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Abstract

In this paper we address the problem of immediate translation of eXtensible Mark-up
Language (XML) information retrieval (IR) queries to relational database expressions and
stress the benefits of using an intermediate XML-specific algebra over relational algebra. We
show how adding an XML-specific algebra at the logical level of a DBMS enables a level of
abstraction from both query languages for information retrieval in XML and the underlying
physical storage and manipulation. We picked a region algebra as a basis for defining the
structure aware (SA) view on XML in which we can distinguish among different XML entities,
such as element nodes, text nodes, words, and determine their containment relation. Region
algebras are already well established in semi-structured document processing as shown in an
extensive overview of region algebra approaches in this paper. Furthermore, we propose a
variant of region algebra that can support ranking operators in an elegant way while staying
algebraic. As relevance scores are computed for regions in our region algebra we named it
score region algebra (SRA). The benefits of introducing score region algebra are explained on
a set of query examples. Besides abstracting from the query language used and the physical
implementation, SRA enables a certain degree of abstraction from the retrieval model used
and the opportunity to use the query optimization at the logical level of a database. Various
retrieval models can be instantiated at the physical level based on the abstract specification
of SRA operators. We also discuss numerous region algebra operator properties that provide
a firm ground for query rewriting and optimization at the SA level, which is an important
premise for the existence of such a logical view on XML.

1 Introduction

Despite the numerous existing systems developed for XML querying, the problem of expressing
as well as executing information retrieval like (IR-like) queries over XML collections is still an
open issue [2, 17]. An IR-like query (an example is given in Figure 2 in Section 3) does not
specify hard conditions on XML elements, but queries the collection on elements ‘about’ a certain
topic. For instance, an XML element that is relevant to a query for elements about “relational
databases” might not contain the phrase “relational databases”, or even both words “relational”
and “databases”. IR-like queries should result in a ranked list of XML elements, in decreasing
order of some score value the system assigns to each element. The score value has to reflect the
probability of relevance of the element to the IR-like query.

A promising approach to executing XPath [4] and XQuery [5] is the use of relational database
technology [18, 19, 39], which can be easily extended to IR-like querying of XML [13, 25]. However,
there are still some open questions, such as: what would be the most effective way to support
IR-like querying in XPath and XQuery using relational database technology? The semantics of
XPath and XQuery [10, 12] give rules for navigation through XML structure, but not the rules that
specify how score values for XML elements should propagate and relate to one another. Similarly,
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the semantics of relational algebra introduce rules for manipulating relational tables that describe
XML data, but again the rules for score computation and propagation cannot be derived from the
relations present in the relational database.

We follow a three-level database approach for developing an XML-IR system [22, 38], consisting
of conceptual, logical, and physical level. However, we specify the logical level in such a way that
it is capable of capturing the structure and semantics of the specific data representation such as
XML and enable ranked retrieval. We named it therefore structure aware (SA) logical level. The
benefits of the usage of a multiple level database management system is that we are able to provide
data independence between the storage and data representation at the physical level, structure
aware algebra at the logical level that captures the properties of data representation stored into
database, and the query language used at the conceptual level. Furthermore, by specifying the
algebra in a right way we provide a certain level of abstraction from the information retrieval
model used for ranked retrieval of XML elements.

The algebra we propose is based on so-called region algebras, for example, [6, 8, 23, 26].
We extended the region algebra approaches to model XML more precisely and to support ranked
retrieval of XML fragments. To enable modeling of XML documents we introduced new attributes
in the region data model. We included the name of the region (i.e., the name of XML nodes,
content words, etc.), the information about the type of a region, and the information representing
the relevance score of a given region. The relevance score reflects the importance of the retrieved
region (XML element) to a query specified by a user. We named the algebra score region algebra
(SRA).

The advantages of SRA over other region algebra approaches is that it is closed in the domain
(of SRA regions) and that it supports orthogonal definition of retrieval model with respect to the
algebra operators. Unlike many approaches for ranked retrieval in XML, the algebra we define
assumes the ranking is a part of the algebra and not a side effect of performing some operations
on regions (like in [26]) or a separate IR module (like in many IR approaches for XML retrieval).
Therefore, we follow the approach taken by Fuhr et al. [15, 16], although we base our algebra
on containment model rather than path model, and do not make any restrictions on defining the
retrieval model.

Score region algebra is sufficiently simple to study algebraic properties in depth and it is
sufficiently powerful to express IR-like queries as those proposed in the NEXI query language used
for the evaluation of XML retrieval in INEX [37]. NEXI stands for “narrowed extended XPath”.
It only uses the descendant axis step from XPath, and it extends XPath with a special about-
function that provides IR-like search (see [37] for details). However, the score region algebra can
be easily extended to support other XPath axis steps with extra parent information [28]. The basic
idea behind the algebra is to support as much as possible for the full-text search requirements [7]
(although we consider only the core of the algebra in this paper) and it is driven by the wish to
integrate XML databases and information retrieval as discussed in [2, 14].

Introducing an intermediate level with score region algebra in it allows for the usage of algebraic
properties for query rewriting and optimization, specific to the data representation used, i.e., XML
in our case, using all the available information in such data representations. The optimization
should be achieved not only for the regular XPath/XQuery queries but for the IR-like queries
as well. Therefore, by defining the algebra in such a way we have the opportunity to use the
optimization methods not just for basic region algebra operators, but for the scoring region algebra
operators as well. This allows for the introduction of more powerful optimization techniques
concerned with speeding-up the execution of operations that compute score values for ranked
retrieval. In this paper we study the usefulness of algebraic properties for query optimization and
for developing and understanding IR-like extensions.

The paper is organized as follows. We provide an exhaustive overview of a number of region
algebra approaches and give comparison of their features in Section 2. In Section 3 we explain
how relational technology is used to process XPath (NEXI) queries. We give the translation of
queries into relational algebra and discuss why we need a different intermediate level. Section 4
introduces our region algebra and discuss basic region algebra operator properties. In Section 5,
we define scoring operators in SRA and their properties, and discuss the opportunities for query
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optimization in our region algebra extended for ranked retrieval. Section 6 introduces a possible
instantiation of a retrieval model at the physical level using SRA expressions at the logical level.
We conclude the paper with a discussion and our plans for future research.

2 Region Algebra

We start this section by specifying some of the terms we are using in this paper. We continue
by explaining characteristics and drawbacks of previous region algebra approaches, and conclude
with the comparison of these region algebra approaches.

2.1 Region Algebra Basics

The term data model is used used to define a collection of entities (data structures) and their
contained fields, along with the operations or functions that manipulate them1. The collection of
entities in most of the region algebra approaches represents a set of regions, specified by starting
and end position pairs for each region, denoted as s and e, where e ≥ s. Region sets are organized
in different concepts (such as concordance list [6] or generalized concordance list [8]) which bring
some constrains on how these sets can be formed or what can be the result of the application of
region algebra operators to operands.

To ease the comprehension of region algebra approaches in this section, we first stress some
differences that exists in numerous region algebra approaches discussed in the following sub-
sections. The differences are based on the formation of the initial data set on which the algebraic
operators are executed, and on the specific domain on which these operators are executed.

The initial data set, following the chosen data model, is defined based on an indexing process
formally specified (or described) in each region algebra paper. Firstly, the initial data set can
be precomputed, i.e., the initial data set is established before any of the algebra operations is
performed. In that case we say that the data set is predefined, and the algebra has to provide a
fetch operator which selects a region or a number of regions form the data set, using the token as
a parameter in the fetch operator (e.g., fetch(token)). Secondly, if the data set is not predefined
it is dynamically created during the query execution. The data set is created using an explicitly
defined indexing operator (e.g., I(pattern)), where the search string (or a character) is specified
as a parameter of an indexing operator (i.e., pattern).

The initial data set in some cases defines the final (complete) data set, i.e., the domain on
which all operators can be executed. The application of region algebra operators results in a set
of regions which are either identified by some predefined entity (i.e., predefined region set), or
consists of regions which are present in those entities (i.e., a subset of regions in a region set). As
the creation of new regions is not allowed we named this data model as static data model. If the
creation of new region sets (new regions) is allowed in the algebra, the operators are not closed
in predefined domain of the initial data set. The application of algebraic operators on region sets
can create new regions that are not in the predefined data model (if any). Thus, we named this
data model as dynamic data model.

To summarize, we can distinguish between two data models if we consider the data set creation
process: (1) static data models, and (2) dynamic data models. Dynamic data models can be either
with the predefined (initial) data set or implicitly defined, i.e., defined during run time using an
“indexing” operator. However, static data models must be predefined as the data model does not
allow the creation of new entities in the algebra.

2.2 Region Algebra Approaches

Region algebra approaches we address in this paper are: PAT expressions, concordance lists,
generalized concordance lists, proximal nodes, Consens/Milo region algebra, nested region algebra,

1Based on the definition of data model given in the W3C glossary: http://www.w3.org/TR/2002/PR-
DOM-Level-2-HTML-20021108/glossary.html.
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text constraints, and ranked region algebra. The basic idea behind region algebra approaches is
the representation of text documents as a set of ‘extents’, where each extent is defined by its
starting and end position. The application of the idea of text extents to XML documents is
straightforward. If we regard each XML document instance as a linearized string or a set of tokens
(including the document text itself), each component can then be considered as a text region or
a contiguous subset of the entire linearized string. This property, as well as some other present
in region algebra approaches give us the reason for studying region algebra approaches for their
application to ranked retrieval in XML.

2.2.1 PAT expressions

The earliest work on region algebras is presented in [34]. The PAT system [34] was developed to
combine traditional search techniques with a new search facilities, such as lexical search, proximity
search, contextual search, and Boolean search, as well as for handling structured text documents.
In PAT, the initial region set in the data model is not predefined. It can be defined by modeling
text as character string, where each character is an elementary unit, or as an indexed string, where
each token bounded with delimiters is considered to be an elementary unit. The result of the
evaluation of any PAT expression can be either a match point set (character or pattern positions
in a string) or a region set defined by a starting and end match points.

Among a number of operators PAT includes operators for expressing containment relations
between regions: including, not including, within; as well as set operators for forming set union,
set difference, and set intersection. Due to the distinction between match points and regions in
the data model, expressions can be formed in PAT that produce unexpected results (especially if
the first operand is a region set and the second one is a match point set), which can be seen in the
original paper [34]. Thus, in the later region algebra approaches the distinction between match
points and regions has never been incorporated into the data model.

2.2.2 Concordance lists

The aim of the region algebra introduced by Burkowski [6] is to preserve the data independence
in text dominated databases with hierarchical structure. Burkowski developed the containment
model, which can serve as a foundation for structured text databases, as the relational model
serves as the foundation for relational databases.

The algebra is defined on a text collection represented as finite sequence of words, where
Burkowski identified tree basic entities: words, text elements, and contiguous extents. A text
element is defined as a sequence of contiguous words that have a semantic meaning (e.g., identified
with mark-up). Each sub sequence of consecutive words represents a contiguous extent defined by
the position of the starting word in the sequence and the position of the end word in the sequence.
A data model is defined on a set of contiguous extents, statically formed (predefined), which are
used to denote the positions of words and text elements, specified using mark-up or another kind
of document annotation.

In the algebra, two contiguous extents can be either nested or disjoint. Burkowski’s model
also introduces a concordance list as being a named list2 of starting and end position pairs that
specify disjoint contiguous extents. Concordance lists are used for managing positions and nesting
properties of the static contiguous extents predefined in the data model.

Algebraic expressions can be specified using the so-called retrieval command string (RCS). RCS
is defined as a sequence of filter operations that specify which contiguous extents should be selected
or rejected based upon containment tests: select narrow (SN), select wide (SW), reject narrow
(RN), and reject wide (RW). Those operations are performed on concordance lists, where the left
operand represents a concordance list which is filtered by a set of concordance lists that represent
the second operand. For example, a search on “chapters” that contain terms “high” or “level”

2Although the author uses the “names” for the concordance lists, those names are not identified as a
part of the data model. They are used only for fetching the proper concordance list (set of contiguous
extents).
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can be expressed as: chapter SW {‘‘high’’,‘‘level’’}. Therefore, in Burkowski’s model the
interpretation of the “,” in the query is a Boolean OR, or a concordance list union operator in the
algebra. The author does not introduce a Boolean AND (concordance list intersection) operator
as the search on “chapters” that contain terms “high” and “level” can be expressed like: chapter
SW {‘‘high’’} SW {‘‘level’’}.

Furthermore, RCS syntax contains some additional operators for supporting relevance ranking,
such as cardinality, sublist, and length operators. Relevance ranking is done on-the-fly and is based
on a type of tf.idf model (for details see [6]). Additionally, a ranking vector was introduced to
store the ranking values for contiguous extents in a concordance list. The ranking vector can be
used for ranked retrieval of contiguous extents. However, the binding between those vectors and
contiguous extents is not clearly defined in the paper. Note that the introduced ranking operators,
as well as ranking vector definition, violate the contiguous extent data model, since the result of
the mentioned operators (stored in ranking vector) is not a contiguous extent, but a real or natural
number.

2.2.3 Generalized concordance lists

To enable expressions on overlapped contiguous extents, as well as Boolean operators and operators
for proximity search, Clarke et al. [8] loosen some constrains of Burkowski’s model. The data
model is defined based on five alphabets: index alphabet, markup alphabet, database alphabet,
text alphabet, and stop-list alphabet. The index alphabet is a union of two disjunctive alphabets,
markup and database alphabet, while the database alphabet is defined as a union of two disjunctive
alphabets, text and stop-list alphabet.

In an indexing process the authors made a decision to index only text alphabet and markup
alphabet. To be able to distinguish between the two indexed alphabets, authors made a distinction
between the result domains of indexing functions for two alphabets. The result domain of the
application of indexing function on the text alphabet is the domain of positive natural numbers.
Each number represents relative position of the word in a document consisting of only words that
are in the text alphabet (preserving their relative order from the original document). The result
domain of the application of indexing function on the markup alphabet is the domain of positive
rational numbers and the number is assigned in such a way that the mark-up alphabet symbols,
denoting the beginning and the end of a structured element that begins and ends on the same
word from text alphabet, can be clearly identified. For example, <speaker>witch</speaker> is
indexed as: <speaker>(n), witch(n), </speaker>(n+1/2). For more details see [8].

The algebra is defined on a set of extents specified using starting and end positions, called
generalized concordance list (GC-list). The initial GC-list is obtained after indexing, and it defines
extent bounds. A GC-list is introduced to model the non-nested extents, while the overlapping of
extents in a GC-list is not allowed in the model. The algebra preserves the four basic operators
from the original model of Burkowski, which are in the paper termed contained in, containing, not
contained in, not containing, and explicitly introduces two combination operators, “both of”and
“one of”, similar to Boolean AND and OR operators, and an ordering operator “followed by”. The
result GC-list of the application of “one of” operator is a set of non-nested extents that contain
either extents from the first or extents from the second operand, while the result GC-list of the
application of “both of” operator is a set of non-nested extents that contain at least one extent
from both operands (i.e., GC-lists). The “followed by” operator is defined as a concatenation of
the closest extents in two operands.

Although the model is similar to the model presented in [6], there is an elementary difference
between them. The difference is in the formation of concordance lists, since in Burkowski’s ap-
proach the data model consists of (1) “real” regions in which the starting position is different
from the end position (text elements) and (2) “fake” regions where those two positions are the
same (words). In the former case the predefined data model consists only of “fake” regions. This
decision made the introduction of ordering operator a necessity, as this was the only way to define
the “real” regions in the algebra. As a consequence, this made the creation of arbitrary extents
possible in the algebra.
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2.2.4 Proximal nodes

A proximal node region algebra was introduced by Navarro and Baeza-Yates [3]. Algebra is defined
on a set of nodes that represents either symbols (i.e. words or characters) or structured elements
organized in a set of independent hierarchies. The data model is formed of a view (tree structure of
a document), specified using a set of constructors (node types in the three structure) and associated
segments for each constructor (a pair of numbers representing contiguous portion of underlying
text). Additionally, the data model has a specific text view composed of text constructors that
have a flat structure.

The algebra supports operators for expressing inclusion (including direct inclusion, and posi-
tional inclusion), positional operators (i.e before, after), and set manipulation operators. Although
the model is very expressive, it can not support overlap in result sets, as well as the combination
of nodes from different views. In the paper [3] authors also explained how the operators can be
efficiently implemented.

2.2.5 Consens/Milo region algebra

Consens and Milo [9] studied characteristics of region algebra approaches in the scope of capturing
the important structural properties of structured text documents (i.e. nesting and ordering) and
investigate the difficulty level in query optimization process. Consens and Milo used modified PAT
algebra [34] as a basic model for their approach. They simplified the PAT approach by keeping
only the core functionality of the algebra to be able to compare it with the approaches previously
described in this section. Such an algebra was used as a basic model for their studies.

Consens and Milo created the relationship between the region algebra and the first order
monadic theory of finite binary trees which they used for proving some of the properties in the
algebra. Authors especially outlined two properties:

• region algebra approaches are incapable of expressing direct inclusion for nested regions, and

• region algebra approaches are incapable of expressing both included expression, i.e., the
containment relation between a region, and two regions which have to be in a specified
order.

As these two properties are useful for many applications, authors proposed the extension of the
algebra as a programming language embedding, where these two properties can be supported.

2.2.6 Nested region algebra

The application of region algebra for search in nested text regions was presented by Jaakkola and
Kilpelainen [23, 24]. The data model is defined on a set of regions where each region represents a
contiguous non-empty interval of positions. The data set is dynamically created as authors assume
that there exist an indexing function I(p) that returns a region set consisting of all the regions
that bound the text pattern p occurring in a queried text. They assume that the numbering is
formed on a character basis, instead of a word basis.

Operators are defined based on conditions of relative containment and ordering (start and end
position orders) of regions. In the operator set all containment operators from the model presented
in [8] are preserved, except that the Boolean AND and OR operators are now replaced with the set
operators which have similar functionality. Furthermore, additional operators are introduced for
expressing set difference (Boolean NOT operator) and for coping with nested properties of data
model: (1) binary operator quote for producing disjoint “followed by” regions, (2) unary operator
hull for producing minimal set of regions that covers the regions in an original region set, and (3)
binary operator extracting for removing nested regions.

Jaakkola and Kilpelainen showed that the nested region algebra queries can be evaluated in
practice in linear time. They have proven that their nested region algebra is capable of express-
ing “both included” relation (although the expression is somewhat complex [24]). The “direct
inclusion” relation, however, cannot be expressed in their algebra.
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2.2.7 Text constraints

Another region algebra approach for arbitrary text regions is described in [30, 31], where Miller et
al. based their algebra on the language for specifying text structure, called text constraints (TC).
Similarly to a region definition in [24], authors defined the data model on a character basis. The
indexing is again performed dynamically using three different primitive expressions: (1) literals for
matching all occurrences of a string in a data model, (2) regular expressions for matching regions
that satisfy regular expression specification, and (3) identifiers that refer to predefined named
regions (e.g., tag in HTML).

The operator set consists of the same operators as defined in [24], except the hull and extracting
operators. The operator set also introduces new operators, such as concatenation operator which
is used for defining adjacent regions. Furthermore, Miller [30] showed that many more operators
can be defined using the iterator operator in combination with the basic region operators. The
operator specification is based on a subset of Allen’s 13 interval relations [1], namely before,
after, in, contains, overlaps-start, overlaps-end3. The algebra allows the usage of unary relational
operators, which are actually binary operators with the implicit operand that represents the union
of all regions in the data set.

It is interesting to note that in the implementation Miller et al. [30, 31] used the region
interval formed from dense region sets. A region interval defines a set of regions whose start
and end positions are given by intervals rather than with positions. Authors transformed the
region interval space into two dimensional plane and used a variant of R-tree to evaluate the
region algebra expressions [31]. Furthermore, authors showed that with the usage of tandem tree
traversal the complexity of the relational expressions will be linear in the worst case. In [30] an
extensive research was conducted, both empirical and mathematical, for defining the complexity
of region algebra expression evaluation.

2.2.8 Ranked region algebra

An attempt for adapting region algebra to ranked retrieval was presented in [26, 27]. The algebra
is based on the region algebra presented in [8] (i.e., nesting is prohibited for regions). However,
the approach cannot be considered as a fully algebraic approach since the ranking is not defined in
the scope of algebraic operators but rather as a side effect of the application of algebraic operators
(similarly to approach presented in [6]).

In this approach, query is decomposed into a series of subqueries, each representing a subtree
of a query tree. Therefore, each subquery represents the region algebra operation evaluated on
two region sets that are obtained after the execution of child subqueries in a query tree. The
algebra operators are defined as in [8].

To enable ranked retrieval Masuda et al. [26, 27] extended the definition of operators in a way
that each operator produces scores for the result regions as a side effect. For score computation they
considered each extent to be a keyword, and treated it like keyword in traditional IR systems. Using
traditional IR tf.idf approach authors applied term frequency and inverse document frequency
computations for extents (i.e. keywords) obtained as a result of the application of subquery on
the data model. The computed scores are used to define a document vector and a query vector.
The document vector represents the vector of term frequencies computed for the results of each
subquery, while the query vector represents inverse document frequency kind of measure for each
subquery (for details see [27]). The final score is computed as a cosine measure between the
document vector and the query vector.

In order to incorporate the structural information in the retrieval model authors proposed
several mappings (i.e., coefficients) that can be used to define the query vector. Besides the simple
idf measure, two other coefficients are proposed. The structure coefficient takes into account the
rareness of the structures. The interpolated coefficient is the idf score of the query itself, combined
with the weighted average idf scores of its subqueries.

3Miller has shown that the set of relations is complete and that the other seven possible relations can
be defined as a union or intersection of the basic six relations.
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2.3 Comparison of Different Region Algebra Data Models and Proper-
ties

Here we emphasize several differences in region algebra approaches. Although region algebra
approaches share the same nucleus, as we already saw, region algebra can be formalized differently
considering the original data model and the creation of data set on which algebra operators are
defined. Table 1 presents comparison of different region algebra approaches considering the features
of region algebras discussed below.

Table 1: Comparison of different region algebra approaches.

Approach model base predefined dynamic nesting overlap set ops. rank ops.

PAT both no yes no no all no
concordance list string yes no no no union yes
GC-list string yes yes no yes no no
proximal nodes both yes yes yes no all no
Consens/Milo string yes no yes yes all no
nested regions character no yes yes yes all no
text constrains character no yes yes yes all no
ranked algebra string yes yes no yes no yes

First distinction is based on the content modeling aspect in the region algebra data model
(model base column in Table 1). One way is to view document text as a character string and index
each character in a string with its relative position with respect to the beginning of a document.
Although this approach is beneficial for regular expression and substring search, it yields many
problems with respect to large document collections (> 100MB), especially if we consider the
way that each data unit and its id must be defined in a database data model. In that case each
character, along with its index (id), should be stored in the database, resulting in an enormous
storage overhead. The other solution would be to index the characters dynamically in a database
using the existing database operators which would result in a very inefficient query execution.

Therefore, in many approaches the text is viewed as an indexed string (the name is taken
from [34]), where string consists of indexed elements (i.e. tokens or words) and delimiters (e.g.,
white space, line feed, etc.). Although this approach introduces some problems in distinguishing
between elements and delimiters (e.g., if “.” is considered as a delimiter then the string “27.01”
would be divided in two elements, “27” and “01” and search for the term “27.01” would fail), the
indexed string manipulation and storage from a database point of view are much more seamless.

Furthermore, we can distinguish between two approaches in generating the data set for the
region algebra (as we stated in the Section 2.1): (1) region algebras where the data set on which the
algebraic operators can be performed is predefined (static region algebra approach) and (2) region
algebras where regions are dynamically created during algebra expression evaluation (dynamic
region algebra approach). In the former case the fetching operator (fetch(token)) should only
select a specified token that is defined (indexed) in the data set. In the latter case an indexing
operator exists (I(pattern)) that creates a region (specifies its starting and end positions) based
on a pattern specification and its relative position in the document. In case of the character based
approach where the pattern is actually a sequence of characters, the region is created dynamically,
using the begin and end position of the characters of a pattern matched in a document. This
distinction is depicted in the column dynamic in Table 1.

The region algebra approaches also differ in the way how tagging information (e.g., mark-
up) is treated in the indexing process. In case of character based indexing, mark-up regions are
dynamically created by recognizing the character sequences used to denote the begin and the end
delimiters of a tagged data sequence, e.g., “<” and “>” for the start tag in XML. To avoid the
repetition of complex expressions for defining opening and closing tags Jaakkola and Kilpelainen
[24] used macros that can be considered as complex operators for finding regions that define tags.
In the indexed string approach, meta data has to be somehow distinguished from the document
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content. Therefore, Clarke et al. [8] used real numbers to index mark-up and Burkowski [6]
used “naming” for concordance lists that is predefined (defined during the database load). This
distinction is listed in the predefined column in Table 1.

Table 1 also points out the expressiveness of different region algebra approaches by specifying
what kind of operators they support besides the basic containment operators. Column nesting
specifies whether a particular region algebra approach supports operators that manipulate nested
regions, while overlap column depicts whether region algebra approaches allow overlapping be-
tween regions. The last two columns, set ops. and rank ops. distinguish between approaches
that support or do not support set operators, namely union, intersection, and difference, and
approaches that support ranking of regions in the algebra respectively.

3 XML and Relational Databases

In this section we explain the formation of the initial XML data set and discuss some issues on the
indexing of XML documents. The relational storage of such documents is also discussed, along
with the relational algebra expressions for two NEXI query examples. The section is concluded
with the discussion on relational approaches for XML retrieval and a rationale is given for the
introduction of the new structure aware (SA) logical level in a DBMS.

3.1 Representing XML in Relational Databases

Most of the database approaches to XML choose to index XML documents before storing them
into relational tables. The rationale for this is the structural organization of XML documents and
the benefits that can be achieved when querying such an indexed relational representation of XML
documents. Furthermore, the structural information can also be used on higher levels in a DBMS
for optimization and rewriting. For an illustration we refer to [20] where the authors used the
pre-post and stretched pre-post indexing scheme for the relational storage of XML documents. In
our approach we used a variant of the stretched pre-post indexing4 scheme that also indexes each
word in XML text nodes. Note that the indexing also produces the initial data set for the data
model that we define in Section 4.

<article lang=‘‘en’’ date=‘‘10/02/04’’>
<title>Region algebra</title>
<bdy>

<sec>
<p>Structured documents ...</p>
<p>Text search ...</p>

</sec>
...

</bdy>
...

</article>

Figure 1: Example XML document.

The data set creation, i.e., the formation of the initial data set from XML documents (in
a plain text format) can be explained through the usage of a two step indexing process5. The
indexing process is explained using an example XML document given in Figure 1. In the first

4Note that the term indexing differs from the concept of indexing as defined in the traditional database
systems. It denotes the method used for creation of the initial data set stored in a database.

5Although XML documents are actually graphs we simplify the XML structure and treat these entities
as if they were organized as a hierarchical (tree-like) structure.

13



step each token in the XML document (denoted with D) is indexed regarding its relative position
with respect to its beginning and its type: I1 : D → X . As a result we obtain a set of elements:
x ∈ X , uniquely identified by their position in the XML document. Each element has the form of
x = {position, token, token type} as shown in Table 2.

Table 2: Intermediate index structure (X ) obtained after initial indexing (I1) of XML document depicted
in Figure 1.

position token token type

0 <article> start tag

1 lang attribute name

2 ‘‘en’’ attribute value

3 date attribute name

4 ‘‘10/02/04’’ attribute value

5 <title> start tag

6 region term

7 algebra term

8 </title> end tag

9 <bdy> start tag

10 <sec> start tag

11 <p> start tag

12 structured term

13 documents term

... ... ...

54 </p> end tag

... ... ...

576 </sec> end tag

... ... ...

9876 </bdy> end tag

... ... ...

10034 </article> end tag

The second step produces regions that can be considered as the initial data set. These regions
are produced by pairing corresponding tokens that represent opening and closing tags, attribute
names and values, etc., and by removing mark-up delimiters from the tokens: I2 : X → C. This
results in a data set like the one presented in Table 3. Thus, the initial data set construction can
be defined as a composition of two indexing procedures: I = I1 ◦ I2. Although the indexing is
a two step process it can be implemented as a single walk through an XML document using the
SAX parser and stack structures (see e.g., [20]).

An indexed XML collection (document), however, is not stored in one relational table since this
table would be huge and in most cases (on most platforms) hard to process. In many relational
approaches to XML different fragmentations of this basic table are used. The fragmentation can
be horizontal, based only on type of XML nodes (like in [20] and [25]), vertical based on a name
and/or type of XML elements, e.g., [13], or based on paths to XML nodes in an XML tree structure
(like in [32]). For illustrative purpose we use horizontal fragmentation of XML data as presented in
[25]. Consequently, different relational tables are defined for the XML element nodes and attribute
nodes and the word table is defined for the words in the XML text nodes. This is depicted in
Table 4. In further discussion we will not consider the attribute table since it is not important for
the issues that we are discussing in this paper.

3.2 From XML Queries to Relational Algebra

The two example queries given in Figure 2 will be used as our leading examples in the following
sections. As query language we use the NEXI query language which has officially been adopted
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Table 3: Data model for XML document presented in Figure 1 obtained after the composition of initial
indexing (I1) and final indexing (I2).

start end name type

0 10034 article node

1 2 lang attr name

2 2 en attr value

3 4 date attr name

4 4 10/02/04 attr value

5 8 title node

6 7 - text

6 6 region term

7 7 algebra term

9 9876 bdy node

10 576 sec node

11 54 p node

12 53 - text

12 12 structured term

13 13 documents term

... ... ... ...

Table 4: Relational data model for storing XML document presented in Figure 1.
Node table N

start end name type

0 10034 article node

5 8 title node

6 8 - text

9 9876 bdy node

10 576 sec node

11 54 p node

12 53 - text

... ... ... ...

Word table W
start name

6 region

7 algebra

12 structured

13 documents

... ...

Attribute table A
start owner name type

1 0 lang name

2 0 en value

3 0 date name

4 0 10/02/04 value

... ... ... ...

for INEX 20046. Its detailed description can be found in [37]. For now we consider that the about
condition inside queries is strict (corresponds to a Boolean search, i.e., about behaves the same
as XPath contains expression). Later on in this paper we elaborate more on the use of the about
clause for ranking.

For the chosen storage model, composed of N and W, we can directly transform any NEXI
expression into relational algebra expression. For NEXI example query 1 depicted in Figure 2,
possible relational algebra expressions could be specified as given in Figure 3. We disregard the
type attribute in the relational expressions for brevity.

Note that there is a frequent usage of a group of expressions consisting of join and projection
6http://inex.is.informatik.uni-duisburg.de:2004/.

Figure 2: NEXI queries.

Example NEXI query 1:
//article//bdy[about(.//sec, structured) and about(.//sec, documents)]

Example NEXI query 2:
//article//bdy[about(., region) and about(., algebra)][about(.//sec, XML)]

//p[about(., information) and about(., retrieval)]
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operations that simulate the XPath descendant/ancestor step. This group of expressions actually
represents the bottleneck for XPath query processing, since its naive execution in relational DBMS
is extremely slow. A number of techniques have been proposed to speed up the execution of
XPath descendant and ancestor steps, such as multi-predicate merge join [39], staircase join [20],
containment join [25], etc. Using such abstract join operators, denoted with onA (for expression
types R7, R8 and R10 in Figure 3) and on@ (for expression type R6 in Figure 3), the query plan
for NEXI query example 2 can be expressed as shown in Figure 47.

Figure 3: Relational query plan for example query 1 given in Figure 2.

R1 = σn=“article”(N )
R2 = σn=“bdy”(N )

R3 = σn=“sec”(N )
R4 = σn=“structured”(W)
R5 = σn=“documents”(W)
R6 = πstart2,end2,name2(R2 onstart2>start1,end2<end1 R1)
R7 = πstart3,end3,name3(R3 onstart3<start4,end3>end4 R4)
R8 = πstart3,end3,name3(R3 onstart3<start5,end3>end5 R5)
R9 = R7 ∩R8

R10 = πstart6,end6,name6(R6 onstart6<start9,end6>end9 R9)

Figure 4: Relational query plan for example query 2 given in Figure 2.

R1 = σname=“article”(N )
R2 = σname=“bdy”(N )

R3 = σname=“sec”(N )
R4 = σ

name=“p”(N )

R5 = σname=“region”(W)

R6 = σname=“algebra”(W)

R7 = σname=“XML”(W)
R8 = σname=“information”(W)
R9 = σname=“retrieval”(W)

R10 = R2 on@ R1

R11 = ((R10 onA R5) ∩ (R10 onA R6)) onA (R3 onA R7)
R12 = R4 on@ R11

R13 = (R12 onA R8) ∩ (R12 onA R9)

7This abstract join operator can be considered as a step towards (higher level) structure aware algebra
operator, see Section 4.
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3.3 Do We Need an Algebra in Between?

There might be a number of reasons to define an intermediate algebra that differs from relational
algebra. First we give two most important points that reflects the drawbacks of using relational
algebra for XML IR.

1. As we saw in the previous sections, to be able to express XPath+IR (NEXI) queries in
relational databases we need new operators for the efficient execution of XPath+IR subex-
pressions, such as descendant and ancestor steps, vague containment conditions, etc. The
exact technique how we implement the subexpression is defined at the physical level, and
it does not have to be unique, i.e., we can have multiple variants of relational expressions
for the same XPath+IR subexpressions. Therefore, the execution times for distinct im-
plementations can differ regarding the relational storage of the XML data, parameters of
the relational tables, and index structures used for accelerating the execution of relational
expressions.

2. Another important issue concerning immediate translation of XPath+IR expressions into
relational algebra is that the relational algebra expressions are highly dependent on the
relational schema chosen for the storage of XML data. If we change the relational storage,
the relational algebra expressions for each query have to be rewritten according to the chosen
relational schema. This is especially the case for large collection of XML data, since usually
huge relational tables, that have more than a million entries, are typically broken into a
number of smaller ones using one of the fragmentation methods mentioned in Section 3.1.

A new logical level that is able to reason about containment relation among XML entities, i.e.,
element nodes, text nodes, words, etc., and provide the framework for XML elements relevance
score computation, would be more appropriate for XML IR for number of reasons:

1. Having a structure aware level with the algebra defined in it would provide the right level
of abstraction considering different XPath+IR queries formed at the conceptual level and
the storage structure and access algorithms chosen at the physical level. In such a way we
provide the needed data independence at the SA logical level.

2. Furthermore, the reasoning that can be done on the SA level can be useful for query rewriting
and optimization. Using knowledge about the size of the operands and the cost of the
execution of different operators at the physical level we are able to generate different logical
query plans, achieving faster execution times and lower memory usage when executing.

3. A final but important reason for defining an algebra at the logical level is to allow the
expression of IR-like queries (about in NEXI), i.e., score computation and ranking of XML
elements. Therefore, the algebra should provide a specific level of IR understanding that
is based on the retrieval model used for score computation. Thus, we should be able to
implement different retrieval models at the SA level, and compare their performance with
respect to their effectiveness and efficiency, without altering the logical algebra.

These features cannot be clearly specified in the relational algebra, as relational algebra is not
capable of capturing ranked retrieval, and therefore blurs the opportunity for query rewriting and
optimization with score computations in ranked retrieval. On the contrary, algebra at the SA level
should provide clear rules for query rewriting and optimizations, where not only plain but scoring
operators should adhere certain operator properties that can be used for query optimization. The
exact way of how we use region algebra operator properties on the SA level and how we extend
the region algebra to support ranked retrieval is explained in the following two sections.

4 Our Region Algebra

For defining the intermediate logical level we have chosen the region algebra approach, because it
is already well established in the area of structured document retrieval (see Section 2), and because
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Table 5: Basic score region algebra operators.
Operator Operator definition

σn=name,t=type(R) {r|r ∈ R ∧ n = name ∧ t = type}
R1 A R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ s1 < s2 ∧ e1 > e2}
R1 6A R2 {r1|r1 ∈ R1 ∧ @r2 ∈ R2 ∧ s1 < s2 ∧ e1 > e2}
R1 @ R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ s1 > s2 ∧ e1 < e2}
R1 6@ R2 {r1|r1 ∈ R1 ∧ @r2 ∈ R2 ∧ s1 > s2 ∧ e1 < e2}
R1 uR2 {r|r ∈ R1 ∧ r ∈ R2}
R1 tR2 {r|r ∈ R1 ∨ r ∈ R2}

of the numerous useful properties of region algebra operators that we discuss in the remainder of
the paper.

Since we focus on XML documents, we decided to use the rich information set of the XML
data model [10] as a base for the definition of our region algebra data model. Furthermore, given
the expressive data model we are able to distinguish between different information items in XML
(see [10]) and to further extend the algebra with new operators and concepts for ranked retrieval.
As we enriched the region definition with a score concept (introduced in Section 5), we named the
algebra score region algebra, or SRA in short.

4.1 Plain region algebra

As already stated, with the specification of the region algebra data model we provide a uniform
platform for defining region algebra operators. Here, we discuss the basic XML region algebra data
model which can be defined using four region attributes, based on the indexed data set described
in the previous section (for more details see [25]).

Our XML data model consists of element, text, comment, and processing instruction nodes,
as well as attribute information and text node content. Thus we disregard some of the entities in
the complete XML data model as defined in [10] since they are not relevant to the topic of this
paper. We can exert that our algebra can be extended to support other XML entities such as
namespaces, IDREFs, etc., without affecting the core data model. Thus, in our XML data model
we simplify the XML structure and treat these entities as they are organized in a hierarchical
(tree-like) structure.

Definition 1 The plain region algebra data model is defined on the domain R which represents a
set of region tuples. A region tuple r (r ∈ R), r = (s, e, n, t), is defined by these four attributes:
region start attribute - s, region end attribute - e, region name attribute - n, and region type
attribute - t. The region start and end attributes must satisfy ordering constraints (e ≥ s).

The semantics of region start and region end attributes are the same as in other region algebra
approaches: they denote the bounds of a region. The region name attributes are used to denote
node names, content words, attribute names, attribute values, etc. To be able to distinguish
different node types in XML, the type information is needed.

Next, we define the basic region algebra operators. The definition of region algebra operators
is based on the operators specified in the previous region algebra approaches, extended to support
a specific XML structure. Table 5 defines the following seven basic region algebra operators:
selection (σ), containing (A), not containing (6A), contained by (@), not contained by (6@), region
set intersection (u), and region set union (t). We use Ri (i = 1, 2, ...) to denote the region sets,
their corresponding non-capitals to denote regions in these region sets (ri), and corresponding
indexed non-capitals to denote region attributes (si, ei, ni, ti).

As can be noticed in Table 5, we introduce a selection operator (σ) instead of an interval
operator used in [6, 8, 23, 26] (usually denoted with I (token)). The interval operator is actually
not a real region algebra operator but rather specifies the indexing function applied to a specified
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Figure 5: Region algebra query plan for example query 1 given in Figure 2.

article = σ
n=“article”,t=node

(C)

bdy = σ
n=“bdy”,t=node

(C)

sec = σ
n=“sec”,t=node

(C)

structured = σ
n=“structured”,t=term

(C)

documents = σ
n=“documents”,t=term

(C)

R1 = (sec A structured) u (sec A documents)

R2 = (bdy @ article) A R1

Figure 6: Region algebra query plan for example query 2 given in Figure 2.

article = σ
n=“article”,t=node

(C)

bdy = σ
n=“bdy”,t=node

(C)

sec = σ
n=“sec”,t=node

(C)

p = σ
n=“p”,t=node

(C)

region = σ
n=“region”,t=term

(C)

algebra = σ
n=“algebra”,t=term

(C)

xml = σ
n=“XML”,t=term

(C)

information = σ
n=“information”,t=term

(C)

retrieval = σ
n=“retrieval”,t=term

(C)

R1 = bdy @ article

R2 = ((R1 A region) u (R1 A algebra)) A (sec A xml)

R3 = (p @ R2)

R4 = (R3 A information) u (R3 A retrieval)

token that returns the region set of the occurrences of token in a document. The selection operator
is a unary region algebra operator that operates on a region set and produces a region set as a
result. It is defined to enable the selection of regions formed during the initial data set creation
(explained in Section 3.1), based on name and type region attributes.

Following the query examples given in Figure 2, we give the same query execution plans defined
using the region algebra operators instead of the relational ones given in Figures 3 and 4. The
region algebra query plans for query examples 1 and 2 are given in Figure 5 and Figure 6. We
use C to denote the initial data set of regions . We can note a great resemblance between the
previous relational query plans and region algebra query plans. This exerts the simplicity of
transforming region algebra expressions into relational expressions. However, any change in the
relational storage will result in the change of the query plan only at the physical level, while the
query plan on the SA level remains the same.

Note that in order to model XML properly, we could enrich the definition of a region with the
additional information of XML references, parent, or level information, etc. For some details on
extensions on region algebra approaches we refer to papers [25], [28], and [29].
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4.2 Region Algebra Operator Properties

In this section we discuss the properties of the algebraic operators and their use for query rewriting
and optimization. Some of the properties are illustrated using the examples given in Figure 5 and
Figure 6. Many properties are mentioned in the papers about region algebra by Clarke et al. [8] and
Jaakkola and Kilpelainen [23], but none of these papers discuss their usage. Our study on region
algebra shows that there are only a few operators that have the basic operator properties such
as: identity, inverse, commutativity, associativity, and distributivity. However, there is a number
of region algebra specific properties that can be considered as special cases of distributivity and
associativity.

Besides the unary selection operator (σ), we can distinguish two classes of binary region algebra
operators. The first class consists of containment operators: A, 6A, @, 6@, while the second class
consists of the standard set operators: u and t. Below we discuss some of the containment and
set operator properties in more detail.

4.2.1 Operators A and 6A

Operators A and 6A select a subset of regions in the first operand with respect to the regions in
the second operand.

Identity: For the operator A right identity can not be specified since regions that represent
leaf nodes in XML tree do not contain other regions and the result of the application of operator
A will always be an empty set. However, the operator 6A, which is an inverse of the operator A,
has two right identities, that is a collection root node - Root and an empty set - ∅:

R 6A Root = R, (1)

R 6A ∅ = R. (2)

Inverse: Based on the above mentioned property of A and 6A operators we can conclude that
the first operator has no inverse element, while the second one has a left inverse which is actually
the collection root node in case the left operator is not the root node itself:

Root 6A R = ∅, R 6= Root (3)

Commutativity: Based on the definition of A and 6A operators these operators do not follow
the commutativity law (see Example 1 in Appendix A).

Associativity: Similarly, based on the left operand selective nature of A and 6A they are not
associative, which can be seen in Example 2 given in Appendix A.

Distributivity: It can be proven (see Examples 3 - 6 in Appendix A) that for most of the
combinations the distributive law does not hold. It holds only in one case that can easily be proven
based on the definition of operators A and t:

R1 A (R2 tR3) = (R1 A R2) t (R1 A R3) (4)

4.2.2 Operators @ and 6@

Similarly as for the previous two operators, operators @ and 6@ are defined as containment operators
that select a subset of regions in a first operand.

Identity: For the operator @ right identity can not be specified in the general case since the
collection root region is not contained in any other region and the result of the application of
operator @ will always be an empty set. However, if we exclude the collection root region from
the data node set we can define the identity which is the same root node. The operator 6@, which
is an inverse of operator @, has one right identity:

R @ Root = R, R 6= Root, (5)

R 6@ ∅ = R. (6)
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Inverse: Operator @ do not have the inverse element since there is no element that can contain
the collection root node. Operator 6@ do have the left inverse element:

∅ 6@ R = ∅. (7)

Commutativity: Based on the definition of @ and 6@ operators they do not follow the com-
mutativity law (see Example 7 in Appendix A).

Associativity: Operators @ and 6@ are not associative as can be seen in Example 8 in Ap-
pendix A.

Distributivity: This property holds only in one case, similar as for the containing operators
above (see Examples 9 - 12 in Appendix A):

R1 @ (R2 tR3) = (R1 @ R2) t (R1 @ R3). (8)

4.2.3 Operator u

Operator u, based on its definition, can be considered as a binary operator equal to a set inter-
section operator. Therefore, the properties of the u operator are similar to the properties of a set
intersection operator.

Identity: In case of the u operator the identity element is the whole node set collection in a
database - C. Furthermore, it is a two-sided identity, since it can be used as a left or right identity:

R u C = R, (9)

C uR = R. (10)

Inverse: Since there are no two SRA regions which can form the complete collection data set
using the operator u (except two C regions), it does not have the inverse.

Commutativity: Based on the definition of the u operator, we can prove that the operator
is commutative:

R1 uR2 = R2 uR1. (11)

Associativity: Similarly to a set intersection operator, the u operator is associative:

(R1 uR2) uR3 = R1 u (R2 uR3). (12)

Distributivity As operator u, applied on two region sets, as a result produces the set of
regions that are in both operand sets, the distributivity with operators A and @ does not hold
(see Proof in Appendix A). Since the definition of u and t is the same as the definition of the set
intersection and set union operators the distributivity of u over t holds:

R1 u (R2 tR3) = (R1 uR2) t (R1 uR3). (13)

4.2.4 Operator t

Based on the definition of operator t, it can be considered as a binary operator similar to the set
union operator. Therefore, the properties of the t operator are similar to the properties of the set
union operator.

Identity: In case of the t operator the identity element is an empty set element - ∅. The
identity is two-sided, since it can be used as a left or right identity:

R t ∅ = R, (14)

∅ tR = R. (15)

Inverse: Since there are no two SRA regions which can form the empty set using the operator
t (except two ∅ regions), it does not have the inverse element.
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Commutativity: Based on the definition of t operator, the operation is commutative:

R1 tR2 = R2 tR1. (16)

Associativity: Similarly as set union operator, operator t is associative:

(R1 tR2) tR3 = R1 t (R2 tR3). (17)

Distributivity Since operator t as a result produces the set of regions that are either in one
or in both operand sets, the distributivity with operators A and @ does not hold (see Proof in
Appendix A). Since the definition of t and u is the same as the definition of the set union and
set intersection operators the distributivity of t over u holds:

R1 t (R2 uR3) = (R1 tR2) u (R1 tR3). (18)

4.2.5 Special cases of associativity and distributivity

There are several interesting properties of the region algebra operators which can be useful for
query rewriting and optimization at the SA level of a database. Here we mention the special
case of containment operator associativity (property 19), containment operator normalization
(property 20), and a special case of set-containment operator distributivity (property 21). The
first two properties are mentioned in papers [8] and [23]. We know of no publication on region
algebras that mentions the third property. Furthermore, we explain these properties on the two
query examples given in Figure 2, whose query plans are given in Figure 5 and Figure 6.

For operators op1 ∈ {A, 6A,@, 6@} and op2 ∈ {A, 6A,@, 6@} property 19 and property 20 hold:

(R1 op1 R2) op2 R3 = (R1 op2 R3) op1 R2, (19)

(R1 op1 R2) op2 R3 = (R1 op1 R2) u (R1 op2 R3). (20)

For operators op1 ∈ {u,t} and op2 ∈ {A, 6A,@, 6@} property (21) is true:

(R1 op1 R2) op2 R3 = (R1 op2 R3) op1 (R2 op2 R3). (21)

These properties can be easily proven based on the definition of the operators.
To illustrate property 19 and property 20 we use the region algebra expression specified for

the example query 1, given in Figure 5:

(bdy @ article) A ((sec A structured) u (sec A documents))

The expression may be read as follows: “Retrieve bdy-elements contained-by article-elements
containing the intersection of sec-elements containing the term ‘structured’ and sec-elements con-
taining the term ‘documents’.” Using the property 19 we can rewrite this expression into:

(bdy A ((sec A structured) u (sec A documents))) @ article

Furthermore, using the property 20 this expression can be rewritten into:

(bdy A ((sec A structured) A documents)) @ article

and using again the property 19 to:

(bdy A ((sec A documents) A structured)) @ article
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Using properties 19 and 20 we are able to choose the most appropriate query plan assuming
that we have the information on which subexpressions are more selective. This reasoning can
be applied for choosing which subexpressions will be more selective for sec A documents or
sec A structured, or similarly for bdy A ((sec A documents) A structured) and bdy @ article

expressions. For example, since usually all regions from the bdy region set are contained in the
article region set, the bdy @ article expression should be pushed up in the query plan as it is
not a selective expression. Also the formulations of the query with the u operator can be useful
for parallel execution of two containment subqueries.

Property 21 is explained on a part of example query 2, denoted with R2 in Figure 6. Using
the expression:

((R1 A region) u (R1 A algebra)) A (sec A xml)

where R1 = bdy @ article, and property 21 for operators u and A, this expression can be
rewritten into:

((R1 A region) A (sec A xml)) u ((R1 A algebra) A (sec A xml))

We would obtain a similar region algebra expression for the or expression of example NEXI
query 1 in Figure 2 instead of the and expression, where u operator will be replaced with the t
operator. This provides an opportunity for, e.g., parallelization.

Furthermore, using property 19 next expression could be obtained from the previous one:

((R1 A (sec A xml)) A region) u ((R1 A (sec A xml)) A algebra)

and after the application of property 20 the final expression would be:

((R1 A (sec A xml)) A region) A algebra.

Therefore, instead of six operands and five operators we have a reduction to five operands
and four operators, where the selection of the R1 regions, that contain sections that contain term
“XML” is pushed down to the first subexpression (assuming it is highly selective).

A similar expression can be obtained for the or combination in the about, where the distribu-
tivity property (13) could be applied as the last step:

(R1 A (sec A xml)) A (region t algebra).

5 Understanding IR

In this section some issues about the impact of introducing relevance ranking (i.e., score compu-
tation) in region algebra are discussed. We start with the score region algebra data model and
continue with the definition of score region algebra operators. This section concludes with the
SRA operator properties and with the emphasis of the role of score region algebra in a database
retrieval model.
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Table 6: Region algebra operators for score manipulation.
Operator Operator definition

R1 Ap R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := fA(r1, R2)}
R1 6Ap R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := f6A(r1, R2)}
R1 @p R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := f@(r1, R2)}
R1 6@p R2 {r|r1 ∈ R1 ∧ (s, e, n, t) := (s1, e1, n1, t1) ∧ p := f6@(r1, R2)}
R1 up R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1, t1) = (s2, e2, n2, t1) ∧ (s, e, n, t) := (s1, e1, n1, t1)

∧ p := p1 ⊗ p2}
R1 tp R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ ((s, e, n, t) := (s1, e1, n1, t1) ∨ (s, e, n, t) := (s2, e2, n2, t2))

∧ p := p1 ⊕ p2}

5.1 SRA Data Model

Relevance ranking cannot be explicitly expressed in the standard relational algebra. For example,
to store score information an additional attribute for each entry in the relational table must be
introduced. This attribute stores the ranking score values for particular XML elements during the
query execution. Furthermore, a number of operators have to be defined in the relational algebra
which combined should express the score computation, i.e. instead of a join operator in Figure 4
we would use a combination of relational score operators. However, the introduction of score
operators in region algebra is easier and more elegant than in relational algebra since the retrieval
model specification is done on the right level of abstraction (SA level) and without considering
the issues of how these operators are implemented on the lower (physical) level. Furthermore, as
we will see in this section, the exact retrieval model does not have to be specified completely as
the structure aware framework of our score region algebra can be kept abstract with respect to
the exact retrieval model used.

To be able to model XML properly for IR-like search we enriched the definition of a region
with the score information which represents the relevance of each region given the query specified
by a user.

Definition 2 The SRA data model is defined on the domain R which represents a set of region
tuples. A region tuple r (r ∈ R), r = (s, e, n, t, p), is defined by these five attributes: region
start attribute - s, region end attribute - e , region name attribute - n, region type attribute - t,
and region score attribute - p. Region start and end attributes must satisfy ordering constraints
(ei ≥ si).

In the SRA the result of the application of operators cannot introduce new regions, that is,
regions with different region bounds (i.e., s and e values) than originally specified in the database
during the creation of the initial data set (database load). Furthermore, the operators cannot
change the name and type (n and t) attributes of regions identified in the database. However,
algebra operators are allowed to change the value of the region score attribute (p) for each region
in the initial data set8.

5.2 Scoring operators in Region Algebra

For explaining the SRA operators we again use the example query expressions given in Figure 2,
except that we treat the about clause as a vague constraint instead of the strict interpretation as in
previous sections. Thus, paths and terms in the about clause do not have to be strictly matched,
and the vague match is defined by the retrieval model.

To enable score computation and region ranking based on computed scores we introduce new
region algebra operators. For each binary region algebra operator defined in Table 5 the proba-
bilistic counterpart is defined. To distinguish between plain region algebra operators and score

8These restrictions were introduced to simplify the model. However, to be able to model full
XPath/XQuery languages some of these restrictions may be loosen.
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region algebra operators we use the index p for score operators. The score operators are depicted
in Table 6. Note that the operators Ap, 6Ap, @p, and 6@p produce all regions from the first operand
(R1) as a result, i.e., the region start, end, type and name attribute values are copied from the left
operand region set to the result region set, while the score attribute (p) of the result set gets its
value based on the containment relation among regions in the left and regions in the right operand
as well as their score values. The definition of operators up and tp are similar to the definition
of basic set intersection and set union operators, i.e., the result region start, end, type, and name
are obtained the same way as for plain region algebra operators, except that the result score value
for regions is defined based on the score values of regions in the left and right operand region sets.

In the definition of score operators we introduce four complex scoring functions, fA, f6A, f@,
and f6@, as well as two abstract operators, ⊗ and ⊕, which define the retrieval model. Using
the abstract definition of operators we leave their exact implementation for the physical level (for
more details on this issue see [25, 29]). However, for the ⊕ operator we assume that there exists a
default score value (denoted with d), and in case when the region r1 is not present in the region
set R2 the score is computed as p = p1 ⊕ d and in case when the region r2 is not present in the
region set R1 the score is computed as p = d⊕ p2.

The functions fA, f6A, f@, and f6@, applied to a region r1 and a region set R2, result in the
numeric value that takes into account the score values of region r2 ∈ R2 and the probabilistic value
that reflects the structural relation between the region r1 and the region set R2. For containing
operator, taking into account the structural organization of XML documents which is a tree
structure, usually many regions from the region set R2 are contained in the region r1 (e.g., section
elements inside the article element). Although for the contained by operator there is a small
chance that the region r1 is contained by a set of regions present in R2, it can happen that there
are nested XML elements with the same name (e.g., section elements inside other section elements
denoting subsections). Therefore, one region can be contained in multiple regions with the same
name. Similar reasoning can be applied for not containing and not contained by operators.

Following the previous discussion, and isolating the score values from both operands we can
define complex functions as follows:

fA(r, R) = p ·
∑

r̄∈R@R′

(gA(r̄, r) · p̄) (22)

f6A(r, R) = p ·
∑

r̄∈R@R′

(g6A(r̄, r) · p̄) (23)

f@(r, R) = p ·
∑

r̄∈R′AR

(g@(r̄, r) · p̄) (24)

f6@(r, R) = p ·
∑

r̄∈R′AR

(g6@(r̄, r) · p̄) (25)

We assume that R′ is the region set containing a single region r, and gA(r̄, r), g6A(r̄, r), g@(r̄, r),
and g6@(r̄, r) are abstract functions used to define the score propagation based on the structural
relation between the region r and regions in the region set R. In the straightforward imple-
mentation functions gA(r̄, r) and g@(r̄, r) can be constant functions equal to e.g., 1. However,
if we base the retrieval model on the term frequency, the first two functions can be defined as
gA(r̄, r) = size(r̄)

size(r) and g6A(r̄, r) = 1− size(r̄)
size(r) . Similarly, other two functions can be defined as, e.g.,

g@(r̄, r) = size(r̄)∑
r̄ size(r̄) and g6@(r̄, r) = 1− size(r̄)∑

r̄ size(r̄) . Since the exact retrieval model is not the main
issue in this paper and since we want to abstract as much as possible from the real implementa-
tion of retrieval model in the SRA, here we will not elaborate more on it. Later in this paper in
Section 6 we give some hints how the retrieval model can be defined in the framework of SRA.

The abstract operator ⊗ specifies how scores are combined in an and expression, while the
operator ⊕ defines the score combination in an or expression inside the NEXI predicate. In the
remainder of the paper we take the simple approach where ⊗ is a product of two score values,
while ⊕ is the sum of scores, as it shows good behavior for retrieval. Other implementations are
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possible e.g., minimum and maximum. For more detail about possible implementations of these
operators and on their comparison we refer to paper [25].

To illustrate the elegance of expressing score computation in region algebra we show how we
can express NEXI query 1 in score region algebra:

(bdy Ap ((sec Ap structured) up (sec Ap documents))) @ article

which very much resembles the original query plan for example query 1 given in Figure 5. The
last operator in this query plan is SRA operator which is equal to the plain region algebra operator
as it should only perform the selection on nodes from the left operand based on the regions in
the right operand (article), without any manipulation on score values of the left operand (i.e.,
just copying them). Therefore, the definition of this operand is the same as it is given in Table 5,
except that in this case each region has additional fifth attribute which is a region score attribute.
Thus, assuming that the data model is as defined for SRA, operators given in Table 5 are also
valid in SRA, except that binary operators are used only for node selection based on containment
relation and set intersection and union, and that unary select operator selects the specified regions
based on name and type attribute, assuming the default value for score is already assigned to
regions (e.g., 1).

5.3 Properties of Score Operators

Considering the properties of score operators we can exert that some of the properties follow
ones defined for the region algebra without scores, some of them hold only if some conditions are
satisfied (conditional properties which depend on the underlying retrieval model), and some of
them are no longer valid.

5.3.1 Operators up and tp

The up operator defines the Boolean-like AND combination of scores obtained for two regions
with the same region bounds (i.e., s and e values). It preserves the identity and inverse element
properties from the u operator (properties 9 and 10), but only in case the default score value for
all regions in the initial region set is the value which is the identity element for abstract operator
⊗, i.e., 1 for the multiplication:

R up C = R, i.e., p · 1 = p,∀r ∈ R, (26)

C up R = R, i.e., 1 · p = p,∀r ∈ R. (27)

Furthermore, the up operator is commutative or associative (properties 11 and 12) if the
operator ⊗ is commutative or associative, respectively, which is the case for multiplication:

R1 up R2 = R2 up R1, (28)

i.e., p1 · p2 = p2 · p1,∀r1, r2 ∈ R1 uR2, and

(R1 up R2) up R3 = R1 up (R2 up R3), (29)

i.e., (p1 · p2) · p3 = p1 · (p2 · p3),∀r1, r2, r3 ∈ (R1 uR2) uR3.
An extension of the set union operator is given by the tp operator. It defines the Boolean-like

OR combination of scores for two regions. Similarly to the up operator, the tp operator preserves
the identity and inverse element properties from the t operator (properties 14 and 15) but only
in case the default value (d) taken for the tp operator is the value which is the identity element
for the abstract operator ⊕, i.e., 0 for the summation in our case:

R tp ∅ = R i.e., p + 0 = p,∀r ∈ R, (30)
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∅ up R = R, i.e., 0 + p = p,∀r ∈ R. (31)

As in the up operator case, commutativity and associativity properties depend on the definition
of the ⊕ operator. In other words, the tp operator is commutative or associative (properties 16 and
17) if the operator ⊕ is commutative or associative respectively, which is true for the summation.

R1 tp R2 = R2 tp R1, (32)

i.e., p1 + p2 = p2 + p1,∀r1, r2 ∈ R1 tR2, and

(R1 tp R2) tp R3 = R1 tp (R2 tp R3), (33)

i.e., (p1 + p2) + p3 = p1 + (p2 + p3),∀r1, r2, r3 ∈ (R1 tR2) tR3.
Furthermore, the up operator distributes over the tp operator, since ‘·’ distributes over ‘+’

(property 13). Vice versa is not the case (property 18).

R1 up (R2 tp R3) = (R1 up R2) tp (R1 up R3) (34)

Following the reasoning above and the fact that each region can equally likely be the right
answer to a user query, we consider that the default value for region score in the initial data set
C is 1, from now on, and that the default value for score d of a region not present in the region
set for operator tp is 0. Thus, in our case properties 30 and 31 do not hold.

5.3.2 Operators Ap, 6Ap, @p, and 6@p

The operators Ap, 6Ap, @p, and 6@p are modified versions of operators A, 6A, @, and 6@, that do not
change the bounds of the regions and name and type attributes of the left operand but change the
score attribute p according to the containment relation on the operands and their score values,
defined by complex functions fA, f6A, f@, and f6@. Since the instantiation of these operators is
not unique, i.e., they can implement distinct retrieval models, the exact operator properties can
be determined only (after their instantiation) on the physical level.

Note that even if we define the additional operators as Boolean operators that return 0 or
1, indicating that the left operand contains or does not contain regions from the right operand,
the properties of the operators Ap, 6Ap, @p, and 6@p will not strictly follow the properties of the
operators A, 6A, @, and 6@. The same holds if the operators are defined based only on a number of
regions in the second operand that are (not) contained in or (not) contained by the first operand.

Therefore, the operators Ap, 6Ap, @p, and 6@p do not have identity and inverse elements and are
not commutative and associative. The reason for the lack of algebraic properties for these operators
can be found in their purpose. These operators define the basic retrieval model (e.g., language
model) of a DB IR system aimed at finding the score of an XML node (element node) region that
contains a term region (region containing only one term). In most of the cases, these operators
include foreground and background statistics (e.g., as defined in language model approach [21]).
Furthermore, the definition of the operators Ap, 6Ap, @p, and 6@p, along with the definition of other
operators for score manipulation define the domain of region score attribute (e.g. what are the
restrictions that the score manipulation operators must follow).

Based on the definition of the operators using the region frequency it can be proven that the
operators Ap, 6Ap, @p, and 6@p do not distribute over the operator tp in general case (properties
4 and 8).

5.3.3 Additional SRA operator properties

There are some additional (conditional) properties of score operators which can be of interest for
the optimization. If we assume that the functions fA(r, R), f6A(r, R), f@(r, R) and f6@(r, R) are
defined as in Equations 22 - 25 and that abstract functions (g) are not dependent on the score
value of region r̄ (i.e., gA(r̄, r) = gA(s̄, t̄, n̄, r), g6A(r̄, r) = g6A(s̄, t̄, n̄, r), g@(r̄, r) = g@(s̄, t̄, n̄, r), and
g6@(r̄, r) = g6@(s̄, t̄, n̄, r)), property 19 holds for op1p ∈ {Ap, 6Ap,@p, 6@p} and op2p ∈ {Ap, 6Ap,@p

, 6@p}:
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(R1 op1p R2) op2p R3 = (R1 op2p R3) op1p R2. (35)

In other words the score for each region in the result region set, denoted with p, is computed
as:

p = (p1 ·
∑
r̄2

(g(r̄2, r1) · p̄2)) ·
∑
r̄3

(g(r̄3, r1) · p̄3)

= (p1 ·
∑
r̄3

(g(r̄3, r1) · p̄3)) ·
∑
r̄2

(g(r̄2, r1) · p̄2),

We use g(r̄, r) to denote one of the functions gA(r̄, r), g6A(r̄, r), g@(r̄, r), or g6@(r̄, r), and
r̄ ∈ R A R′, r̄ ∈ R 6A R′, r̄ ∈ R′ @ R, or r̄ ∈ R′ 6@ R based on the type of operators op1p and op2p.

Furthermore, if the score value for all regions in the first operand R1 is equal to 1 (default
value for all regions), and we assume that the regions in each operand, R2 and R3, have the same
score value, denoted with p2 and p3, property 20 holds:

(R1 op1p R2) op2p R3 = (R1 op1p R2) up (R1 op2p R3), (36)

i.e., for every region in the result set we obtain score p:

p = (1 ·
∑
r̄2

(g(r̄2, r1) · p̄2) ·
∑
r̄3

(g(r̄3, r1) · p̄3)

= (1 ·
∑
r̄2

(g(r̄2, r1) · p̄2) · (1 ·
∑
r̄3

(g(r̄3, r1) · p̄3)).

If we consider the expression R4 in the NEXI query 2 we can come up with two query plans
shown below.

((p @p R2) Ap information) up ((p @p R2) Ap retrieval)

and

((p Ap information) up (p Ap retrieval)) @p R2

Although they are almost the same we could not apply property 36 to the first query plan
since the scores of regions in the result of the expression p @p R2 are not equal to 1 in general
case. For the second query plan the score value for all regions in p is 1 and the property can be
applied. Thus, at the end we can come up with the query plan as shown below:

((p Ap information) Ap retrieval) @p R2

The scoring version of property 21 for score operators up and tp does not hold in general. For
example, next equation is not true:

(R1 up R2) Ap R3 = (R1 Ap R3) up (R2 Ap R3).

It will be true only if fA(r1,2, R3)9= 1 which is not true in general case:

9We use r1,2 to denote the regions with the same bounds in region sets R1 and R2.
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p = (p1 · p2) ·
∑
r̄3

(g(r̄3, r1,2) · p̄3)

6= (p1 ·
∑
r̄2

(g(r̄2, r1,2)) · p̄2) · (p2 ·
∑
r̄3

(g(r̄3, r1,2) · p̄3)).

Similarly, for opp = {Ap, 6Ap,@p, 6@p} we have:

(R1 tp R2) opp R3 = (R1 opp R3) tp (R2 opp R3).

i.e.10,

p = (p1 + p2) ·
∑
r̄3

(g(r̄3, r1|2) · p̄3)

6= (p1 ·
∑
r̄2

(g(r̄2, r1)) · p̄2) + (p2 ·
∑
r̄3

(g(r̄3, r2) · p̄3)).

5.4 Region algebra and SRA operators

Here we give some issues concerning the combination of score and plain region algebra operators.
More elaborate discussion on issues about combining SRA and region algebra operators is left
for future research. We can only exert that, as we illustrated before, these issues are highly
dependent on the specification of the retrieval model, in other words, on the exact definition of
complex functions f (and g).

For the score manipulation operators the distributivity of plain operators (operators that do
not change the score values of regions in the left operand) over scoring operators does not hold.
This can easily be proven if we consider for example two sides of the inequality given in equation
below:

R1 op1 (R2 op2 R3) 6= (R1 op1 R2) op2 (R1 op1 R3),

where op1 = {A, 6A,@, 6@} and op2 ∈ {Ap, 6Ap,@p, 6@p}. The left side, R1 op1 (R2 op2 R3), will
always produce the set of regions which are actually a subset of regions in R1 with the same score
values. In that case the following equation is true (when disregarding the score values):

R1 op1 (R2 op2 R3) = R1 op1 R2

The right side ((R1 op1 R2) op2 (R1 op1 R3)) consists of two subexpressions each producing
a subset of regions in a region set R1. To be equal to the left side of the expression the right
side of the expression should produce the same regions with the same score values as in the
expression R1 op1 R2 which is not the case in general (e.g., it is trivial if R2 = R3). Similarly
if op1 ∈ {Ap, 6Ap,@p, 6@p} and op2 = {A, 6A,@, 6@}, the left side of the expression will result in
regions from region set R1 with modified score values, while the right side will produce a subset
of R1 (with potentially different score values than on the left side).

In case of op2 ∈ {up,tp} the left side will produce regions that contain (or do not contain)
regions with the same region bounds as regions in R2 and R3, while the right side will produce
regions which are the same in the first and in the second subexpression of the right expression. In
general these two regions are not equal. For example, if R2 u R3 = ∅ the score values of regions
on the left side of the equation will be 0, and if there exist a region r1 ∈ R1 that satisfies both
subexpressions on the right side, R1 op1 R2 and R1 op1 R3, this particular region will have the
score that is different from 0.

Similar reasoning can be applied to the other combination of region algebra and SRA operators.
10We use r1|2 to denote the regions which are present in one of the region sets, R1 or R2.
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6 A Possible Instantiation of Retrieval Functions

Here we illustrate a possible physical instantiation of information retrieval functions specified in
the SRA framework based on our INEX 2003 and 2004 approaches [25, 29]. The complex scoring
functions defined at the SA logical level, fA(r, R) and f6A(r, R), implement the about function
specified in NEXI, where ‘-’ in front of the term denote that the element containing that term
should be penalized.

The context region in which we perform frequency counts is denoted by ctx. We will make a
distinction between the set of term regions, denoted with W, and the set of XML element node
regions, denoted with N (similar as in Section 3). Therefore, selection of terms will be specified
as σn=term name(W) and selection of element nodes as σn=element name(N ). We use T to denote
arbitrary term region set, e.g., for term “XML” we would have T = σn=“XML”(W).

We first introduce five auxiliary functions at the physical level, to compute the term frequency
- tf (ctx ,T ), the ‘surrounding document’ term frequency - tf ′(ctx ,T ), the collection frequency -
cf (T ), the document frequency - df (T ), and the length prior - lp(ctx ). The surrounding document
term frequency is used in the model as it shows good behavior for retrieval (see [36]). Variable λ
represents the smoothing parameter for the inclusion of background statistics and µ is the mean
value (i.e., logarithm of the desired size for the element) and ρ is the variance (in our case set to
1) for the log-normal prior.

These auxiliary functions can be implemented using two physical operators: the size operator
size(ctx) returns the size of a selected region ctx (i.e., the number of terms in a region ctx), while
count operator |T | returns the number of regions (terms) in a (term) region set T .

Function tf (ctx ,T ) computes the term frequency of term regions in T given the context element
node ctx. It is computed as:

tf (ctx ,T ) =
|T on@ ctx|
size(ctx )

,

where on@ can be considered as the physical equivalent of the @ operator on logical level.
The function cf (T ) computes the collection frequency of a (term) region set T as follows:

cf (T ) =
|T |

size(Root)
,

where Root represents the region that is not contained by any other region in the collection (i.e.,
the root region of the entire XML collection).

The document frequency function results in a document frequency for a term present in the
region set T . We used article XML elements as a representation of XML documents11. The
document frequency function is computed as:

df (T ) =
|σn=“article”(N ) onA T |

|σn=“article”(N )|
.

To define the length prior of the region ctx we can use the size of the element, lp(ctx) = size(ctx),
the standard element prior, lp(ctx) = log(size(ctx)), or the log-normal distribution,

lp(ctx) =
e−((log(size(ctx))−µ)2/2ρ2)

size(ctx)ρ
√

2π
.

Finally, the function tf ′(ctx ,T ) computes the term frequency in a surrounding document:

tf ′(ctx ,T ) =
|T on@ (σn=“article′′(N ) onA ctx )|

size(σn=“article′′(N ) onA ctx )
.

11This is due to the organization of the INEX XML collection consisting of IEEE articles that most
resemble the notion of a document in traditional information retrieval.
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The complex scoring functions (g) defined at the logical level can now be implemented through
the combination function h, which is defined in terms of these auxiliary functions and mentioned
parameters:

gA,λ,α,µ = hA,λ,α,µ(tf (ctx ,T ), tf ′(ctx ,T ), cf (T ), df (T ), lp(ctx )),

g 6A,λ,α,µ = h6A,λ,α,µ(tf (ctx ,T ), tf ′(ctx ,T ), cf (T ), df (T ), lp(ctx )).

We can now implement different retrieval models, as ones based on the statistical language
model approach [21], at the physical level, by instantiating combination function h with the
right auxiliary functions. We implemented different variants of retrieval model, using different
background statistics and different length priors, as well as using a “fuzzy” and “probabilistic”
combination of scores as can be seen in [25]. Therefore, the instantiation of the combination
functions determines the actual retrieval model used. Note that some retrieval models may require
extension of the logical and/or physical level with new auxiliary functions, e.g., to support other
frequency measures.

In [25, 29] we also defined variants of the functions fA(r, R) and f@(r, R), denoted with fI(r, R)
and fJ(r, R), that are based on region containment operators and the operators size and count.
These functions specify the propagation of scores among regions based on their containment rela-
tion. Therefore, a variant of fA(r, R) is defined based on the expression R @ r, while a variant of
f@(r, R) is based on R A r. For example, the complex scoring function fA(r, R) can be defined as
a product of scores in region r and weighted sum of scores for regions R contained in r, normalized
by the region size. The function f@(r, R) can be defined as sum of a product of scores for regions
R containing region r and the score of region r:

fA(r1, R2) = p1 ·
∑

ri∈R2on@r1
(size(ri) ∗ pi)∑

ri∈R2on@R size(ri)
,

f@(r1, R2) = p1 ·
∑

ri∈R2onAr1

pi.

For more details on the implementation of SA algebra on physical level we refer to [25, 29].

7 Conclusions and Future Work

In this paper we point out that looking from the database point of view and from the XML
querying point of view there is something missing in modeling XML information retrieval. Our
premise is that the missing part is the structure aware (SA) view on XML and we try to justify
it throughout the paper. We address the problem of translating and executing IR-like queries
over XML documents stored in relational databases. We stress the usefulness of the intermediate
SA logical level, for which we choose region algebra based on its successful history in the area of
search in semi-structured documents as shown in the paper.

Region algebra provides a number of properties that can be used for query optimization at
the structure aware logical level of a database. Furthermore, the score region algebra (SRA) we
introduced can support score operators for ranked retrieval as an integral part of the algebra and
not as a side effect, enabling query optimization not only for plain (non-score) but for scoring
region algebra operators as well. The expressiveness considering ranked retrieval in our region
algebra is far richer than in other region algebra approaches that support ranked retrieval, such
as [6] and [26].

An important property of our region algebra is that expressing query plans using the operators,
σ, A, @, 6A, 6@, u, t, Ap, @p, 6Ap, 6@p, up, and tp, defined in Table 5 and 6, preserves data
independence between the conceptual level, the structure aware logical level, and the underlying
physical level of a database. Furthermore, with the abstract specification these operators enable
the separation between the structural query processing and the underlying probabilistic model
used for ranked retrieval: a design property termed content independence in [11]. Data and
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content independence also allow extensions on conceptual level that can be supported on logical
and physical level, enabling the application of three-level architecture with the region algebra at
the SA level for other XML query languages (e.g., XPath/XQuery full-text search extension [2])
and richer representation of XML data models (e.g., including ID/IDREFs [10]).

An important aspect of introducing SA level in XML DBMS is that we would like to experi-
mentally evaluate the benefits of intermediate level, both in terms of effectiveness and efficiency
of such a system. We will work on more advanced retrieval models that incorporate the structure
and semantics of XML and can be defined in the framework of score region algebra. Furthermore,
capturing our ad hoc approach for score manipulation in region algebra in a well-defined frame-
work (e.g., probability theory), would provide a more elegant way for defining score operators and
for the exact specification of SRA operator properties.

We are also planning to further explore the potential usage of region algebra operator prop-
erties. This will involve further study on the influence of the definition of score operators (score
functions and abstract operators) on score operator properties. Our future research is also con-
cerned with the effects of modifying or changing the retrieval model used, by using different
retrieval models as a base (e.g., tf.idf [35], BM25 [33]), by adding different background statistics
(i.e., document frequency, element frequency), or by adapting the model for phrase search (see
[29]), etc.
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P. Wadler. XML Path Language (XPath) 2.0. Technical report, W3C, 2004.

[13] D. Florescu and I. Manolescu. Integrating Keyword Search into XML Query Processing. In
Proceedings of the 9th International World Wide Web Conference, pages 67–76, 2000.

[14] N. Fuhr. Models for Integrated Information Retrieval and Database Systems. IEEE data
engineering bulletin, 19(1):3–13, 1996.

[15] N. Fuhr and K. Grossjohann. XIRQL: A query language for Information Retrieval in XML
Documents. In Proceedings of the 24th ACM SIGIR Conference on Research and Development
in Information Retrieval, 2001.

[16] N. Fuhr and K. Großjohann. XIRQL: An XML Query Language Based on Information
Retrieval Concepts. ACM TOIS, 22(2):313–356, 2004.

[17] N. Fuhr, M. Lalmas, and S. Malik, editors. Proceedings of the Second Workshop of the
INitiative for the Evaluation of XML retrieval (INEX), ERCIM Publications, 2004.

[18] T. Grust. Accelerating XPath Location Steps. In Proceedings of the 21st ACM SIGMOD
International Conference on Management of Data, pages 109–120, 2002.

[19] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In Proceedings of the 30th Int’l
Conference on Very Large Data Bases (VLDB), 2004.

33



[20] T. Grust and M. van Keulen. Tree Awareness for Relational DBMS Kernels: Staircase Join.
In H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and G. Weikum, editors, Intelligent
Search on XML, volume 2818 of Lecture Notes in Computer Science/Lecture Notes in Artificial
Intelligence (LNCS/LNAI), pages 179–192. Springer-Verlag, Berlin, New York, etc., August
2003.

[21] D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis, University of
Twente, Twente, The Netherlands, 2001.

[22] D. Hiemstra. A database approach to content-based XML retrieval. In Proceedings of the
First Workshop of the Initiative for the Evaluation of XML Retrieval, 2002.

[23] J. Jaakkola and P. Kilpelainen. Using sgrep for Querying Structured Text Files. Technical
Report C-1996-83, Department of Computer Science, University of Helsinki, 1996.

[24] J. Jaakkola and P. Kilpelainen. Nested Text-Region Algebra. Technical Report C-1999-2,
Department of Computer Science, University of Helsinki, 1999.
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A Plain Region Algebra Operator Properties

Here we list the properties of plain region algebra (region algebra without score operators)
operators. A numerous examples are given as a proof of different operator properties mentioned
in the paper that do not hold12.

A.1 Operators A and 6A

Identity:
R 6A Root = R

R 6A ∅ = R

Inverse:
Root 6A R = ∅, R 6= Root

Commutativity:
R1 A R2 6= R2 A R1

R1 6A R2 6= R2 6A R1

Example 1 : If R1 = {(5, 25), (50, 75)} and R2 = {(1, 35)} are two SRA sets then R1 A R2 = ∅, and
R2 A R1 = {(5, 25)}. Furthermore, R1 6A R2 = R1 and R2 6A R1 = ∅.

Associativity:
(R1 A R2) A R3 6= R1 A (R2 A R3)

(R1 6A R2) 6A R3 6= R1 6A (R2 6A R3)

Example 2 : If R1 = {(5, 50), (65, 95)}, R2 = {(25, 45), (70, 90)}, and R3 = {(10, 15), (80, 85)} are
three SRA sets then (R1 A R2) A R3 = {(5, 50), (65, 95)} and R1 A (R2 A R3) = {(65, 95)}. Similarly,
(R2 6A R3) 6A R1 = {(25, 45)} and R2 6A (R3 6A R1) = ∅.

Distributivity:
R1 A (R2 6A R3) 6= (R1 A R2) 6A (R1 A R3)

R1 6A (R2 A R3) 6= (R1 6A R2) A (R1 6A R3)

Example 3 : If R1 = {(5, 50), (65, 95)}, R2 = {(25, 45), (70, 90)}, and R3 = {(10, 15), (80, 85)} are three
SRA sets then R1 A (R2 6A R3) = {(5, 50)} and (R1 A R2) 6A (R1 A R3) = ∅. Also R1 6A (R2 A R3) =
{(15, 50)} and (R1 6A R2) A (R1 6A R3) = ∅.

R1 A (R2 @ R3) 6= (R1 A R2) @ (R1 A R3)

R1 6A (R2 @ R3) 6= (R1 6A R2) @ (R1 6A R3)

Example 4 : If R1 = {(5, 50), (65, 95)}, R2 = {(10, 15), (80, 85)}, and R3 = {(25, 45), (70, 90)}, are
three SRA sets then R1 A (R2 @ R3) = {(65, 95)} and (R1 A R2) @ (R1 A R3) = ∅. Similarly
R1 6A (R2 @ R3) = {(5, 50)} and (R1 6A R2) @ (R1 6A R3) = ∅.

R1 A (R2 uR3) 6= (R1 A R2) u (R1 A R3)

R1 6A (R2 uR3) 6= (R1 6A R2) u (R1 6A R3)

12We used only start and end information since these operands operate only on these region attributes.
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Example 5 : If R1 = {(5, 50), (65, 95)}, R2 = {(10, 15), (80, 85)}, and R3 = {(25, 45), (70, 90)}, are
three SRA sets then R1 A (R2 u R3) = ∅ and (R1 A R2) u (R1 A R3) = {(5, 50), (65, 95)}. Also
R1 6A (R2 uR3) = {(5, 50), (65, 95)} and (R1 6A R2) u (R1 6A R3) = ∅.

R1 A (R2 tR3) = (R1 A R2) t (R1 A R3)

R1 6A (R2 tR3) 6= (R1 6A R2) t (R1 6A R3)

Example 6 : If R1 = {(25, 45), (70, 90)}, R2 = {(5, 50), (65, 95)}, and R3 = {(10, 15), (80, 85)}, are
three SRA sets then R1 6A (R2 t R3) = {(25, 45)} and (R1 6A R2) t (R1 6A R3) = {(25, 45), (70, 90)}. The
prof for the first expression is trivial and can be derived from the definition of the operators A and t.

A.2 Operators @ and 6@

Identity:
R @ Root = R, R 6= Root

R 6@ ∅ = R

Inverse:
∅ 6@ R = ∅

Commutativity:
R1 @ R2 6= R2 @ R1

R1 6@ R2 6= R2 6@ R1

Example 7 : If R1 = {(5, 25), (50, 75)} and R2 = {(1, 35)} are two SRA sets then R1 @ R2 = {(5, 25)}
and R2 @ R1 = ∅, and similarly R1 6@ R2 = {(50, 75)} and R2 6@ R1 = {(1, 35)}.

Associativity:
(R1 @ R2) @ R3 6= R1 @ (R2 @ R3)

(R1 6@ R2) 6@ R3 6= R1 6@ (R2 6@ R3)

Example 8 : If R1 = {(10, 15), (80, 85)}, R2 = {(25, 45), (65, 95)}, and R3 = {(5, 50), (70, 90)} are three
SRA sets then (R1 @ R2) @ R3 = {(80, 85)} and R1 @ (R2 @ R3) = ∅. Also (R1 6@ R2) 6@ R3 = ∅ and
R1 6@ (R2 6@ R3) = {(10, 15)}.

Distributivity:
R1 @ (R2 A R3) 6= (R1 @ R2) A (R1 @ R3)

R1 6@ (R2 A R3) 6= (R1 6@ R2) A (R1 6@ R3)

Example 9 : If R1 = {(10, 15), (80, 85)}, R2 = {(25, 45), (65, 95)}, and R3 = {(5, 50), (70, 90)} are three
SRA sets then R1 @ (R2 A R3) = {(80, 85)} and (R1 @ R2) A (R1 @ R3) = ∅. Also R1 6@ (R2 A R3) =
{(10, 15)} and (R1 6@ R2) A (R1 6@ R3) = ∅.

R1 @ (R2 6@ R3) 6= (R1 @ R2) 6@ (R1 @ R3)

R1 6@ (R2 @ R3) 6= (R1 6@ R2) @ (R1 6@ R3)

Example 10 : If R1 = {(10, 15), (80, 85)}, R2 = {(5, 50), (70, 90)}, and R3 = {(25, 45), (65, 95)} are
three SRA sets then R1 @ (R2 6@ R3) = {(10, 15)} and (R1 @ R2) 6@ (R1 @ R3) = {(10, 15), (80, 85)}.
Also R1 6@ (R2 @ R3) = {(10, 15)} and (R1 6@ R2) @ (R1 6@ R3) = ∅.

R1 @ (R2 uR3) 6= (R1 @ R2) u (R1 @ R3)
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R1 6@ (R2 uR3) 6= (R1 6@ R2) u (R1 6@ R3)

Example 11 : If R1 = {(10, 15), (80, 85)}, R2 = {(5, 50), (65, 95)}, and R3 = {(25, 45), (70, 90)} are
three SRA sets then R1 @ (R2 u R3) = ∅ and (R1 @ R2) u (R1 @ R3) = {(80, 85)}. Similarly R1 6@
(R2 uR3) = {(10, 15), (80, 85)} and (R1 6@ R2) u (R1 6@ R3) = ∅.

R1 @ (R2 tR3) = (R1 @ R2) t (R1 @ R3)

R1 6@ (R2 tR3) 6= (R1 6@ R2) t (R1 6@ R3)

Example 12 : If R1 = {(10, 15), (80, 85)}, R2 = {(5, 50), (65, 95)}, and R3 = {(25, 45), (70, 90)} are
three SRA sets then R1 6@ (R2 tR3) = ∅ and (R1 6@ R2) t (R1 6@ R3) = {(10, 15)}. The first equality can
be easily proven following the definition of operators @ and t.

A.3 Operator u

Identity:
R u C = R

C uR = R

Inverse:

Commutativity:
R1 uR2 = R2 uR1

Associativity:
(R1 uR2) uR3 = R1 u (R2 uR3)

Distributivity:
R1 u (R2 A R3) 6= (R1 uR2) A (R1 uR3)

R1 u (R2 @ R3) 6= (R1 uR2) @ (R1 uR3)

Proof: In case R1 ≡ R2 the equations become R2 op R3 6= R2 op (R2 u R3), where op = {A, @}. If
there exist a region in R2 such that R2 op R3 6= ∅, and R2 u R3 = ∅ then R2 op (R2 u R3) = ∅ and the
equations are true.

R1 u (R2 6A R3) 6= (R1 uR2) 6A (R1 uR3)

R1 u (R2 6@ R3) 6= (R1 uR2) 6@ (R1 uR3)

Proof: If (R1 uR3) = ∅, and there exist a region set R′ such that R1 uR1 = R′ 6= ∅ and R′ op R3 = ∅
for op = {6A, 6@}, the left side of the equation will become R1 u (R2 op R3) = ∅ and the right side will be
(R1 uR2) op (R1 uR3) = R′.

R1 u (R2 tR3) = (R1 uR2) t (R1 uR3)
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A.4 Operator t

Identity:
R t ∅ = R

∅ tR = R

Inverse:

Commutativity:
R1 tR2 = R2 tR1

Associativity:
(R1 tR2) tR3 = R1 t (R2 tR3)

Distributivity:
R1 t (R2 A R3) 6= (R1 tR2) A (R1 tR3)

R1 t (R2 @ R3) 6= (R1 tR2) @ (R1 tR3)

Proof: If there exist a region set R′ ⊂ R1 which is unique (i.e., R′ u R2 = ∅ and R′ u R3 = ∅), and
R′ op R′ = ∅ for op = {A, @}, the region set R′ will be in the result region set on the left side but not in
the result of the right side of the equation.

R1 t (R2 6A R3) 6= (R1 tR2) 6A (R1 tR3)

R1 t (R2 6@ R3) 6= (R1 tR2) 6@ (R1 tR3)

Proof: If there exist a region set R′ ⊂ R1 which is unique (i.e., R′ u R2 = ∅ and R′ u R3 = ∅), and
R′ op R′ = ∅ for op = {6A, 6@}, the region set R′ will be in the result region set on the left side but not in
the result of the right side of the equation.

R1 t (R2 uR3) = (R1 tR2) u (R1 tR3)

A.5 Special cases of associativity and distributivity

Special cases of operator associativity:

(R1 A R2) A R3 = (R1 A R3) A R2

(R1 6A R2) 6A R3 = (R1 6A R3) 6A R2

(R1 @ R2) @ R3 = (R1 @ R3) @ R2

(R1 6@ R2) 6@ R3 = (R1 6@ R3) 6@ R2

(R1 A R2) @ R3 = (R1 @ R3) A R2

(R1 6A R2) 6@ R3 = (R1 6@ R3) 6A R2

(R1 @ R2) A R3 = (R1 A R3) @ R2

(R1 6@ R2) 6A R3 = (R1 6A R3) 6@ R2
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Special cases of operator normalization:

(R1 A R2) A R3 = (R1 A R2) u (R1 A R3)

(R1 6A R2) 6A R3 = (R1 6A R2) u (R1 6A R3)

(R1 @ R2) @ R3 = (R1 @ R2) u (R1 @ R3)

(R1 6@ R2) 6@ R3 = (R1 6@ R2) u (R1 6@ R3)

(R1 A R2) @ R3 = (R1 A R2) u (R1 @ R3)

(R1 6A R2) 6@ R3 = (R1 6A R2) u (R1 6@ R3)

(R1 @ R2) A R3 = (R1 @ R2) u (R1 A R3)

(R1 6@ R2) 6A R3 = (R1 6@ R2) u (R1 6A R3)

Set-containment operator distributivity:

(R1 uR2) A R3 = (R1 A R3) u (R2 A R3)

(R1 uR2) 6A R3 = (R1 6A R3) u (R2 6A R3)

(R1 uR2) @ R3 = (R1 @ R3) u (R2 @ R3)

(R1 uR2) 6@ R3 = (R1 6@ R3) u (R2 6@ R3)

(R1 tR2) A R3 = (R1 A R3) t (R2 A R3)

(R1 tR2) 6A R3 = (R1 6A R3) t (R2 6A R3)

(R1 tR2) @ R3 = (R1 @ R3) t (R2 @ R3)

(R1 tR2) 6@ R3 = (R1 6@ R3) t (R2 6@ R3)
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B Properties of Scoring Operators in SRA

This appendix lists the properties of scoring operators in SRA with a short description of the
region scoring results after the application of score operators. We give only the most important
properties that hold.

B.1 Operator up

Identity:
R up C = R, i.e., p · 1 = p,∀r ∈ R

C up R = R, i.e., 1 · p = p,∀r ∈ R

Inverse:

Commutativity:
R1 up R2 = R2 up R1

i.e., p1 · p2 = p2 · p1,∀r1, r2 ∈ R1 uR2

Associativity:
(R1 up R2) up R3 = R1 u (R2 up R3)

i.e., (p1 · p2) · p3 = p1 · (p2 · p3),∀r1, r2, r3 ∈ (R1 uR2) uR3

Distributivity:
R1 up (R2 tp R3) = (R1 up R2) tp (R1 up R3)

i.e., p1 · (p2 + p3) = (p1 · p2) + (p1 · p3),∀r1, r2, r3 ∈ R1 u (R2 tR3)

B.2 Operator tp

Identity:
R tp ∅ = R, i.e., p + 0 = p,∀r ∈ R

∅ up R = R, i.e., 0 + p = p,∀r ∈ R

Inverse:

Commutativity:
R1 tp R2 = R2 tp R1

i.e., p1 + p2 = p2 + p1,∀r1, r2 ∈ R1 uR2

Associativity:
(R1 tp R2) tp R3 = R1 t (R2 tp R3)

i.e., (p1 + p2) + p3 = p1 + (p2 + p3),∀r1, r2, r3 ∈ (R1 tR2) tR3

41



Distributivity:

B.3 Operators Ap, 6Ap, @p, and 6@p

Properties of these operators are highly dependant on the instantiation of retrieval function.

B.4 Additional SRA operator properties

Special cases of score operator associativity:

For op1p = {Ap, 6Ap,@p, 6@p} and op2p = {Ap, 6Ap,@p, 6@p}:

(R1 op1p R2) op2p R3 = (R1 op2p R3) op1p R2

i.e., for every region in the result set we obtain score p:

p = (p1 ·
∑
r̄2

(g(r̄2, r1) · p̄2)) ·
∑
r̄3

(g(r̄3, r1) · p̄3)

= (p1 ·
∑
r̄3

(g(r̄3, r1) · p̄3)) ·
∑
r̄2

(g(r̄2, r1) · p̄2),

where g(r̄, r) is one of the functions gA(r̄, r), g6A(r̄, r), g@(r̄, r), or g6@(r̄, r), and r̄ ∈ R A R′,
r̄ ∈ R 6A R′, r̄ ∈ R′ @ R, or r̄ ∈ R′ 6@ R is based on the type of operators op1p and op2p.

Special cases of score operator normalization:

For op1p = {Ap, 6Ap,@p, 6@p} and op2p = {Ap, 6Ap,@p, 6@p} and if next condition is satisfied
∀r1 ∈ R1, p1 = 1 ∧ ∀r2 ∈ R2, r3 ∈ R3, p2 = p3 = c:

(R1 op1p R2) op2p R3 = (R1 op1p R2) up (R1 op2p R3)

i.e., for every region in the result set we obtain score p:

p = (1 ·
∑
r̄2

(g(r̄2, r1) · p̄2) ·
∑
r̄3

(g(r̄3, r1) · p̄3)

= (1 ·
∑
r̄2

(g(r̄2, r1) · p̄2) · (1 ·
∑
r̄3

(g(r̄3, r1) · p̄3)).

where g(r̄, r) is one of the functions gA(r̄, r), g6A(r̄, r), g@(r̄, r), or g6@(r̄, r), and r̄ ∈ R A R′,
r̄ ∈ R 6A R′, r̄ ∈ R′ @ R, or r̄ ∈ R′ 6@ R is based on the type of operators op1p and op2p.
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