outperforms all other
estimators.
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1. INTRODUCTION

In the last five years, Language Models have become one
of the most promising areas in which progress in informa-
tion retrieval theory and practice is expected. A Language
Model computes the relevance of a document d with respect
to a query g by estimating a factorised form of the distri-
bution P(q,d) [9][8][5]. There have been several alternative
formulations and derivations of the Language Model, as well
as different generalisations [6][1]. Despite the fact that, in
some ways, they remain controversial [10], Language Models
are of great interest: they are elegant mathematical mod-
els for ad-hoc retrieval and have shown to produce excellent
empirical results.
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In this paper, we propose a Bayesian extension of the Lan-
guage model. Bayesian statistics provide very useful con-
cepts and tools for estimation which can be of great inter-
est to the Information Retrieval community. They provide
a powerful yet intuitive mathematical framework for data
modelling when the data is scarce and/or uncertain and
there is some prior knowledge about it. In particular we
are interested in Bayesian statistics for the Language Model
because it does away with the need to explicitly smooth pa-
rameters. Rather, the uncertainty of the data is taken into
account in the inference framework.

In fact, one of the best smoothing techniques used today
in Language Models is Bayes-smoothing or Dirichlet smooth-
ing [14]. Bayes-smoothing is an approximation to the full
Bayesian inference model: in fact, it is the mazimum poste-
rior approximation to the predictive distribution. In this pa-
per we derive analytically the predictive distribution of the
most commonly used query Language Model, and show ex-
perimentally that i) it improves performance over the usual
Bayes-smoothing solution and ii) it yields systems more sta-
ble to the choice of learning parameters. A similar study for
smoothed n-gram language models was developed in [7]

In section 2 we describe the standard Language Model
for ad-hoc document retrieval and in section 3 we propose
the new Bayesian predictive model. Section 4 ties the new
model to existing ones, and in particular to the two most
widely used estimators: linearly interpolated maximum like-
lihood smoothing and Bayes-smoothing. Finally, Section 5
describes the evaluation of these models.

2. THE UNIGRAM QUERY MODEL

Let us first describe the specific form of Language Model
that we consider in this paper, which is exactly the model
proposed in [13]. We will refer to this model in the remainder
of the paper as the query unigram model.

Consider a query q and a document collection of N docu-
ments C:= {d;},_, y, both queries and documents being
represented as vectors of V' indexed term counts {v1, ... 7vv}:

q = (qlv"'7qi7"'7qv)€NV (1)
d = (dl,17~~-,dl,i,~~~,dl,v) € NV (2)

where ¢; is the number of times the term ¢ appears in the
query and V is the size of the vocabulary.
Furthermore, consider a multinomial generation model for



each document, parameterised by the vector:

%
0= (01,1, 000,-..,00v) €[0,1]" Zal,i =1,

i=1

which indicates the probabilities of emission of the different
terms in the vocabulary.

Finally, let us also define the length of a query (nq) and
document (n;) as the sum of their components (e.g. nq :=
D i)

Under this model, the probability of generating a partic-
ular query g with counts q is given by the product:

v
P(q|t) = Zq H (01,0)% (3)

and, similarly for documents:

v

P(dui|6:) = Za, [ ] (00.)" (4)

i=1

_ Nq _ m
where Z4 = ( Qe qy ) and Zg, = ( i, .. div )
are constants with respect to the model parameters *.

The unigram query model postulates that the relevance
of a document to a query can be measured by the probabil-
ity that the query is generated by the document. By this it
is meant the likelihood of the query (3) when the parame-
ters 0; are estimated using d; as a sample of the underlying
distribution.

The central problem of this model is then the estimation
of the parameters 6;; from the document counts d;, the

collection counts {cfi = 21111 dl,i} and the size of the

i=1..V
collection N.

Given an infinite amount of data, (or, in our case, given
infinitely long documents), the value of these parameters
could be easily estimated by their empirical estimates:

~ i

el,z - i ) (5)
also referred to as the mazimum likelihood estimates since
they maximised the likelihood of the documents as defined
in (4) . Unfortunately, if we have only very little data for
the estimation of these parameters (in our case, a single
smallish document) the empirical estimator is not good: it
greatly underestimates the probability of rare words and
over-estimates the probability of frequent ones. This is spe-
cially dangerous for terms present in the query but not in the
document ({d;,; = 0|¢ixo0}, also referred to as unseen words)
for which the empirical estimate is 0, thus driving the doc-
ument score to zero regardless of the other matching terms
in the query and document.

To alleviate the effect of small data samples, different es-
timation schools propose different techniques (indeed, dif-
ferent philosophies!) These lead to different adjustments to
the empirical estimate (5), often referred to as smoothed es-
timates. Two smoothing techniques have been favoured in
the past for Language Models: the maximum-posterior es-
timator and the linearly-interpolated maximum likelihood
estimator [2, 13]. These are discussed in Section 4.
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3. BAYESIAN LANGUAGE MODEL

The problem of small data samples and resulting param-
eter uncertainty suggests the use of Bayesian techniques.
Such an approach offers a natural and principled way to
take account of uncertainty by integrating out the unknown
model parameters.

Initially, rather than find a single point estimate for the
parameter vector 6;, a distribution over 0; is obtained by
combining a prior distribution over the model parameters
P(6;) with the observation likelihood P(d;|0;) using Bayes’
rule:

P(6,)P(di|61)
P(dy)

If the document d; is large, then we would expect the poste-
rior P(6;]d;) to reflect this and to be relatively narrow. In
the case of a small document, the posterior would be much
broader, thus encapsulating the uncertainty in the value of
0;.

While the mode of this posterior is exploited by existing
maximum-posterior techniques, a more powerful approach is
to take account of posterior uncertainty when evaluating the
probability of q by computing the predictive distribution:

P(0id;) = (6)

P(q|d:)

/ P(al6n)P(6i]dy) db, (7)
]

=y [, PalsP@inP@) o

where we use the fact that document and query are assumed
to be generated by the same distribution?.

It can be seen that the predictive distribution results from
averaging the probability of q under the model over all pos-
sible parameter values, weighted by their posterior proba-
bility P (6;|d;). In the case of abundant data, where the
posterior P(6;|d;) is peaked around some value 5; then it
can be seen that P(q|d;) ~ P(q|6;) and the conventional
maximum likelihood predictor, from (5), is recovered. Con-
versely, when the posterior is broad, the averaging process
accounts for the uncertainty in the parameter values.

The choice of prior probability distributions is central to
Bayesian inference, especially in the context of small data
samples. In theory one should choose a prior distribution
that reflects the available knowledge on what makes a good
solution. In practice, we are restricted to those distributions
for which we can compute the integral in (7). In most cases
the only available choice for a prior is the natural conjugate
of the generating distribution, as defined below.

A distribution P(0) is called the natural conjugate of the
distribution P(x|0) if the resulting posterior distribution
P(0|z) = P(x|0)P(0)P(z)~" is of the same functional form
as the prior P(0) [4, section 2.4]. The natural conjugate of
a multinomial distribution is the Dirichlet distribution:

\4
Po) =z, T 0) ©)

3 !l I(na)
with Z/, = 7 Tan

eters 6.
We can verify that under this prior the resulting posterior

which does not depend on the param-

% Alternatively, [14] consider two separate distributions suf-
ficiently similar to make (7) still a valid approximation.



distribution is Dirichelet as well:
\4
P(9|dl) _ ‘];(ndl +n0‘) H(ei)dl,ﬁrai*l
[Tioi T (dii + i) i

We will choose (9) as our prior distribution. This distri-
bution has a number of hyper-parameters «; equal to the
number of parameters in the model. By virtue of the prior
these can be interpreted as additional data or pseudo-counts;
we discuss in 3.1 how to set their value.

Finally, given (9) we can compute the predictive distribu-
tion (see detailed derivation in Appendix I):

Vv
P(quz) = ZqZéLJra/H(@i)qi+d1,i+ai—1 (10)
i=1

[ijg, 0 IG5 (dri +0i +9—1)
H?il (ndz +na+j—1)

= Zg -(11)

This constitutes our new document scoring function. By
taking the log and separating out the terms in the query
not appearing in the document, we can rewrite it in its final
form:

log P(qld;) =

i dz
Z Zlog(l-&-ﬁg’)_l)

i|(gi,d;)#0 g=1

q
— Zlog(ndl +na+7—1)
j=1
qi
+ ) D log (e +g— 1) +log Zg (12)
ilg; #0 g=1

where the last two terms can be dropped as they are doc-
ument independent. We discuss the similarities and differ-
ences between this function and the traditional multinomial
query model at the end of section 4.

3.1 Setting the hyper-parameter values

The value of the hyper-parameters a depends on our prior
knowledge of the problem: before we are given the document
d;, what do we know about the form of the queries generated
by it? Several possibilities exist. One is to attribute equal
probability to all words in the query, that is, to set all the
a; to some constant. As we will see in section 4 this leads
to different maximum-likelihood smoothed estimates.

A better option is to fit the prior distribution to the col-
lection statistics, since these are known. In the absence of
any other information, we will assume that the documents

(and query) resemble the average document. The average
_ o> disi
DT
the prior probability of observing term v; in a document.
On the other hand, the mean of the posterior distribution
in (3) is known to be: 6; = ;= [4, Appendix A.2]. Setting

this mean to be equal to the average term count we have
the constraint:

term count for term t¢; is proportional to P(v;|C') :

(673
Y Plo;
- x P(v;|C)

and therefore we can set a; = uP(v;|C) and no = u, where
the value of y is yet undetermined. We will use it as a free
parameter in our empirical evaluation of this model.

4. RELATIONSHIP TO OTHER SMOOTH-
ING MODELS

Three types of smoothed maximum likelihood estimators
have been used to implement the Language Model: Laplace-
smoothing, Bayes-smoothing and linear interpolation smooth-
ing [2, 13].

A standard approximation to the Bayesian predictive dis-
tribution (7) is the so called mazimum posterior (MP) dis-
tribution. This approximation consists in replacing the in-
tegral of the posterior in (7), by its single maximum value:

P(q|d) ~ P(q|6]"") = ﬁ (9%;’)2

i=1

With a Dirichelet prior, the maximum posterior distribu-
tion is known analytically [4]:

mp _ dii+ai—1
b n+ne—V
Setting a; = 1 we obtain the maximum likelihood estima-
tor:
g — dui
L n
Setting a; = 2 or more genrally setting a; = A+ 1 we
obtain the Laplace smoothing estimators:

LAl _ di;+1

%3 ny +V
pax _ _dii+ A
L n+AxV

Finally, setting a; = pP(vi|C) (as described in section
3.1) we obtain the Bayes-smoothing estimate:

dl,i 4 MP(’UZ|C)

S
ng+p

We can see from this that these different smoothed es-
timators are approximations to the full estimator obtained
by i) replacing the predictive distribution by the maximum
posterior distribution, and ii) choosing a particular value of

3
o

The linear interpolation (LI) smoothing (also referred to

as the Jelineck-Mercer smoothing) can be written as:
0L =20 + (1 — N)P(vi|C) .

This estimator cannot be derived from the predictive distri-
bution; in fact this type of smoothing can be viewed as a
mixture of two generative models.

In two-stage smoothing [14] an estimator is developed to
combine the Bayes and linear interpolation estimators; this
is achieved by replacing 8% by %% in (4). This is a first ap-
proximation to the full Bayesian treatment of the linear in-
terpolation smoothing method. However, the full predictive
distribution of the mixture model underlying this method
does not have an analytical solution, and its treatment is
beyond the scope of this paper.

Let us now look at the scoring functions resulting from
these estimators. We first note that in the case of BS and LI
the probability of an unseen word (i.e. 6;; when d;; = 0) can

3Bayesian statistics is not the only way to derive these esti-
mators. For an alternative treatment see for example [12].



be written as 3;P(v;|C) where ; is a document dependant
constant and P(v;|C) was previsouly defined. When this is
the case we can rewrite the unigram query model (3)[13] as:

0,
Z qilog++nqlogﬁl (13)

log P(q|0) ocrank
P(v;|C
il (gisdy,i)>0 AiP(uilC)

where the first term only involves query-document matches.
If we use any of the other estimators in this section then
01,i)a1,—0 = P and so (13) holds replacing the last term by
Bi. If we use a fall-back smoothing model with any estimator
then (13) is always true.

Therefore (13) is quite a general formulation of the uni-
gram query model. Arriving to an equation of this form is
crucial for the efficient implementation of the ad-hoc sys-
tem, for three reasons: i) a fast inverted index can be used
to retrieve the weights needed to compute the first term, ii)
the number of operations to compute the first term depends
only on the number of term-indices matching, and iii) the
cost of computing the second term is negligeable. The im-
plementation cost for all the estimators considered here is
therefore similar. There exist other estimators that cannot
be written in the form of (13), but their implementation in
a real IR system is problematic and we have not considered
them here.

We note that the Bayesian predictive model proposed in
this paper leads to a scoring function similar to (13), except
that: i) the number of operations to compute the first term
in (13) depends now on the number of terms (as oppossed
to the number of indices) matching, and ii) the last term
cannot be pre-computed since it depends on the query, but
its computational cost remains negligible. Therefore, the
proposed Bayes predictive model leads to an ad-hoc model
only slightly more expensive to compute than the original
one, and can be implemented in a real scale IR system.

In fact, the scoring functions resulting from the Bayes
predictive distribution and Bayes-smoothing are very simi-
lar. Looking at the first term only (the score of matching
terms) we can observe that these two functions converge for
very long documents and for very short queries, i.e. when
uncertainty about the document score is less. The great sim-
ilarity of the two functions is also an indication of how good
in practice the maximum posterior approximation (and thus
Bayes smoothing) is, compared to the full predictive distri-
bution.

5. EMPIRICAL EVALUATION

When measuring the performance of ad-hoc retrieval sys-
tems we are attempting to estimate the true performance of
the system, that is, the averaged performance over all the
future (and therefore unknown) documents and queries. It
is well known that the true performance can be arbitrarily
far off the performance observed on the training collection,
that is, the collection being used to optimise the model’s
parameters. For this reason it is important to differentiate
between a training and a test collection.

In ad-hoc retrieval this differentiation can be tricky. Be-
cause document collections tend to be stable or even com-
pletely fixed it makes sense to use the same train and test

document collection. This is not the case however for queries.

Therefore the performance of an ad-hoc system must be
evaluated on a test collection of queries and relevance judge-
ments different from the training collection. Most model pa-

rameters depend only on the document’s counts, and thus
will not be effected by the choice of query and relevance
judgements set collection. However, the smoothing parame-
ters (and hyper-parameters) do depend on this choice. There-
fore, when optimising parameters, we cannot draw conclu-
sions from the performance observed on a single set of queries.

In order to simulate the process of deciding optimal learn-
ing parameter values in a real setting we used the document
collections used in TREC6 and TREC7, and TREC6 and
TRECT queries and query-relevance sets. We produced re-
sults for each set of TREC queries separately for a range of
smoothing parameters, and then looked at the performance
of a set obtained with the parameter setting optimal to the
other set. This is a crude form of 2-fold cross validation, but
has the advantage of producing results comparable to those
previously published on TREC collections.

Data pre-processing was standard: terms were stemmed
using the Porter stemmer and stop words were removed as
well as words appearing fewer than 3 times. Queries were
constructed concatenating the title and description of each
topic. The TRECT document collection was used (TREC6
relevance judgements about the Congressional Records col-
lection were ignored). As well as the experiments reported,
we have performed exploratory evalutions using other types
of queries (e.g. shorter and longer) and other collections;
these experiments yielded results similar to those presented
here. Nevertheless an exhaustive evaluation of the proposed
model remains to be done. We report two performance mea-
sures averaged over queries (i.e. macro-averages): uninter-
polated average precision on the top 1000 retrieved docu-
ments, and precision after retrieving 10 relevant documents
* (or after all relevant documents if there were less than 10 in
total). For each model, we have indicated in bold underlined
the value obtained on a TREC query set when using the opti-
mal parameter settings obtained from the other TREC query
set.

Tables 1 and 2 present the results obtained for the models
discussed previously, for different values of the models pa-
rameters and for the two sets of queries. Performance of the
ML and Laplace estimators are so much worse than that of
the others and are not reported here.

First we note that the new model yields comparable re-
sults to the two best reported smoothing models (Bayes-
smoothing and the mixture model). Second, we note that
in the case of the Bayes predictive model the optimal pa-
rameter setting is roughly the same for both query sets
and both measures. Average precision peaks at roughly 1K
for both sets. Conversely, for Bayes-smoothing this value
varies greatly. For example, using p = 2K with the Bayes-
smoothing model yields excellent results for TREC7 but
poor results for TRECG6: this is a clear case of overfiting.
We do not observe this effect in the new Bayes predictive
model. One of the hopes in developing the Bayesian predic-
tive model was to take into account the difference of data
uncertainty in short and long documents and in common and
rare terms. The fact that this model improves on the Bayes-
smoothing model seems to indicate that we have succeeded
in doing so, at least to some extent. The gains are even more
impressive for precision at recall=10, as reported in table 2;
the new model seems to improve results especially in the

“We chose this measure instead of the traditional Prec@10
measure to compare the performance of the different esti-
mators in a low-recall regime.



Table 1: Average precision (1E-3) results for the
different smoothed estimators.

Bayes-Predictive | u: | 400 | 600 | 800 | 1000 | 2000
TRECT 230 | 234 | 235 | 237 | 233
TREC6 201 | 214 | 217 | 218 | 215

Bayes-Smoothing | u: | 1K | 2K | 5K | 10K | 40K
TRECT 236 | 241 | 236 | 228 | 212
TREC6 151 | 181 | 212 | 223 | 222

Linear Interpolation| A: | 0.01 | 0.05 | 0.1 0.2 0.3
TRECT 214 | 232 | 240 | 203 | 186
TREC6 159 | 196 | 219 | 84 31

Table 2: Precision at recall=10 (1E-3) results for
the different smoothed estimators.

Bayes-Predictive | p: | 400 | 600 | 800 | 1000 | 2000
TRECT 349 | 363 | 370 | 370 | 355
TREC6 345 | 347 | 340 | 334 | 330

Bayes-Smoothing | p: | 1K | 2K | 5K | 10K | 40K
TRECT 341 | 352 | 344 | 333 | 320
TREC6 214 | 252 | 293 | 305 | 294

Linear Interpolation| A: | 0.01 | 0.05 | 0.1 0.2 0.3
TREC7 337 | 359 | 373 | 313 | 257
TREC6 276 | 323 | 346 | 131 | 50

low recall region, again indicating that some documents re-
ceiving high scores with Bayes-smoothing were successfully
demoted by the Bayes predictive model.

Linear interpolation smoothing yields slightly better re-
sults than Bayes-smoothing and the Bayes predictive model,
and its optimal parameter value also seems quite stable. It
has been reported in the past that Bayes-smoothing leads to
better performance than linear interpolation smoothing [13],
although we have not seen this in our experiments. In these
cases, we can expect the Bayes predictive model to produce
even higher performances. Furthermore, it has been argued
in [13, 14] that linear interpolation smoothing provides an
extra level of smoothing more natural to IR tasks; it models
background terms appearing in the query. For this reason
[14] combined the Bayes-smoothing and linear-interpolation
smoothing methods into one, as described in 4. As we have
argued earlier, this is not so easily done in the fully Bayesian
model; we are currently investigating several approximations
to achieve this.

Nevertheless, it seemed interesting to combine the strengths
of the Bayes predictive model and linear interpolation smooth-
ing. For this, we adopted a ”mixture of experts approach,
and combined the two systems as if they were uncorrelated,

Table 3: Average precision (1E-3) results for
pair-wise combinations (score products) of Bayes-
smoothing (BS, ¢ = 1K), Bayes predictive (BP,
© = 2K) and linear interpolation smoothing (LI,
A=0.1).

| Combination [ TRECT [ TREC6 ‘

BP-LI 257 260
BP-BS 253 250
BS-LI 208 254

by taking the sum of their log scores. For comparison pur-
poses we did this for every pair of models: i) Bayes predic-
tive (BP) with linear interpolation (LI), ii) Bayes-smoothing
(BS) with LI and iii) BP with BS. Results are shown in ta-
ble 3. The best absolute results in average precision as well
as the best relative gain, are obtained when combining the
Bayes predictive model and linear interpolation smoothing.
This is again evidence that the strength of the Bayes pre-
dictive model (and the derived Bayes smoothing) is compli-
mentary to that of linear smoothing, and that they should
be combined.

6. CONCLUSION

We have presented a first Bayesian analysis of the query
unigram Language Model for ad hoc retrieval, and proposed
a new scoring function derived from the Bayesian predictive
distribution, which many smoothed estimators approximate.
Furthermore, we have shown that its computational cost is
only slightly greater than that of other existing estimators.
Empirical evaluation of this new method shows that the new
model performs better than Bayes-smoothing but not as well
as linear interpolation smoothing; work remains to be done
to combine in an adequate manner these two approaches. An
encouraging result in this direction is that a simple combina-
tion of their scores produced the best performance. Further
work also remains to be done to automatically adapt the
1 scaling parameter; we are currently investigating several
techniques exploiting the analytical form of the predictive
distribution. Finally, we think the Bayesian inference frame-
work could be applied to other language models and could
perhaps be used to extend this model to other tasks such as
relevance feedback, query expansion and adaptive filtering.
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Appendix |: The Dirichlet-Multinomial distri-
bution

1%
P(q|d;) = ZqZélJra/H(gi)qi""dz,i-‘rai—l
i=1

I'(nq, +na) H:/=1 I (g +dii +a)
ql_.[zyzl F(di-l-ozi) F(nq—‘,—ndl +na)

H (g +dii +as) I'(ng, + na)

Z,
a T (di + i) I'(nq + na, + na)

ilq; #0
[Lijq, 20 11520 (dii + 0 + 9 — 1)

= Z 7 ;
N ngl (na, +na +37—1)

In the last line we used the following property: I'(x 4+ n) =
(z4+n—-1)---(z+ 1)I(z+1).



