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Abstract

Efficient, flexible, and scalable integration of full text information re-
trieval (IR) in a DBMS is not a trivial case. This holds in particular for
query optimization in such a context.

To facilitate the bulk-oriented behavior of database query processing,
a priori knowledge of how to limit the data efficiently prior to query
evaluation is very valuable at optimization time. The usually imprecise
nature of IR querying provides an extra opportunity to limit the data
by a trade-off with the quality of the answer.

In this paper we present a mathematically derived model to predict the
quality implications of neglecting information before query execution. In
particular we investigate the possibility to predict the retrieval quality
for a document collection for which no training information is available,
which is usually the case in practice. Instead, we construct a model that
can be trained on other document collections for which the necessary
quality information is available, or can be obtained quite easily.

We validate our model for several document collections and present the
experimental results. These results show that our model performs quite
well, even for the case were we did not train it on the test collection
itself.

Keywords: quality, efficiency, trade-off, fragmentation, Zipf, informa-

tion retrieval, databases

1 Introduction

In the field of information retrieval (IR), not only the need
exists for a system with high precision and recall values, i.e.
high retrieval quality (concerning the information need of a
user), but also with a low response time. However, in general,
the less time we spend on analyzing our document collections,
the worse our precision and recall values will be in general.
The past years database research has shown ever more in-
terest in applying database technology in new domains. The
seamless integration of IR functionality in a DBMS is one of
these new directions. Though integration of IR in a DBMS
obviously has several advantages, certain problems still need
to be solved. Query optimization, i.e. finding the most effi-
cient way to process a query[], is one of these areas. The work
presented in this paper is positioned in this area.

In the field of database technology, trade-offs between differ-
ent parameters, such as query optimization cost and response
time, is a cornerstone of research [UIIRY]. For example, query
optimizers do not search for an optimal query plan but for a
good query plan that can be found quickly.

1Due to the complexity of the query optimization process, most query
optimization techniques are heuristics that try to avoid at least the worst
possible ways to process the query.

We take a ‘database approach’ to information retrieval [GF9R,
VROR, NWYd, V599, EGCE)], ie., we do not tie our re-
trieval model onto a physical data structure, but specify a
retrieval model in a declarative way. The information need of
a user is represented as an IR query (using natural language)
which consists of a set of keywords entered by a user. In
our system this keyword set is modeled as a unary database
relation, which is used as a parameter in a database query ex-
pression that represents the actual retrieval request. Terms
extracted from documents to be indexed are represented as a
binary relation COLL(doc, term), in which term is a term
that appears in document doc. At database construction
time two relations with statistics are derived from this re-
lation: TF(doc, term, tf), containing the term frequency
per unique document-term pair, and DF (term, df), contain-
ing the document frequency per term.

To answer an IR query, tuples of the TF and DF relations are
evaluated. Evaluating the relations comletely slows down re-
sponsivenessfl. Neglecting parts of the DF relation, and corre-
spondingly of the TF relation, will improve the response time
but will decrease the quality of the output of a query. Given
the imprecise nature of IR queries, insight in the trade-off
between response time and quality is useful in building IR
systems but also for the user. The user can set threshold
values for these parameters, which is a way to express what
quality or response time is acceptable.

For example, on the one hand, a user may tell an IR system
that the user wants an answer within x time units for a query.
The system in its turn can tell the user what quality the user
may expect if the response time should be within x time units.
On the other hand, the user may also specify to the system
what quality is acceptable for him/her.

This paper is devoted to the quantitative aspects of the trade-
off between response time and output quality in the context
of information retrieval. In this paper we present the results
to extrapolate the properties of the trade-off obtained on a
certain data set, to another data set which was not involved
in the ‘training’ of the trade-off parameters.

The following three choices form the basis for our approach.

Firstly, we are interested in top-N queries, a very common
form of IR queriesf]. Therefore we adopt the precision as the

?Note that our system already limits these relations on the query
terms as soon as possible. Evaluating the remaining relations completely
after this limitation still slows down responsiveness due to the large size
of the data we are dealing with.

3Note that the term ‘top-N query’ is a database designation for a
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basis for our quality notion. To be more precise, we use the
average precision, since this metric also includes positional
information and not just whether a certain fraction of the
top-N is relevant. We don’t use recall as our quality metric
since it is too much dependent on N. Note that the recall can
always be increased up to 100% by choosing N large enoughff.

Secondly, we choose the terms with highest document fre-
quencies to be the part we neglect during query processing,
instead of just a random subset of the data. These terms
are considered to be the least discriminative and also provide
the numerically least significant per-term contribution to the
score of a document in our score function. This means that
these terms usually have the least significant impact on the
final ranking of an arbitrary document. Furthermore, these
terms do take up the most space in the TF relation, so ignoring
these terms delivers the largest cost reduction. To be more
precise, our model uses the fraction of terms with lower doc-
ument frequencies (i.e. the terms that are not ignored) as its
main steering variable. We refer to [BVRAQI, BRCRBANI] for
a more elaborate description of the underlying fragmenting
approach.

And, thirdly, we do not try to estimate the quality behavior
for each particular query but the quality behavior of the sys-
tem in general. Therefore, we based our model on the mean
of the average precision over a set of queries, instead of just
the average precision for a given query.

Given these three choices we first constructed a model for the
simple case. This model can be trained, using the least mean
square (LMS) method, on the same collection as one wants
to predict the quality for. We call this model, the first order
model. Next we present a generalized, second order, model
that uses the LMS method on the trained parameters of the
first order model of a set of training collection to estimate
the parameters for the first order model of the test collec-
tion. This estimated first order model allows us to predict
the quality behavior for that test collection.

This brings us to the main reason for our interest in the
cost-quality trade-off in general and its application in inte-
grating IR seamlessly into a database environment [GFOR,
VBYR, VW94, Vri9d, FGCEO0]. In database query process-
ing one prefers to work set-at-a-time instead of element-at-
a-time. Therefore traditional IR top-N optimization [Pergd,
BLRH, Bro9s, CPI7] techniques are sometimes not so easy to
incorporate in the DBMS [BVBAQI]. The ability to predict
during query optimization which parts of the data set can
be ignored, given the knowledge of the related quality impli-
cations, would therefore be very interesting. In reality one
usually has no significant quality information available for
the entire data set, say the document collection statistics in
a web search engine. However, for a small (sub)set one might
be able to get good relevance judgments given a certain set
of representative queries (for instance: the Web TREC plus
accompanying queries and relevance judgments). So it would
be nice if one could use this well-documented data set to train
a quality model and then transfer the obtained properties to
the general case. Our second order model provides precisely

query that asks for the N best matches given a certain ranking predicate.
IR queries in most cases are implicitly assumed to be top-N queries.
4In the degenerated case, i.e. choosing N equal to the number of doc-
uments in the collection, the system will always retrieve all documents,
including all relevant ones.
5See http://trec.nist.gov/

these desired generalization properties.

Furthermore, we are not just interested in transparently in-
tegrating an IR system in a DBMS, but in a parallel main-
memory DBMS, to investigate the presumed advantages of
such a system for IR, and multi-media retrieval in general.
Main-memory processing requires the data to be fragmented
in advance at data base design time. Therefore we impose
the even higher restriction that we want to be able to model
the cost-quality trade-off without detailed knowledge of the
actual data. We assume the availability of only limited in-
formation, such as the cardinality of certain relations in our
database.

In the IR-field some research has been done on the retrieval
ever, we go somewhat further by generalizing quality proper-
ties obtained on a given set of collections to another collection,
as described above.

In database research the area of probabilistic top-N query op-
timization [DRYY] closely resembles the basic idea presented
in this paper, with the restriction that in that research only
the optimization and query evaluation algorithm are proba-
bilistic in a certain sense but the answers are still determinis-
tic. As holds for all database query optimization in general,
top-N optimization [CK98, FSGMTIR (C(G9Y] tries to prune
the search space as quickly as possible. In probabilistic query
optimization one tries to guess which parts of the search space
are highly unlikely to be of importance to the final answer, so
one can ignore these parts as soon as possible. In traditional
database probabilistic top-N optimization a so called restart
of the query processing is required when one detects that the
search space has been limited too much. In the IR case, we
cannot really detect that the search space has been limited
too much, since the absolute correctness of the outcome of a
query is not defined. We can only try to estimate what the
quality implications are of the given search space limitation.

The remainder of this paper is structured as follows. First,
we introduce several mathematical definitions to set the for-
mal context. Next we present our first order model, both its
mathematical construction and the experimental verification.
Subsequently, we present our second order generalization of
the first order model in Section fl. Again we include both the
mathematical construction of the model and its experimental
validation. We end this paper with Section [, Conclusions
and future research.

2 Definitions

In this section we introduce a whole series of mathematical
definitions to allow better formalization of the approach later
on. The first, and main, part of this section concerns the
definitions of the datasets, the query set, and the ranking
and quality functions. In the small second part we introduce a
denotation to facilitate the estimation of several variables and
parameters in the remainder of this paper. We also introduce
a relative error metric we use to get a notion of how well
certain estimates approximate their measured counterparts.

Figure [ contains the definitions of the set of collections C,
denoted by their respective names. To facilitate the discussion
of the training and testing of our model in the remainder of
this paper we also introduce the notion of a C**" and a C***.
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How these subsets are constructed is described below.

Since we are interested in fragmenting our database we in-
troduce the fragmenting coefficient f. In this paper we limit
the possible values of f to those in F', though in theory one
could take any 0 < f < 1. For convenience we introduce the
following terminology:

Definition 1 (f fragmented) An f fragmented collection
¢ 1s a collection for which only the [ - 100% of the terms
with lowest document frequency are taken into consideration
during query evaluation (i.e. ranking).

1 = {FR94,CR, FBIS, FT, LATIMES}, c € C (1)
clram C C, a set of training collections (2)
clest C C, a set of test collections (3)
F = {0.9,0.925,0.94,0.95,0.96,0.97,0.98,0.985,

0.99,0.995, 0.999} (4)
f € F (5)

Figure 1: Dataset and fragmenting definitions
tei = a term in collection ¢ (6)
Te = {ter,tez,tess ooy teiseoostn}, e = | Tel (7
dej = a document in collection ¢, d.; C T. (8)
D. = {de1,dc2,de3, .-, dej, -5 de|p, |} (9)
Tfe = {tei,te2,tess- -y teis--osteme ) C Te, (10)
where m. = f - ne = [Tyc|
tfcij = term frequency for term t.; in document d.; (11)
TF. = Atfeylie{l,...,nctje€{l,... ,|Del}} (12)
..
Moy = S (13)
’ Yl teig
dfci = |{(tcivd)‘tci GdEDCH (14)
DF, = {df|Vte: € Tc} (15)
df . oS

ndf, = A, where 7. = Y df (16)

Te i=1

Figure 2: Collection statistic definitions

For each collection ¢ € C (f fragmented, where applicable)
we define several statistics and data structures (Figure P):

terms We distinguish n, unique terms after stemming and
stopping (Expr. f and [1). Note, that we have numbered
the terms on ascending document frequency, which we
can do without loss of generality (also see Expr. [4). In
an f fragmented collection ¢ we only use the m. = fn,
first terms (Expr. [0).

documents We model documents as the set of their unique
terms (Expr. § and @).

term frequency For each unique document term pair we
administer the number of times that that term occurs
in that particular document (Expr. [1] and [[2). We also
compute a normalized version (Expr. [3) within the
[0, 1] range to facilitate a mathematically better founded
score function (see below).

document frequency For each term we store the number
of documents it occurs in (Expr. [[4 and [[§). As for the

term frequency we also distinguish a normalized ver-
sion of the document frequency (Expr. [[G). As men-
tioned, we numbered the terms on ascending document
frequency, so: df ;4 > df .;, Vie{1,... ,n.—1}.

For the interested reader, we listed some key statistics for all
collections in C in the Appendix.

Next to data sets we also need queries (Figure f). For con-

Qe c 1. (17)
Q = {Q € Q}, the set of TREC topics/queries (18)
Qi Q, the set of training queries (19)
Qtest C  Q, the set of test queries (20)

Figure 3: Query related definitions

venience we model our queries as sets, though in reality the
queries can contain multiple occurrences of the same term.
However, not modeling the queries with this capabilityf] will
not be a problem given our context. Again, we already dis-
tinguish the notion of training and test queries but defer the
actual construction of these query sets to the experimental
sections below.

Since we need some sub expressions of the score function used
in our system (sometimes also known as ranking function), we
have listed the relevant definitions in Figure .

7
= 1+ — 21
Scij + ndf ., (21)
5¢;(Q) = > log(seij), where V = {i|t.; € Q} (22)
iev
scfi(Q) = Z log (scij), where V = {i|te; € Q At < mc} (23)
i€V
Pei = ndf, (24)
ne
Escij = Z Scij * Pei (25)
i=1
Escfij = Z Scij * Pei (26)
i=1
Es.ris
nEscpi; = % (27)
Scij

Figure 4: Ranking related definitions

Expression 1l is the score contribution of a term ¢ for a doc-
ument j, as used by our system to rank the documents. The
score contribution is motivated by the use of language models
for information retrieval, a recently developed approach to in-
formation retrieval that performs among the best approaches
in experimental evaluations [PCIR, HK9Y].

Expression P2 defines the score of a document given a query
@ by summing the logarithm of s.;; for each 4. The resulting
algorithm is a member of the family of tf - idf term weight-
ing algorithms, which are used in many approaches to ranked
retrieval [SBEE|. For the relation between language modeling
algorithms and the traditional tf - idf term weighting algo-
rithms, we refer to [Hiell]. Expression PJ the variant of the
score function used in a fragmented case.

For several reasons we need a notion of the probability that

a certain term is term ¢ (Expression P4). The main reason
to choose the probability this way follows directly from the

6For instance, modeling the queries as lists would have allowed mul-
tiple occurences of the same query term, but we refrained from that for
simplicity.



Zipfian behavior of natural language [£1p49]. Based on this
probability we can define the estimated values in expression
E3 and Bd. Expression P7 is a normalized version of expression
Pd. The use of these expressions is clarified in more detail
below.

Finally, Figure | shows the quality metrics we use.

ap.(Q) = average precision for query @ on collection ¢ € C (28)
ap.;(Q) = average precision for query @ on f fragmented (29)
collection ¢ € C
> ap.(Q)
QeQ
map,, = 0] (30)
Z apcf(Q)
QeQ
map.; = al (31)
map,
nmap.; = pr (32)

Figure 5: Quality metric definitions

We base our aggregated quality measure on the average preci-
sion. For those less familiar with IR terminology: the average
precision measure is a single value that is determined for each
query. The measure corresponds with a user who walks down
a ranked list of documents and will only stop after the user
has found a certain number of relevant documents. The mea-
sure is the average of the precision calculated at the rank of
each relevant document retrieved. Relevant documents that
are not retrieved are assigned a precision value of zero. For
example, if three relevant documents exist in the collection
and they are retrieved at rank 4, 9, and 20, the average pre-

142,38 -
cision would be computed as 4'*‘9% = 0.21 [Har9s).

Since we are not interested in the quality behavior of just one
single query in particular we aggregate over a set of queries
(Expressions B and BI)). Furthermore, we are only interested
in relative changes in this aggregated quality measure, so we
use a normalized variant (Expression B7).

Besides these model related definitions, we introduce the fol-
lowing denotation:

Denotation 1 We denote the estimated counterpart of a cer-
tain variable or parameter x by .

The main reason for introducing this denotation is the fact
that we estimate several parameters and variables in the re-
mainder of this paper, so we need the proper means to dis-
tinguish between the actual parameter/variable and its esti-
mated counterpart.

Furthermore, note that we use this denotation recursively, so
for example the estimated value of an (already) estimated
value 7 is written as .

To provide a good notion of the error of the models we also
define a relative error measure.

Definition 2 (Relative error) The relative error ez of an
estimated value T of a variable or parameter x is defined as:

€x =

The advantage of this metric is that it can be pushed through
the normalization of a relative entity.

Theorem 1 (Relative error transparency) Given a rel-
ative entity y, based on an entity x that has been normalized
by dividing by a given number N:

2|8

Y

Then €y = €x.

Proof Substitute y = & in e (using Definition P):

<
|
<

€y =

Qﬁ ‘

i\ﬁ/
\
e

=B

=

*
|
5

Since N is a constant we can write:

T _
- Ny —=
g = —N -

O

For example, Theorem [ holds for the relative error ezmap, 5

because nmap,; is the estimator for nmap,., which is defined
map.

as (see Expression @ in Figure E) So a relative error

map..

€nmap,; = € also means that emgp, ;=€as well.

3 First order approach

In this section we construct a model to predict nmap,; for a
given collection C that is f fragmented. We train the model
using a given set of queries Q'". Once the model has been
trained, we test its accurateness on a set of test queries Q€.

This section has been divided in three parts. First, we intro-
duce our theoretical (i.e. mathematical) approach and use it
to derive an elegant regression model. Then, we present the
experimental setup used to validate this model. And finally,
we present the results of these experiments.

3.1 Model

As stated above, we are interested in predicting nmap,, when
we know the value of f. Since we do not have any illusion
in solving the general problem of information retrieval, i.e.
ranking documents perfectly, our only hold on is taking a
closer look at our ranking method. Of course, no ranking
method is perfect, neither is the one we use. However, since
a state of the art ranking performs clearly better than just a
random ordering of some documents, it obviously has to do
something in the right direction.

The ap.;(Q) for an arbitrary query @ can only change if as
a consequence of decreasing f a document that correctly ap-
pears in the top-N swaps places with a document that should
not have been retrieved. In a more formal manner, let us as-
sume we have two documents j; and jo with document scores
Sej; and sgj,, respectively, such that s¢;, (Q) > s¢, (Q), for an



arbitrary query (). The problem of interest then boils down
to the question what should happen to f to make s.f, (Q) <
Sefj, (@), for that same query Q. Trying to come up with an
analytical solution for this question appears to be very dif-
ficult. However, the main player in the ranking is the score
contribution of each individual term ¢ for an arbitrary docu-
ment j, sq;5. The remainder of this paper demonstrates that
taking s.;; as the basis for estimating nmap,.; works out quite
well, and in contrast with using s.r; is analytically manage-
able.

Since we are not interested in actual s.;; values but only in its
general behavior for ‘average’ queries and how it degrades for
decreasing f we use nFs.yf;; instead. By taking the expected
value instead of the actual value we abstract from the special
effects of just a particular query, likewise we take the mean
of the ap.;(Q), i.e. map.;. Dividing by Es.;; normalizes the
range between 0 and 1 abstracting from the actual numerical
range. Similarly, we normalize our quality measure as well,
resulting in nmap,; as the actual quality measure instead of
apcf ( Q) .

Now, let us assume any change in nEs.¢;; proportionally ef-
fects nmap, s, in other words:

Neo + NeanBscpij = nmap.; (33)
This leaves us with the question what the influence of f is on
nks.ri;. The remainder of this subsection concerns the actual
construction of this model for nmap.; with f as explaining
variable.

We start with assuming that the df ., values are distributed
according to Zipf [Zip49]. We also assumed that the terms
are ordered ascendingly on their frequency, so: df .; < df ;1.
The ‘official’ Zipf’s law — ‘index’ x ‘frequency’ = ‘constant’
— assumes a descending order on frequency. Combining this
information into one formula gives:

ac
Ne — 1+ 1

df ¢; (34)

where a. is the ‘constant’ in Zipf’s law, for a certain collection

C.

Using expression B4 and the fact that a sum over many small
steps can be approximated by an integral we can now rewrite
definition P8:

s
Z Scij * Pei
=1
me
= Z Scij - Ndf ¢
=1
Me
/ Scij . ’I’Ldfm' d’L
=1
i=1 ndf .;

= / ndfcz + ntfcij dl

i=
Me
Qe .
= —_— nitf ... di.
/i:l (n_l+1)Tc+ chJ

Escfij =

Q

) - ndf ; di

1

Similarly, we can rewrite definition 23:
ne

§ Scij * Pci

i=1

Ne
/ Scij + ndf o; di
i

=1

e ac .
= -_— tf ... d
/Z"_]_(n—i‘i'l)TC—"_nfCZJ G

Next, we substitute expressions BJ and Bg in definition E7:

e ac .
e ... d
[:1 (n—i+1)Tc+nfC” g

nEscﬁj = Mo

ESCZ']' =

Q

(36)

(37)

Gc .
/i:1 m—it D + ntf o di
Since we don’t want to do expensive database accessesf], we
do not know the value of each nif ;. Furthermore, for our
quality model we are only interested in the global change
of the document scores, not in the change in scores of any
specific document. Therefore the normalized term frequency
nif .;; might be approximated by <., which is the average
normalized term frequency of the document-term pairs in the
database. Given this assumption expression B1 reduces to:

/ e
B . di
iz1 (n—i+ 1 7

nEscri; = T u
c
/izl (n —i+ ]-)Tc

This effectively reduces our variant of #f - idf weighting to a
variant of idf weighting, which was motivated by a Zipf-like
distribution in [SI72]. Although we explicitly derive equa-
tion from our language modeling ranking algorithm, we
hypothesize that the same approximation holds for any term
weighting algorithm that includes an idf component.

(38)
+ v di

Evaluation of the integral parts in expression and some
further rewriting results in:

nEscfl-j
~ —YeTeMe + Qe IOg(nc — M+ 1) + YeTe — Qe 10g e
VeTeNe — VeTe + aclogne
YeTeMe Qe log(n. —m. + 1) C YeTe | e log n. (39)
N N N N
where:
R = yeTene — YeTe + aclogne

Next, we substitute fn. for m. and simplify the expression a
bit, using the knowledge that n. is quite large:

nEscfl-j

~ ’Y(:chnc Q¢ log(nc - fnc + 1) YeTe Q¢ IOg e

- N N N N

~ ’YCTCfnC Gc log(nc(l B f)) YeTe Qe IOg N

- N N N N

_ YeTele ,  Ge o Ge log n. ~ YeTe | Qe log n.

YeTeNe Qe ’YCTC

_ Jefele o Gegoq gy JeTe 4

e S tog(1 - f) - 21 (40)

"Evaluating each ntf ¢ij would be comparable in effort to evaluating
a query, which we either cannot do during database design or do not
want during query optimization.



Since, N depends mainly on 7. and n,, the second term in this
sum will have negligible influence, reducing the basic expres-
sion to:

nEScfij Vcﬁncf . 'Y;Z-c
= @eof + e (41)
where:
’YCTCnC
Peo = T’
YeTe
et = TR

This simplification is supported by the following mathemati-
cal limit analysis:

lim lim nEsqf;;
Ne—00 Te—00

. . 'Ycchnc Q¢ lOg(nC - fnc + 1)
~ lim lim —
Ne—00 Te—00 N
’YCTC aC log nC
N N
. fne—1
= lim
ne—oo N, — 1
= f (42)

For convenience, we rewrite expression [ into the following
form:

nEscri; = Ye (‘P/c,of+<ﬂ/c,1) (43)
where:
TCnC
90;,0 = N’ (44)
Tc
<P/c,1 = R (45)

Substituting this rewritten form into expression B3, our rela-
tion of interest between nEs.r;; and nmap,, gives:
Ne,0 + NeanEscpij = nmap g

= 0,0 + N1 (Peof + @) = nmap .y

= Ne0 + NenVe (oof + en) = nmap, g

= Ne0 + Ne1 Ve + et Vel of & nmap,;

= Yeo + e f A nmap.y (46)
where:
Y0 Ne,0 F e, 17e P (47)
Yei = Ne1VePeo (48)
Note that expression nicely fits the general observation

that the less terms (lower f) one takes into account, the lower
the answer quality (lower nmap,.;) one should expect.

3.2 Experimental setup

Since our model (expression fI) is linear we can use the LMS
(least mean squares) methodf] to estimate the coefficients 1. o
and v 1.

8Note that, from a strict mathematical point of view, the use of the
LMS method requires the error on nmap.; to be normally distributed.
In this case we are not certain if this requirement is met, but we use the
LMS method anyway, since it might still work very well in practice. Of
course, in case of very bad experimental results this choice might have
to be reconsidered.

The queries we used, are the 50 retrieval queries, also known
as topics in the IR field, from TREC-6. These queries range in
length from 9 up to and including 61 terms with an average
of 27 terms. This query length might seem unrealistically
large since queries typically entered by a user consist of only
a few terms. Note however, that many applications exist in
which the user does not enter the actual query that is actually
executed by the retrieval system. Examples of such situations
are: automatic query expansion (used by certain relevance
feedback and thesaurus exploiting techniques), or searching
for similar texts given an example text (one might think of
patent verification).

Since we need a training set Q%" and a test set Q! of
queries, we constructed two random subsets of Q. Both sub-
sets were constructed independently from each other by pick-
ing a query from one of the 50 queries in Q with a uniform
probability of 60%. This, of course, does result in some over-
lap between Q%" and Q%! but since queries are drawn
from the same ‘virtual’ pool in real world application we think
this does not inflict a negative impact on the quality of the
results. Also, 50 queries as total query pool is not very large
so the larger the training and test sets, the less statistical
noise we get on the resulting nmap, which is averaged over
these sets.

The experimental training procedure we followed for each col-
lection ¢ € C is described in Figure @.

Step 1 Produce a ranked top-1000 for each query Q € Q"™ on col-
lection ¢ in the normal manner (i.e. by taking all terms into
account).

Step 2 Compute the average precision ap.(Q) for each of the queries of
the previous step and compute map, based on the ap.(Q) values,
according to definition BQ.

Step 3 Produce a ranked top-1000 for each query Q € Q" on collec-
tion ¢ for each f € F.

Step 4 Compute the average precision apcf(Q) corresponding to each
of the results of the previous step and compute map.; based on

the apcf(Q) values, according to definition BJ.

Step 5 Compute nmap,; using definition BZ.

Step 6 Compute Ec,o and ECJ using the LMS method on expression
F9, given the computed nmap .

Figure 6: First order training procedure (for a given collection
cel)

After training our model on a per-collection basis (i.e. deter-
mining ¢,  and v, ;) we tested the model using the procedure
shown in Figure [] (again, for each collection ¢ € C).

For the interested reader, we have listed some key statistics
of the used document collections in the Appendix, including
the actual map, values.

3.3 Experimental results

In Figure f§ we plotted the estimated nmap, ., (i.e. Wmap.;)
versus the measured nmap, ;. If our model were perfect, the
estimated values would be equal to their corresponding mea-
sured value (7mmap,; = nmap,.;). We also included this ideal
line in the plot for reference.

As one can see, all the data points are nicely grouped along
the ideal line for all collections. This observation is supported
by the relative errors plotted in Figure M.



Step 1 Produce a ranked top-1000 for each query Q € Q' on col-
lection ¢ in the normal manner (i.e. by taking all terms into
account).

Step 2 Compute the average precision ap,(Q) for each of the queries of
the previous step and compute map, based on the ap.(Q) values,
according to definition BJ.

Step 3 Produce a ranked top-1000 for each query Q € Q™" on collec-
tion ¢ for each f € F.

Step 4 Compute the average precision ap,.;(Q) corresponding to each
of the results of the previous step and compute map_; based on
the ap,.;(Q) values, according to definition BJ.

Step 5 Compute nmap.; using definition B3.

Step 6 Compute nmap, s for each f € F using expression [g, siven
the o and wc,l»

Step 7 Compute the relative error between nMap, s and nmap.y values
using Definition B.

Figure 7: First order test procedure (for a given collection
ce()
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Figure 8: First order model test results, nmap,, vs. nmap,.;,
for all collections ¢ € C
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Figure 9: First order model relative error, émmap, , vs. f, for
all collections ¢ € C

Note that both the values on the axes in Figure § are rela-
tive entities. This means they can range from 0 to 1, and in
practice actually do occupy this entire range indeed. Theo-
retically this is also the case for the ap however in practice
the ap hardly ever exceeds 0.4 for typical tf - idf based re-
trieval systems. Also note that a relative error emmap, ;=€
corresponds to a relative error emap, , = € (see Theorem m)

4 Second order approach

In the previous section we trained the model parameters on
the same collection we wanted to predict the nmap for. In
reality one wants to predict the nmap for a collection for
which one has no relevance judgments available. This means
that it is impossible to measure the nmap in such a case,
taking away the possibility to train on the same collection as
one wants to predict the nmap for.

In other words, one would like to train the model parameters
on some collection (or even collections) for which the nmap
can be measured, and then use this trained model on another
collection to predict nmap values.

In this section we use two extra parameters, which also follow
very nicely from our theoretical model. These two parame-
ters are used to add a second regression model to predict
the model parameters of the previous model. At first glance
this might seem very awkward, but we demonstrate that it
is in fact a quite intuitive approach that also provides quite
reasonable results.

This section has been divided in three parts, similar to the
previous section. First, we use our mathematical model to
derive an elegant second regression model as an extension to
the basic first model. Then, we present the extensions to
the original experimental setup used to validate this second
order model. And finally, we present the results of these ex-
periments.

4.1 Model

In a real world situation it is usually impossible to train the
first order model on the same collection ¢ as one wants to pre-
dict the quality for, due to the absence of nmap,. and nmap,.;
information on that collection ¢. So one would like to train
the model on some other collection ¢’ # c.

Unfortunately, expression I in Section B appears not to work
in this case. A closer look learns that the estimated coef-
ficients ¢, and ¢, differ significantly per collection. It
appears that these coefficients contain collection dependent
information, as is quite obvious from expression fq and A3.

In these two parameter definitions we do not know 7., 7,0,
and 7.1. Also, we do not know ¢, and ¢, ; exactly. But,
we do know that ¢, , and ¢/, ; are mainly determined by n,
and 7. (see expressions f[4 and [{), so we approximate the
formulas 7 and Y by:

q/)c,O
¢c,1

(49)
(50)

wo,0 +Wo,1* Te +Wo,2 * Ne

w10 twWil Tetwi2 - Ne =

This completes the construction of our second order model,
which clearly captures the collection dependencies in 9. ¢ and
e, (and therefore in ¢, o and 9, ;).



Note that the expressions 9 and b0 are linear whereas the ex-
pressions 4 and A are not. We acknowledge that this might
be a very crude approximation. The main reason to choose
this approximation is the practical advantage in the estima-
tion of the parameters, since we can use the LMS method.
The use of two regression models in a nested manner is not
an uncommon statistical technique given the type of situation
we use it in (see [HATBYR|). However, as approximation this
model of course has to prove its usefulness in practice.

Recall from the definitions in Section B that 7. = |TF.| and
ne = | T.|, meaning we only need to do count operations to get
this information. Since this requires practically no database
accesses this nicely fits in our requirement to use this model
during database design and query optimization. Using these
two cheap collection statistics we can use the expressions
and B0, once their own coefficients have been determined, to
estimate Ec,o and Ec,l'

In the remainder of this section we will demonstrate that the
the two expressions B9 and bJ indeed do allow training of our
model on collections ¢ € C"*" such that C!rein N Ctest = (),

4.2 Experimental setup

To evaluate our second order approach we extend our first
order experimental setup as described in Subsection B.4. We
now also split up our set of collections C in a set of training
collections C**" and test collections C*®*.

Due to the number of parameters to be estimated in our sec-
ond order model, we need that [C!™™| > 3. Otherwise the
system is underdetermined. For the special case |C?%"| = 3
the problem reduces to a system of three equations with three
variables, which either has a unique deterministic solution or
no solution at all. Since this latter case might cause trou-
ble, though chances that this will happen are very low and
the LMS method is in fact perfectly able to determine the
solution if one exists, we require that |C™"| > 3.

To allow the most accurate training we looked only at cases
where |C'®*| = 1 leaving 4 collections to train our model on
(which we do need anyway, as we just argued). Consequently
we have 5 possible ways to divide C in a C*"®"™ and C***, by
subsequentially taking each ¢ € C as test collection (C'¢st =
{c}) and the remaining 4 as training collections (C!"*" =
C —{c}). For a given partitioning of C in C"*" and C'*** that
way, we can train, and subsequently test, our model. Figure
describes the training procedure we followed.

Step 1 Perform the first order training procedure (see Figure |}, Subsec-
tion @) to compute 9, o and ¥, ; for each collection ¢ € cirein,

Step 2 Get 7. and n. for each collection ¢ € C'"*",

Step 3a Use the results from Step 1 (Ec,o) and Step 2 (7. and n.)
in combination with the LMS method on equation to estimate
wo,0, Wo,1, and Wo,2.

Step 3b Use the results from Step 1 (Ec,l) and Step 2 (7. and n.)
in combination with the LMS method on equation BJ to estimate
w1,0, W1,1, and w1 ,2.

Figure 10: Second order training procedure (for a given par-
titioning of C in C¥%" and C%**t where |C?®!| = 1)

Figure [ describes the corresponding test procedure we fol-
lowed, using the (@0, @o,1,Wo,2) and (1,0, @1,1,W1,2) vectors
that were determined according to the procedure described in

Figure [T.

Step 1 Get 7. and n. for the test collection ¢ € C¥**.

Step 2a Substitute wo,0, Wo,1, Wo,2, Tc, and n. in expression FY to

compute Ec,()'

Step 2b Substitute Wi o, wWi1,1, W1,2, T¢, and n. in expression to

compute Ec,l .

Step 3 Perform the first order test procedure (see Figure [], Subsection

. train A o
- ;
E) for test collection ¢ € C However, now use ¢, o and ¥, ;

in Step 6 instead of E&O and JCJ, respectively.

Figure 11: Second order test procedure (for a given partition-
ing of C in C*"™ and C'*' where |C'*'| = 1)

4.3 Experimental results

In Figure [[2 we combined all five test cases, each represented
by their respective test collection. As before, we plotted the
nmap.¢ vs. nmap.;. We also included the ideal line where
MMap,y = NMap .-
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Figure 12: Second order model test results, mmap.; vs.

nmap,.s, for all collections ¢ € C**** and all C**** C C where
|Ctest| =1

As expected the point clouds do not group as nicely along the
ideal line as in the first order case (Subsection B.3). However,
as we can see in Figure [[3, the relative error stays within 25%
in most of the cases. We find this quite acceptable, given the
fact we use only very little information in our model (f, 7,
and n.). Furthermore, we have to stress the fact that the
number of training collections is very low from a statistical
point of view.

A closer review of the log files of the first and second order
training and testing runs also learned us that the number of
50 queries in total, is very low as well (recall that we had to
do with these 50 queries for both the training and testing).

5 Conclusions and future research

In this paper we derived a mathematical model to estimate
the expected decrease in retrieval answer quality given that we
use only the fraction f of the terms with the lowest document
frequencies.
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Figure 13: Second order model relative error, émmap,_, vs. f,
for all collections ¢ € C**** and all C**** C C where |C'*!| =1

We distinguished two major approaches, of which the second
was an extension off the first. The performed experiments
demonstrated that for the first approach, in which we tested
our model on the same collection as we trained its parameters
on, our model predicts the quality implications of degrading
f very well. The second approach attempted to overcome the
major drawback of the first approach. There we trained the
model on different collections than we wanted to test it on, i.e.
predict the quality for. Here we saw a significant increase in
the (relative) estimation error, which we expected. However,
the results were still quite interesting since the relative error
stayed mostly within the 25% range.

In the construction of our first order model in Section B we as-
sumed any change in nFEs.y;; to effect nmap.; proportionally
(Expression B3). Given the rather good experimental results
obtained with our first order model, we have no reason to
question this assumption on its practical effectiveness. How-
ever, we certain are interested in a more formal derivation of
this relation, so it is certainly a candidate for future research.
Likewise, we have no reason to withdraw the approximation
of ntf;; by a constant ..

But for the approximation of the formulas {7 and f§ (which
in fact imply approximations of the Expressions 4 and ff5) by
the formulas @9 and B0 we are not so certain. The results of
the second order model can be considered quite reasonable,
given the fact that we wanted to use only very little infor-
mation, and that it was a first attempt to predict retrieval
quality using a model trained on other collections. However,
the results are not that good that we are willing to accept the
approximation blindly. Furthermore, we did approximate a
non-linear mapping by a simple linear one. Mathematically
speaking, such an approximation has a high chance of miss-
fitting the original mapping quite a bit. So we certainly think
this approximation should be investigated in more detail in
the future.

Furthermore, we want to stress that the statistical stability of
our experiments seemed to have suffered somewhat from the
lack of data. This holds in particular for the experiments we
performed for the second order model. It would be very good
to repeat these experiments with more and different document
collections and more queries. Due to several practical reasons,
including the limited space we have in this paper, we are

not able to report any results on that here. However, we
are working on evaluation of our models on the Web TREC
datasets (1, 10 and, 100 GB). The current queries can also
be extended with the topics of other TREC conferences (we
only used the topics of TREC-6).

Finally, we plan to link our quality prediction model to our
cost model that also uses f as one of its main parameters
(also see [RCBAUT]). This integration would indeed provide a
direct trade-off between the executions costs and the retrieval
quality, which we plan to incorporate into our DBMS.
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Appendix — Data sets

Table [ lists the key characteristics of the five TREC docu-
ment collections we used for the experiments reported on in

this paper.
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Table 1: Document collection statistics (as present in our
system after stemming and stopping)

| Collection || Ne | Te | | D,| | map,, |
FRO4 91,807 | 7.700.575 | 55,505 | 0.1780
CR 69,433 5,189,218 27,921 | 0.2370
FBIS 202,940 | 17,385,471 | 130,471 | 0.2529
FT 175,593 | 26,544,084 | 210,158 | 0.3097
LATIMES 176,853 | 19,565,029 | 131,890 | 0.2878
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