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ABSTRACT

Search engines can improve their efficiency by selecting only
few promising shards for each query. State-of-the-art shard
selection algorithms first query a central index of sampled
documents, and their effectiveness is similar to searching
all shards. However, the search in the central index also
hurts efficiency. Additionally, we show that the effective-
ness of these approaches varies substantially with the sam-
pled documents. This paper proposes Taily, a novel shard
selection algorithm that models a query’s score distribution
in each shard as a Gamma distribution and selects shards
with highly scored documents in the tail of the distribution.
Taily estimates the parameters of score distributions based
on the mean and variance of the score function’s features in
the collections and shards. Because Taily operates on term
statistics instead of document samples, it is efficient and has
deterministic effectiveness. Experiments on large web col-
lections (Gov2, CluewebA and CluewebB) show that Taily
achieves similar effectiveness to sample-based approaches,
and improves upon their efficiency by roughly 20% in terms
of used resources and response time.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Search pro-
cess

Keywords

Distributed Retrieval, Database Selection

1. INTRODUCTION
For large collections, search engines have to shard their

index to distribute it over multiple machines. Search effi-
ciency can be further increased by shard selection, that is,
by querying a small number of promising shards for each
query [5]. An important research challenge in this domain is
the definition of shard selection algorithms that have to ad-
dress the following two issues. First, selective shard search
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should be more efficient than searching all shards, and sec-
ond, selective shard search should be as effective as searching
all shards. In this paper, we investigate the tradeoff between
efficiency and effectiveness of sharded search. We propose
Taily, a new shard selection algorithm that represents shards
by using parametric distributions of the document scores for
a query. Taily is much more efficient while showing similar
effectiveness, as compared to an exhaustive search.
State-of-the-art shard selection algorithms use a central

sample index (CSI) that contains randomly selected docu-
ments from each shard [21, 22, 14]. The algorithms use
the results of an initial search against the CSI to select the
shards to be used in a second, sharded search. In the liter-
ature, the efficiency of shard selection algorithms is usually
measured by resources used in the sharded search. In this
paper, we argue that efficiency measures should also con-
sider the resources spent during the initial search on the CSI,
which can be substantial. For example, a common sample
size in the literature is four percent [14], which results in
a CSI that is bigger than an average shard once there are
more than 25 shards. Searching a CSI that is as large as
the average shard uses a considerable percentage of the re-
sources required. For the common case that the algorithm
selects two shards, the initial search uses roughly one third
of the resources required for answering a query. In our ex-
periments we show that our algorithm is more efficient than
current sample-based methods, especially when also consid-
ering the resources of the initial search, while maintaining
similar effectiveness.
Although the query response time is seldom investigated

in the shard selection literature, it is often considered more
important than the used resources, which are relatively cheap
nowadays [9]. Whereas the search in a CSI can use a substan-
tial amount of the total resources, the influence of its execu-
tion time on the total query response time can be more se-
vere. In the above example, the initial search would roughly
double the response time, assuming the parallel execution
of the sharded search. We show that Taily’s improvement
over the query response time of current shard selection algo-
rithms is particularly strong.
One aspect of sample-based methods that has not been

studied so far is the effect of the particular random sample in
the CSI on the search effectiveness. One might expect that,
if samples are truly random and sufficiently large, different
random samples would produce stable effectiveness of the
search system in terms of precision or nDCG. We show in
this paper that this expectation does not hold in practice.
As we show in Section 5, different sample sizes of up to 4%



of each shard, lead to substantially different effectiveness of
the sharded search system. We believe that this variation
in effectiveness is a drawback of the sample-based methods
tested in this paper.
Like Kulkarni et al. [14] and Arguello et al. [3], Taily is

used on clusters of machines in a cooperative search envi-
ronment. Taily selects one or more shards by estimating
the number of documents of a shard that are highly scored
in the collection, which we model by the right tail of the
score distributions in the collection and the shards. This
basic approach has been proposed in [15]. To estimate these
score distributions, we follow the approach by Kanoulas et al.
[12], who derive score distributions from statistics of features
related to a query’s terms (e.g. a term’s language model
score). Being based on statistics for each term in a vocabu-
lary, Taily belongs to the class of vocabulary-based selection
algorithms, which are often biased to larger shards and of-
ten show weaker performance than sample-based methods.
Our contribution to the shard selection literature are three-
fold: first, experiments show that its effectiveness is similar
or stronger than the effectiveness of sample-based methods,
second, compared to a search in a CSI, its processing of fea-
ture statistics is more efficient, and results in a lower num-
ber of resources used in total and a faster query response
time, and finally, compared to sample-based methods, the
efficiency and effectiveness do not depend on the size or the
sampled documents in a CSI.
The remainder of this paper is structured as follows. Sec-

tion 2 describes related work on shard selection. Section 3
elaborates on Taily’s shard selection algorithm. Section 4
defines the measures that we used to compare our method
to state-of-the-art algorithms. Section 5 describes the exper-
iments that we conducted to explore the performance of our
search method. Section 6 concludes this paper.

2. RELATEDWORK
In this section, we present shard selection algorithms from

two classes that are most related to this work. Note that
there is also a significant number of works on other ap-
proaches to shard selection. Because of space limitations,
we refer the interested reader to Kulkarni et al. [14] where a
more exhaustive list of related work is presented.
Most of the early shard selection algorithms are vocabulary-

based: they represent shards by collection statistics about
the terms in the search engine’s vocabulary. The popular
CORI algorithm by Callan et al. [6] represents a shard by
the number of its documents that contain the terms of a
vocabulary. The shards are ranked using the INDRI version
of the tf · idf score function using the mentioned number
as the frequency of each query term. CORI selects a fixed
number of shards from the top of this ranking. Xu and
Croft [23] build upon this approach by representing them
by topical language models. The shards are ranked by the
Kullback-Leibner divergence between the language models
of the query and the topics. CORI and the algorithm by
Xu and Croft characterize a shard by statistics over all its
documents. We propose that shard selection algorithms
should focus on documents with high scores because they
contribute most to the system’s effectiveness. The gGloss
algorithm by Gravano and Garcia-Molina [10] selects shards
based on the distribution of the vector space weights, which
we refer to as features values. They assume that the dis-
tribution of the features is uniform. The algorithm ranks a

shard by its expected score value calculated from the expec-
tation of all feature values for a query. In this paper, we also
consider the expected score, which we also infer through the
expected feature values of the query terms. However, un-
like the gGloss algorithm, we assume a gamma distribution
of the score instead of a uniform distribution, and focus on
the tail of the distribution, which contains the highly scored
documents.
Algorithms from the second main class of are called sample-

based algorithms because they use a central sample index
(CSI) of documents from each shard for shard selection. The
REDDE algorithm [21] ranks shards according to the num-
ber of the highest ranked documents that belong to this
shard, weighted by the ratio between the shard’s size and
the size of the shard’s documents in the CSI. The SUSHI
algorithm [22] determine the best fitting function from a set
of possible functions that between the estimated ranks of a
shard’s documents in the central index and their observed
scores from the initial search. Using this function, the al-
gorithm estimates the scores of the top-ranked documents
of each shard. SUSHI selects shards based on their esti-
mated number of documents among a number of top-ranked
documents in the global ranking. REDDE and SUSHI as-
sume that a shard’s documents in the CSI are at equidistant
ranks in the ranking of the shard. We believe that this as-
sumption may be too strong because the actual ranks vary
widely depending on the randomly sampled documents in
the CSI, as we found in preliminary experiments. Kulkarni
et al. [14] present a family of three algorithms that model
shard selection as a process of the CSI documents voting for
the shards that they represent. The vote of a shard is the
sum of the votes of its documents. The algorithms select
shards that have an accumulated vote higher than 0.0001.
The three algorithms differ in how they model the strength
of a document’s vote. In the most effective method Rank-S,
the strength of the votes is based on the score from the ini-
tial search and decays exponentially according to the rank of
the document in this ranking. The base of the exponential
decay function is a tuning parameter of the model.
The shard selection algorithm proposed in this paper is

vocabulary-based. However, instead of considering all docu-
ments in a shard for ranking, it selects shards based on the
highly scored documents of a shard similar to the described
sample-based methods.

3. SHARD SELECTION USING THE TAIL

OF SCORE DISTRIBUTIONS
Before formally introducing our shard selection algorithm

in this section, we will explain our reasoning and the intu-
ition behind it.

3.1 Intuition and Reasoning
Abstracting from sharded search, a search engine uses a

score function that assigns each document in the collection a
score. The documents are then ranked based on that score,
and for most effectiveness measures, the top-ranked docu-
ments are the most influential. Now, a shard selection al-
gorithm has to identify those shards whose documents can
be left out from the complete ranking without hurting the
effectiveness. We therefore design our shard selection algo-
rithm to leave out shards with no or only few documents in
the top of the complete document ranking. The number of
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Figure 1: Intuition of the shard selection process for the web-track query 843 pol pot. The vertical bar indicates the cut-off
score of the nc = 100 highest scored documents. The shown distributions are Gamma distributions fitted using the maximum
likelihood and multiplied by the number of documents in the distribution.

considered top-ranked documents can vary depending on the
search scenario. Our algorithm therefore considers a number
of nc highly scored documents. Expressed differently, these
documents are the right tail of the collection’s score distribu-
tion in response to the given query, and hence we name our
shard selection algorithm Taily. Figure 1a shows the score
frequency distribution of the query 843 pol pot in the Gov2
collection using language model scores. A search engine may
want to preserve, e.g., nc = 100 top-ranked documents. For
our example, this corresponds to the documents that are as-
signed a language model score of −14.6 or higher for this
query.
The more accurate our model is in the right tail of the

score distribution, the more accurate we can expect our
shard selection to be. Score distributions are typically dom-
inated by low scores of documents that contain no or only
few of the query terms. We do not expect that the tail of
these score distributions can be accurately modeled. Instead,
we model the score distribution of documents that contain
all query terms, which include the top-ranked documents
for most queries and empirically leads to a better fit of the
right tail, see Figure 1b.
Taily selects shards based on the number of documents

with a score above the cut-off score of the top-ncdocuments.
To estimate this number, Taily fits the score distribution in
each of the shards, from which the probability of a document
in this shard with a score above that cut-off point can be
readily calculated. Because shards differ in size and abso-
lute numbers of high-scoring documents, a shard with a low
right-tail probability might still have a reasonable number
of documents with scores above cut-off. We therefore also
estimate the total number of documents that participate in
the considered score distribution and select shards based on
the expected number of documents that are above the cut-off
score. For example, Figure 1c shows the empirical and fitted
score distribution1 of the shards 19 and 41 of topical shards

1Note that Fig. 1 displays histograms with absolute frequen-
cies. The fitted lines are the estimated density functions
(based on the Gamma distribution), rescaled by the total
number of documents included and its bin width, in order
to allow visual comparison with the histograms.

generated by Kulkarni and Callan [13]. Most documents in
the selected tail of the collection’s score distribution belong
to shard 41. Therefore, Taily prefers shard 41 over shard 19
for this query.
A popular way to estimate score distributions is to use

scores of document samples from the top of the ranking [1].
However, because we avoid the use of a central sample in-
dex, this type of methods is not applicable here. Instead,
following Kanoulas et al. [12], we infer the query dependent
score distribution from query independent feature distribu-
tions that are summed in the score function. The parameters
of the feature distributions form Taily’s shard representation,
which can be calculated offline.
In the following, we develop the Taily algorithm more for-

mally. Section 3.2 introduces the used score function and
Section 3.3 describes the statistics that form Taily’s shard
representation. Section 3.4 shows how these statistics are
used to estimate the parameters of the score distributions
for the shards, and for the whole collection. Section 3.5 de-
scribes how the number of documents with all query terms
in the whole collection and per shard can be estimated. Us-
ing the estimates for the score distribution and the number
of documents, we define Taily’s shard selection criterion in
Section 3.6.

3.2 Notation and Score Functions
We use the following notation throughout this paper. Queries

and documents are denoted by lower case q and d respec-
tively. Sets of documents are denoted by D, and particular
set is indicated by a subscript. In particular, let Dc be the
set of documents in the total considered collection, and let
D1, ...,DN be the sets of documents of the N shards of this
collection. We often refer to either the set of documents in
the collection or the shards, for which we use the subscript
i. Terms are denoted by lower case t, the query terms of
a query q are denoted by �q. The length of document d is
denoted by dl(d), the frequency of term t in document d is
written c(t, d), and the number of documents from set Di

that contain term t at least once is given by c(t,Di).
Taily infers a query’s score distribution from the distribu-

tions of the features that constitute the query’s score func-



tion. In general, our algorithm can be used with any score
function that is a weighted sum of term-related feature val-
ues. Note that we consider score functions independently
from their theoretical motivation. To facilitate experiments,
which require a particular score function, we focus in this
paper on the query likelihood model, as implemented in the
Indri search engine2. The query likelihood model uses for a
term t in a document d a term feature ft(d), which is defined
as follows:

ft(d) = log

�

c(t, d) + µP (t|D)

dl(d) + µ

�

(1)

where P (t|D) =
�

d c(t,d)
�

d dl(d)
is the collection prior of term t, and

µ is the Dirichlet smoothing parameter. Note that the term
features in (1) are query independent. The score function
s(d) of a document d for a query q is a sum of the features
for the query terms:

s(d) =
�

t∈�q

ft(d). (2)

In this paper we focus on score functions based on features
that are related to a single query term. In future work, we
plan to extend Taily to capture multi-term features such as
ones used in the full dependency model [16], priors such as
PageRank or spam scores, see [19] for a possible integration
of these features into score functions.

3.3 Statistical Shard Representation
In order to infer the score distributions in shards and the

collection, we represent each of them by the distribution
parameters of term features. The main statistics of a feature
ft for term t in document set Di are the expected value
Ei[ft] and the variance vari[ft] of the feature, which can be
calculated as follows:

Ei[ft] =

�

d∈Di
ft(d)

c(t,Di)
(3)

Ei[f
2
t ] =

�

d∈Di
ft(d)

2

c(t,Di)

vari[ft] = Ei[f
2
t ]− Ei[ft]

2 (4)

where Ei[f
2
t ] is the expected squared feature value. These

quantities can be calculated by a single scan through the
collection.
The language model score function used in this paper pro-

duces negative values. However, the Gamma distribution
that we use for the score function is defined for positive val-
ues. To be able to shift the score distribution in the next
section, we also store for each feature f its minimum value
in the collection c:

minc[f ] = min{f(d)|d ∈ Dc, c(t, d) > 0}

The expected feature values from (3), the feature vari-
ances in (4), and the above minimum values, form the rep-
resentation used to calculate the score distribution in the
shards and the total collection.

3.4 Inferring Score Distributions
Given the shard representation described in the previous

section, we derive the distribution parameters of the query
specific score distribution. Because the score function used

2http://www.lemurproject.org/indri/

in this paper produces negative scores, we instead consider
a score distribution that is shifted by its minimum value,
similar to Arampatzis et al. [2]:

s∗(d) = s(d) +

|�fq |
�

j=1

minc[fj ].

To keep our notation lean, we continue using s instead of s∗

for the score function, keeping in mind that it is now positive
defined. For a document set i, the expected score Ei[s] and
the score variance vari[s] can be derived from the definition
of the score function in (2)

Ei[s] =

|�fq |
�

j=1

Ei[fj ] +

|�fq |
�

j=1

minc[fj ] (5)

vari[s] =

|�fq |
�

j=1

vari[fj ] (6)

where �fq is the feature vector of the query terms in (2),
and fj is the jth feature in this vector. Equation 6 uses
the simplifying assumption that the sum of covariances is
zero. Note that we verified the validity of this assumption
by repeating our experiment taking covariances into account,
which did not result in a significant increase in effectiveness.
According to Kanoulas et al. [12], the distribution of lan-

guage model scores is gamma distributed. The parameters
of the distribution in document set i can be derived from
the expected score and the variance by using the method of
moments:

ki =
Ei[s]

2

vari[s]
(7)

θi =
vari[s]

Ei[s]
(8)

where we used the definition of these parameters. Having
the parameters ki and θi for a document set i, we can define
its cumulative score distribution function, which yields the
probability of documents having a score greater than a score
s� in a document set i:3

cdfi(s
�) = Pi(s > s�) = 1−

1

Γ(ki)
γ

�

ki,
s�

θi

�

(9)

where Γ is the Gamma function, γ is the incomplete Gamma
function, and ki and θi are the distribution parameters de-
fined above. For the case of the whole collection and the
example introduced previously, the values of the cumulative
distribution function can be visualized as the percentage of
documents with a higher score than −14.6 in Figure 1c.

3.5 Documents With All Query Terms
To make the probabilities from the cumulative density

functions comparable, Taily uses the number of documents
with all query terms in this set. To reduce the strength
of assuming independence between the occurrence of query
terms [7], we first estimate the number of documents that
contain at least one any query term Anyi in a document

3Note that cumulative distributions are usually defined in
terms of the probability in the left tail. We differ from this
practice because it simplifies the mathematical formalism
used to describe Taily.



set i:

Anyi = |Di|



1−

|�q|
�

j=1

�

1−
c(tj ,Di)

|Di|

�





where the term
�|�q|

j=1 (1−
c(t,Di)
|Di|

) estimates the number of

documents in document set i that have none of the query
terms. Among the Anyi documents that contain at least
one query term, we estimate the number of documents that
contain all query terms All i by assuming independence of
the term occurrences:

All i = Anyi

|�q|
�

j=1

c(tj ,Di)

Anyi
. (10)

where c(tj ,Di)/Anyi is the probability that a document with
term tj appears in the documents in Di that have at least
one of the query term.
Our experiments show that this estimate produces strong

and stable results. Important to note here, is that we want
an efficient and lightweight algorithm, also during the pre-
processing stage. Therefore, even for two-term queries, in-
stead of counting the mutual term occurrences, quadratic in
the vocabulary size, we estimate these based on the single-
term occurrences.

3.6 Shard Ranking and Selection Criterion
Given the cumulative score distribution cdfi and estimated

number of documents that contain all query terms All i for
both the whole collection and each shard separately, we de-
fine Taily’s shard selection criteria. Based on our intuition
in Figure 1, we first estimate the cut-off score of a fixed num-
ber of top-ranked documents in the collection that at least
should be in the sharded ranking. Let this number be nc,
which is a parameter of Taily. The probability of a document
in the collection to be among the top-ranked documents can
be calculated as:

pc =
nc

Allc
(11)

where Allc is the estimated number of documents in the
collection with all query terms. The cut-off score sc of the
top-nc documents can be estimated using the inverse of the
cumulative density function: sc = cdf−1

c (pc) where pc is the
probability defined above.
Using the score distribution in a shard i, we can calculate

the probability that a document in this shard has a score
higher than the cut-off score sc: pi = cdfi(sc). The number
of documents in shard i that have a score above sc, written
ni, can then be readily estimated

4 by ni = All i pi. The num-
ber of documents in shard i with all query terms is a mere
estimation (see (10)), and the sum of estimates All i for all
shards not necessarily equals the overall estimate Allc. Ex-
perimentally, this appeared to introduce inaccuracies in the
results. As the improvement of score distribution estimates
is an ongoing research topic [1], we limit ourselves here to a
simple solution. We assume that the estimation of the ex-
pected number of documents in the collection nc is accurate

4In fact, we estimate the number of documents that have
a score above sc and contain all query terms. This means
that we assume that for the shards to be selected, most
documents above cut-off contain all query terms. Experi-
mentally, this appears to hold if sc is reasonably high, see
e.g. Figure 1b.

such that (11) holds. A suitably normalized estimate of ni

is hence

ni = All i pi
nc

sumN
j=1pj Allj

(12)

where the term All i pi is the unnormalized number of doc-
uments in Di above score sc and the right term is a nor-
malization constant ensuring that the estimated number of
documents above sc from each shard j add up to the cor-
responding number of documents in the whole collection,
which is nc.
We are now able to define Taily’s shard selection criterion

sel(q) for a query q that selects shards with an estimated
number of documents in the top-m above a threshold:

sel(q) =
�

i
�

�

�i ∈ 1...N, ni > v
�

(13)

where i is a shard index, and v is the selection threshold.
Note that it can be beneficial for v to be higher than 0
because of the computational costs for including a shard
with only very few estimated documents in the top ranks.

4. EFFICIENCY MEASURES
Before we can evaluate Taily, we have to define measures

that quantify the efficiency of shard selection algorithms in
terms of used resources and response time. To be compara-
ble to related work, we base our measure on the measure by
Kulkarni et al. [14], which calculates the resources used by
a shard selection algorithm for a query q by the number of
documents that the sharded search has to access:

CR(q) =

|sel(q)|
�

i=1

Di(�q) (14)

where sel(q) are the shards selected by the algorithm and
Di(�q) is the number of documents in shard i that match
at least one of the query terms �q. As discussed in Sec-
tion 1, the selection algorithm itself can require substantial
resources, which should be reflected in the efficiency mea-
sure. We therefore extend the above efficiency measure by
a component that reflects the costs of executing the selec-
tion algorithm. We arrive at our resource efficiency measure
CRES(q) of a query q:

CRES(q) = CSEL(q) + CR(q) (15)

where CR(q) is measure by Kulkarni et al. from (14), and
CSEL(q) are the costs for executing the selection algorithm
for query q. The selection costs CSEL depend on the type
of selection algorithm. For sample-based methods, we set
the selection costs CSEL(q) = CSI(�q), where CSI(�q) is the
number of documents in the CSI that have at least one query
term. For vocabulary based algorithms, we set CSEL(q) =
N , where N is the number of shards in the collection, which
is the upper bound of the number of entries in the shard
representation for any query term.
Additional to the resource usage, the query response time

is another important efficiency aspect to consider [18]. In
contrast to the used resources, measures for the response
time have to take into account that the selected shards are
usually processed in parallel, once the selection algorithm
has finished. For the search in the selected shards, the costs
therefore mainly depend on the shard with the most match-
ing documents. Similar to the methodology in the evaluation
of database systems, we measure the response time by the



Table 1: Statistics about the collections used in the experiments of this paper (In entries of the form X±Y , X is the average
and Y is the standard deviation. TB=terrabyte track, WT=web track.).

Collection Documents Shards Query set Query length Rel. Docs
Gov2 25M 50 TB ’04-’06 (701-750) 3.1(±0.97) 180(±148)
CluewebB 50M 100 WT ’09+’10 (1-100) 2.1(±1.36) 49(±42)
CluewebA 250M 1000 WT ’09+’10 (1-100) 2.1(±1.36) 124(±75)

number of accessed data items on the longest execution path
(ignoring implementation dependent aspects):

CTIME(q) = CSEL(q) +max
|sel(q)|
i=1 {Di(�q)} . (16)

where 1, ..., |sel(q)| are the selected shards and the other sym-
bols carry the same definition as in (15). We report average
values CRES and CTIME over a considered query set, similar
to reporting the mean average precision instead of individ-
ual average precision values. Note that the measures in this
section consider the number of accessed items, which are doc-
uments in shards or CSIs, and shards in vocabulary-based
methods. Another choice would have been to consider the
number of accessed postings for these items in the inverted
files of the query terms.

5. EXPERIMENTS
In this section, we describe the experiments that we con-

ducted to evaluate our shard selection algorithm Taily. We
aligned our experiments to the ones from the recent publica-
tion by Kulkarni et al. [14], to ensure comparability of our
work to the state-of-the-art in shard selection. We proceed
as follows: first, we describe the experimental setup, second,
we describe each experiment and its results, and finally, we
discuss the findings.

5.1 Setup
Table 1 describes the collections and query sets that we

used. The collections represent modern retrieval collections
of a medium to large size. We used the shards defined
by the topical clustering algorithm by Kulkarni and Callan
[13]. Due to spam, the effectiveness of the search on the
full CluewebA collection of 500M documents was weak. We
therefore removed the documents whose spam scores were
among the 50% highest scores according to the fusion method
by Cormack et al. [8].
We implemented the experiments using the hadoop map-

reduce framework, directly answering queries and generating
statistics from the full text of the collection; similarly to the
approach described in [11]. We used the Krovetz stemmer
for both the document text and the queries. We did not use
stopwording. For the exhaustive search and the searches in
the central sample index (CSI), we used the full dependency
model [16] with the parameter setting (0.8, 0.1, 0.1) for single
term features, unordered term features and ordered term
features respectively as recommended by Metzler et al. [17]
and used in Kulkarni et al. [14]. The Dirichlet smoothing
parameter was set to µ = 2500.
We chose one baseline from each of the two classes of se-

lection algorithms presented in Section 2. As a vocabulary-
based algorithm, we used the popular CORI algorithm [6].
As a sample-based algorithm we chose Rank-S by Kulkarni
et al. [14], which showed stronger performance than REDDE [21]
and SUSHI [22], two other state-of-the-art shard selection
algorithms. Note that we added for Rank-S the minimum
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Figure 2: Sensitivity of Taily with nc=400 according to the
threshold parameter v (as indicated in the plot).

score of the score of the full dependency to make the scores
positive. This was not reported by Kulkarni et al. [14] but
it was important to achieve results comparable to the ones
in the original publication. The documents for the central
sample index used by Rank-S were uniformly sampled with-
out replacement from each shard until a percentage P of the
shard’s size was reached. We ensured that each shard was
represented by at least 100 documents. To rule out random
effects, we repeated the runs with Rank-S 50 times, pro-
ducing 50 CSIs with potentially different shards selections.
Unless stated otherwise, the reported performance measures
are the averages of the 50 repetitions. The average approx-
imates the expected performance for a random CSI of this
size. Note that performing statistical significance tests using
these expected performance values is mathematically speak-
ing problematic. We still report the results of these tests
as an indication of the strength of the performance change.
Note that Kulkarni et al. [14] use only a single CSI in their
results. Therefore, their numerical results do not necessarily
correspond to ours.
The size of the CSI can influence the performance of Rank-S.

Unless stated otherwise, we used P = 0.02, 0.01 and 0.01
for Gov2, CluewebB and for CluewebA respectively. For
Gov2 and CluewebB these settings resulted in a CSI that
was roughly as big as an average shard in the respective
collection. For CluewebA we chose P = 0.01 because us-
ing P = 0.001, which corresponds to the size of an average
shard, caused poor effectiveness.
We used the effectiveness measures precision at ten, thirty

and hundred (P@10, P@30, P@100), mean average preci-
sion (map), and ndcg at ten (ndcg@10). When we focused
on a single effectiveness measure, we chose P@30 because
it was more stable than P@10 for all selection algorithms
but still reflected a precision oriented search task. To mea-
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Figure 3: Efficiency-effectiveness tradeoff for CORI, Rank-S, and Taily. The following tradeoff parameter set-
tings of each method were used. CORI: n ∈ {2, 3} (higher values were always outside the limits of the
x-axis), Rank-S: B ∈ {2, 5, 10, 30, 50, 70, 100, 200, 500} (lower values caused lower efficiency), Taily: nc ∈
{200, 250, 300, 350, 400, 600, 800, 1000, 1500, 2000}.

sure efficiency, we used the resource efficiency CRES and the
response time CTIME described in Section 4.

5.2 Threshold Parameter
The threshold parameter v, defined in Section 3.6, speci-

fies the minimum number of documents in the right tail of
the collection’s score distribution that a shard should have
to be selected. Figure 2 shows a sensitivity analysis of Taily
towards changes of v by displaying the resulting P@30 and
CRES measures (here, we used a fixed tradeoff parameter of
nc = 400 but the results were similar for other values of
nc). The effectiveness of Taily was robust against changes
of v, and increased slightly for Gov2. The parameter setting
v = 50 caused efficiency and effectiveness around the me-
dian of the tested values. We chose this parameter setting
for the rest of our experiments.

5.3 Efficiency-Effectiveness Comparison
An important characteristic of a shard selection algorithm

is the tradeoff it provides between efficiency and effective-
ness. A search engine operator may want to invest more
resources to ensure high effectiveness, or to make more effi-
cient use of resources and accept worse effectiveness. CORI,
Rank-S and Taily each have a parameter that determines
the tradeoff between efficiency and effectiveness. For CORI
the parameter n states a fixed number of the highest ranked
shards that are selected, second, Rank-S uses the parameter
B that determines the influence of a CSI document on the

selection of the shard it belongs to (see Section 2), finally,
Taily uses the parameter nc that determines the number of
top-ranked documents that should be included in the results
of the sharded search.
Figure 3 compares the tradeoff that CORI, Rank-S, and

Taily provided in the indicated parameter range. The x-
axes show the resource usage CRES or the response time
CTIME. The y-axes show the effectiveness in terms of preci-
sion P@30.
Figure 3a-Figure 3c show the tradeoff between CRES and

P@30. For Gov2 the tradeoff is similar for CORI, Rank-S
and Taily at low efficiency values. Rank-S and Taily pro-
vide a similar tradeoff between effectiveness and efficiency
over all parameter settings. For CluewebB the efficiency of
CORI was always lower than the one of Rank-S and Taily.
The effectiveness of Rank-S was lower than the one of Taily
for a resource usage of CRES < 60, 000. With higher re-
source usage, both methods had similar effectiveness. For
CluewebA Taily showed a higher effectiveness than Rank-S
until CRES = 90, 000.
Figure 3d-Figure 3f show the tradeoff between CTIME and

P@30. For Gov2 CORI performed similar to Taily. All pa-
rameter settings of Rank-S had a larger response time than
the ones of Taily. To achieve comparable effectiveness, the
response time of Rank-S was roughly 15% larger than the
one from Taily. For CluewebB CORI’s performance was
low. Taily showed higher effectiveness than Rank-S until



Table 2: Effectiveness and efficiency comparison between Taily and Rank-S for the indicated parameter settings. (� and
� indicate statistically significant improvement or regression respectively compared to the Exhaustive search, using a two-
sided t-test with p−value<0.05. Percentages state the efficiency change compared to the Rank-S method.)

Method P@10 P@30 P@100 map ndcg@10 Shards CRES CTIME

Exhaustive 0.58 0.52 0.42 0.34 0.49 50.0 4.92M 0.51M
CORI (n=3) 0.57 �0.48 �0.36 �0.25 0.48 3.0 0.71M 0.33M
Rank-S (B=50 P=0.02) �0.55 �0.48 �0.37 �0.24 �0.45 1.5 0.45M 0.38M
Taily (nc = 400, v = 50) 0.56 �0.48 �0.38 �0.27 �0.46 2.6 0.55M 22.1% 0.32M −15.7%

(a) Gov2

Method P@10 P@30 P@100 map ndcg@10 Shards CRES CTIME

Exhaustive 0.29 0.32 0.22 0.20 0.24 100.0 10.15M 0.47M
CORI (n=3) 0.25 �0.24 �0.16 �0.13 0.21 3.0 0.90M 0.45M
Rank-S (B=50 P=0.01) 0.31 �0.28 �0.18 �0.15 �0.27 1.5 0.40M 0.34M
Taily (nc = 400, v = 50) 0.31 0.33 0.22 �0.18 �0.27 2.7 0.51M 26.1% 0.32M −6.5%

(b) CluewebB

Method P@10 P@30 P@100 map ndcg@10 Shards CRES CTIME

Exhaustive 0.29 0.27 0.18 0.11 0.19 1000.0 48.78M 1.02M
CORI (n=3) �0.20 �0.17 �0.11 �0.06 �0.14 3.0 1.46M 0.78M
Rank-S (B=50 P=0.01) 0.29 �0.24 �0.15 �0.08 0.19 2.2 0.90M 0.77M
Taily (nc = 400, v = 50) 0.30 0.27 0.17 �0.09 0.20 2.5 0.47M −47.6% 0.33M −57.3%

(c) CluewebA

roughly CTIME = 40, 0000. For CluewebA CORI’s perfor-
mance is again low. Compared with CluewebB the difference
of Rank-S and Taily in terms of CTIME is larger.
The results in Figure 3 show that the effectiveness of

Rank-S varies with different settings of B, unlike the results
by Kulkarni et al. [14] (their Figures 2 and 3) that suggest
that the effectiveness of Rank-S is almost unaffected by the
parameter. Because the particular sampled documents in
the central indices used by Kulkarni et al. were not avail-
able, we did not further investigate these differences. They
might be explained by two important differences in the ex-
perimental setup: first, we use a smaller CSI size (P = 0.02
and P = 0.01 vs. P = 0.04 by Kulkarni et al.), and second,
we report the average performance over random samples, in-
stead of results on a single sample.

5.4 Detailed Effectiveness Analysis
We also investigated the effectiveness in terms of multi-

ple measures at a fixed parameter settings. For CORI we
chose a shard cut-off value of n = 3. Although larger values
sometimes produced better effectiveness, the efficiency was
too low to be comparable to Rank-S and Taily. We set the
Rank-S parameter B = 50 for all three collections because
Kulkarni et al. also used this value for CluewebB. For Taily
we set nc = 400 and v = 50. The efficiency and effectiveness
for these parameters is shown as larger points in Figure 3.
We also display the performance for the exhaustive search,
as a reference. For the displayed efficiency of the exhaustive
search, we assumed a parallel search of all shards with zero
costs for the selection (CSEL = 0 in (15) and (16)).
Table 2a shows the results for the Gov2 collection. CORI

shows similar performance than Rank-S and Taily in terms
of P@10. The resource efficiency was the lowest among the
three methods. The response time CTIME was comparable
to the one of Taily. Rank-S showed comparable effectiveness
to Taily with only map being lower. The resource usage of
Rank-S was the lowest among the three runs. The response

time was the largest. On average, Taily and Rank-S selected
2.6 and 1.5 shards on average respectively.
Table 2b shows the results for the CluewebB collection.

CORI showed weaker efficiency and effectiveness than Rank-S
and Taily. Taily’s effectiveness was stronger for all efficiency
measures. In terms of CRES, Taily used 26.1% more re-
sources than Rank-S, while the response time improved by
6.5%. Note that Rank-S and Taily improved significantly
upon exhaustive search for ndcg@10. This is possible if top-
ranked non-relevant documents in the exhaustive ranking
are from shards, which are ignored by the shard selection al-
gorithm. We consider this phenomenon as a property of the
data and therefore did not make any further investigations.
Table 2c shows the results for the CluewebA collection.

CORI showed weak effectiveness and efficiency. Rank-S per-
formed significantly worse than exhaustive search for P@30,
P@100 andmap. Taily showed similar or better effectiveness
compared to Rank-S. Compared to Rank-S, the efficiency
improved 47.6% and 57.3% upon Rank-S in terms of CRES

and CTIME respectively.
Note that although Taily used more resources in Gov2 and

CluewebB than Rank-S for the indicated parameter settings,
there exist other parameter settings where this was not the
case, see Figure 3. Furthermore, the used effectiveness mea-
sures depend on a high coverage of judgments in the top-
ranked documents. For CluewebA only roughly 50% of the
top-30 documents were judged. This coverage was similar
for all investigated shard selection algorithms. As a result,
the absolute effectiveness values are not exact. However, we
believe that the relative effectiveness comparison among the
shard selection algorithms would be similar under complete
coverage because the selective rankings are derived from the
exhaustive ranking and only differ by few added or removed
shards per query, which is likely to average out.

5.5 Influence of Document Sample on Rank-S
The performance of Rank-S depends on the CSI it uses
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Figure 4: Influence of the document sample on the effectiveness of Rank-S. (Rank-S used B = 50. Taily does not use of a
CSI and his parameters were nc = 400 and v = 50).

for the initial search in two ways: first, the number of doc-
uments, assuming that a larger CSI also causes a more ac-
curate selection, and second, exactly which documents are
sampled. Variation in performance can influence the com-
parison of Rank-S and Taily. Therefore, we investigated the
performance variability of Rank-S along these axes.
Figure 4 summarizes the results of this experiment, us-

ing the P@30 measure. As a reference, we also plot the
effectiveness of Taily. Figure 4a shows the results for Gov2.
The median effectiveness increased by roughly 5% between
P = 0.01 and P = 0.04. The lowest achieved performance
was roughly 8% weaker than the median performance. Taily
showed similar effectiveness as the median performance of
Rank-S with P = 0.04.
Figure 4b shows the results for CluewebB. The median

effectiveness was more stable when changing the CSI size
than with Gov2. The lowest achieved search performance
was roughly 10% lower than the median performance. Taily
showed better effectiveness than all measurements for Rank-S.
Figure 4c shows the results for CluewebA. The median

search performance increases by roughly 18% between P =
0.001 and P = 0.04. The lowest achieved performance was
roughly 15% lower than the median performance. Taily’s
effectiveness was en par with the best-measured effectiveness
of Rank-S with P = 0.02 and P = 0.04.

5.6 Discussion
We discuss the results presented in this section. Taily

depends on the following two parameters: the tradeoff pa-
rameter nc that determines the number of high scored docu-
ments of the collection, and the threshold parameter v that
determines minimum of this estimate for are a shard to be
selected, which was introduced to suppress estimation errors.
Section 5.2 and Section 5.3 showed that both parameters can
be set reliably within a range of values, resulting in strong
performance. Nevertheless, the parameter values are unin-
tuitive. For example, the setting of nc = 400 and v = 50,
used in Section 5.4, means according to the definition of
the parameters that shards with 50 documents in the top
400 documents should not be selected. A likely reason for
these unintuitive estimates is the crude normalization of the
expected values in (12). Therefore, for future work we pro-
pose the research of more accurate normalization methods,
which possibly improves the performance of Taily further.

The results of the comparison of CORI, Rank-S and Taily
yielded a number of findings. First, the performance of the
vocabulary-based algorithms shows opposite trends depend-
ing on the collection size. While CORI’s effectiveness de-
creases, Taily effectiveness increases. A likely explanation
for CORI’s performance decrease is its known bias towards
bigger shards, which do not necessarily contain many rele-
vant documents, which causes efficiency and effectiveness to
drop. Therefore, Taily’s approach to model the tail of the
score distribution in each shard selects substantially smaller
shards with more relevant documents than CORI’s approach
to model all documents. Second, for each parameter setting
of Rank-S there was a parameter setting of Taily with higher
efficiency and similar or higher effectiveness compared to the
former’s expected performance. This was in particular true
for the response time. This shows that the selection costs
CSEL for executing Taily were substantially lower than the
ones for Rank-S and Taily’s vocabulary-based approach can
select shards with a comparable number of relevant doc-
uments as Rank-S. Finally, because of the shape of the
achieved efficiency - effectiveness tradeoff combinations, we
propose that finding tradeoff settings for a given efficiency
is easier to achieve for Taily than for Rank-S. An exception
is the response time of Taily in Gov2, which increases at
a high rate, causing small differences in efficiency to cause
large changes in effectiveness.
The effectiveness of Rank-S is strongly correlated with

the CSI size. For example, for CluewebA an increase of the
CSI size from P = 0.001 to P = 0.01 improved the median
effectiveness by 16%. At the same time, larger CSI sizes
consume more storage space, which also makes them less
efficient. Therefore, it is likely that Rank-S does not scale
to collections lager than CluewebA.

6. CONCLUSIONS AND FUTUREWORK
We introduced Taily, a novel shard selection algorithm

that is based on highly scored documents in the tail of the
collection’s score distribution. The scores are assumed to
be Gamma distributed and estimated from statistics about
features related to the query terms of the language model
score function. Taily is therefore a member of vocabulary-
based shard selection algorithms that represent shards by
statistics of terms in the vocabulary.
We evaluated Taily on three large web collections (Gov2,



CluewebB and CluewebA) using topically clustered shards
defined by Kulkarni and Callan [13]. Compared to the pop-
ular vocabulary-based method CORI [6], Taily showed bet-
ter efficiency and effectiveness. Compared to Rank-S [14],
a state-of-the-art, sample-based shard selection algorithm,
Taily achieved similar or better effectiveness using less re-
sources. Especially for larger collections and CSIs, the vocab-
ulary-based Taily used less resources than the sample-based
Rank-S although it selected on average more shards. The
improvement of the response time compared to Rank-S was
larger than the improvement of the resource usage. Taily
showed his highest effectiveness with a shorter response time
than the shortest response time measured for Rank-S over
a wide range of parameters. For CluewebA, Taily achieved
its best performance in roughly 50% of the response time of
Rank-S.
Taily does not use document samples and therefore does

not need to answer some of the questions that sample-based
methods need to answer, such as what samples to take, and
what would be a reasonable size of the central sample index
(CSI). We investigated possible answers to these questions
for Rank-S, and found that the effectiveness of Rank-S de-
creases with the CSI size. For example, the effectiveness de-
creased by 20% between using a commonly used CSI size of
4% and 0.1% for the CluewebA collection, where 0.1% corre-
sponded to the size of an average shard. We also found that,
for a given CSI size, the lowest effectiveness of Rank-S in 50
CSIs consisting of different document samples was roughly
10% lower than the median performance. The dependence
of effectiveness on CSI size and CSI sample is a weakness of
sample-based methods. This weakness can also be seen as
an advantage of vocabulary-based methods, like Taily, which
do not depend on a CSI.
This work focused on shard selection in a cooperative en-

vironment using topically clustered shards. We believe that
the basic ideas behind Taily can also be applied to database
selection in a uncooperative, federated search scenario [4, 20].
In future work we plan to investigate methods to gather the
statistics required by Taily in a federal search scenario, to
evaluate whether its performance also applies to this setting.
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