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ABSTRACT
In this paper we present a systematic analysis of document
retrieval using unstructured and structured queries within
the score region algebra (SRA) structured retrieval frame-
work. The behavior of different retrieval models, namely
Boolean, tf.idf, GPX, language models, and Okapi, is tested
using the transparent SRA framework in our three-level struc-
tured retrieval system called TIJAH. The retrieval models
are implemented along four elementary retrieval aspects: el-
ement and term selection, element score computation, score
combination, and score propagation.

The analysis is performed on a numerous experiments
evaluated on TREC and CLEF collections, using manually
generated unstructured and structured queries. Unstruc-
tured queries range from the short title queries to long title
+ description + narrative queries. For generating structured
queries we exploit the knowledge of the document structure
and the content used to semantically describe or classify
documents. We show that such structured information can
be utilized in retrieval engines to give more precise answers
to user queries then when using unstructured queries.

Categories and Subject Descriptors: H.3.3 [Informa-
tion search and retrieval]: Query formulation, Retrieval mod-
els; H.2.3 [Languages]: Query languages;

General Terms: languages, experimentation

Keywords: structured queries, region algebra, retrieval
models, structured retrieval, retrieval effectiveness

1. INTRODUCTION
In the times of lazy users and the majority of the docu-

ments on the Web lacking clear structure and uniform for-
mat, the effectiveness of information retrieval engines seems
to reach the top. The question is whether the upcoming
years will bring significant improvements for IR engines that
will be appreciated by users.

Although most of the user queries issued to Web search en-
gines constitute of a limited number of query terms (93% of
the Web queries have less than five terms in the query as re-
ported in [19]), these query terms do not have to be the only
input that the search engines can use to find the relevant in-
formation. For instance, faceted queries [12, 18, 35] utilize
knowledge about the semantic relations between words to
retrieve more relevant answers, whereas field (structured)
search queries utilize document structure to give more pre-
cise answers (see [14]).

What is not well utilized in many text retrieval approaches
so far is that many of the “flat-file” documents are actu-
ally more/less structured using one of the following formats:
HTML, SGML, XML, etc. Additionally, some documents
come with an already prepared classification or a short de-
scription of document content (e.g., keywords) in some of
the tags. For example, TREC and CLEF collections are
in SGML format with tags such as: “subject”, “section”,
“type”. Thus, the semantics of these tags and the annota-
tion of the documents that they contain can also be utilized
for improving the effectiveness of a retrieval system.

We argue that the structured organization of documents
as well as the structural formation of queries should not
be neglected in future information retrieval engines. This
idea is addressed in a number of research papers, start-
ing with the early work by Callan, Turtle, and Croft [7,
11] on incorporating hypertext links and field-based queries
into retrieval systems, and Salminen and Tompa [32] and
Burkowski and Clarke [5, 9] on structured text search. These
papers showed the usefulness of structured retrieval and set
the path for future research.

Furthermore, the importance of field search [6, 10, 37]
and structural (XML) search [1, 13, 22, 24, 28] is also re-
alized by many commercial search engines nowadays. For
instance, Google has “advanced search” that supports a
number of field search extensions, such as domain search
(site:), file type search (filetype:), and URL search (inurl:)1,
and the U.S. National Center for Biotechnology Informa-
tion uses a search engine that searches various medical data
sources based on their structure, e.g., users can search the
PubMed medical collection based on subsets (e.g., AIDS,
cancer), ages (e.g., infant, child, adult)2, etc. Additionally,
there are open source search engines like Indri [37] and Ter-
rier [29], or enterprise search engines like Panoptic [16], that
enable the formulation of complex structured queries and
their evaluation.

1http://www.google.com/.
2http://www.ncbi.nlm.nih.gov/.



The growth of personalized search, i.e., the information
about the user who is performing the search [23, 30], as
well as the semantic information that can be deduced from
the search request, e.g., using semantic web resources [36],
enables the automatic generation of such complex queries.
Therefore, in the future we can expect that the automatic
generation of structured queries would be possible, or at
least that many retrieval systems will support users in ex-
pressing their information need as a structured query. In
this paper we assume that the generation of complex (struc-
tured) queries is possible and focus on analyzing the system
performance having such queries.

Not many systematic analysis that explore the usage of
document structure for document retrieval have been pre-
sented in the literature. For such analysis, it is beneficial to
have a framework that enables the implementation of various
retrieval models, and that supports retrieval from structured
documents using unstructured and structured queries. Such
framework would help us in improving the effectiveness of
existing document retrieval approaches.

1.1 Research focus
Much research has been done into retrieving relevant doc-

uments given a simple list-of-term queries. Structured re-
trieval is gaining more and more attention nowadays. We
argue that the automatic generation of simple structured
queries, such as faceted and field search queries explained
in Section 2.2, is by far more realistic than the generation
of long queries such as TREC title + description or title +
description + narrative. However, it is unclear whether we
can achieve comparable effectiveness when using these ‘sim-
ple’ structured queries in comparison with expanded queries
(using topic description and narrative).

The question that we try to answer in this paper is twofold.
The first part is related to the analysis of the behavior of
different retrieval models in unstructured and structured re-
trieval scenarios. The second part tests whether the for-
mation of structured queries by (end) users, either with
or without the help of information automatically extracted
from documents, can improve retrieval model effectiveness.
In other words, is a search system that is provided with
the advanced structured queries (either faceted, field-based,
or both) more effective on ad-hoc search task than the same
search engine operating on simple or expanded unstructured
text queries.

1.2 Research methodology
To test the robustness of different retrieval models with

respect to different unstructured and structured query for-
mulations, we perform the experiments using the TIJAH
system [26]. TIJAH is a transparent three-level database
system. Its central part is score region algebra (SRA) at the
logical level. SRA supports a variety of retrieval models and
easy formulation of unstructured and structured queries. An
important feature of SRA is that it is not bound to a pre-
defined retrieval model but it supports arbitrary retrieval
models. The analysis of the retrieval model behavior for
different query specifications is performed along four ele-
mentary retrieval aspects [24]: element and term selection,
element score computation, score combination, and score
propagation. Each aspect is implemented in score region
algebra using one or more operators.

We choose three directions for exploring the potential us-

age of query structure to test whether we can make the
retrieval more effective in comparison to the list-of-term
queries (ranging from short title queries to long title + de-
scription + narrative queries):

• (re)formulating the queries using faceted (Boolean) query
formulation

• (re)formulating the queries using the document struc-
ture and the classification already present in struc-
tured documents

• combing the queries that utilize document structure
with the simple title and faceted queries.

1.3 Outline
The following section explains different query types used

in the paper for analyzing unstructured and structured re-
trieval. Our three-level structured IR database system TI-
JAH is presented in Section 3, along with the instantiation of
different retrieval models in score region algebra. Section 4
describes the test collections we use and the structured query
generation process. Experiments aimed at analyzing differ-
ent retrieval models in unstructured and structured query
scenarios, and at exploring whether structured search can
improve the effectiveness with respect to list-of-term queries,
are discussed in Section 5. Finally, in Section 6 we conclude
the paper.

2. QUERY TYPES
This section explains in more detail the query types we

analyze in this paper. As we use TREC ad-hoc topic 305
for illustration throughout the paper, here we give the topic
title, description, and narrative:

Title: most dangerous vehicles
Description: Which are the most crashworthy, and

least crashworthy, passenger vehicles?
Narrative: A relevant document will contain

information on the crashworthiness of a given vehicle
or vehicles that can be used to draw a comparison with
other vehicles. The document will have to
describe/compare vehicles, not drivers. For instance,
it should be expected that vehicles preferred by 16-25
year-olds would be involved in more crashes, because
that age group is involved in more crashes. I would
view number of fatalities per 100 crashes to be more
revealing of a vehicle’s crashworthiness than the
number of crashes per 100,000 miles, for example.

2.1 Unstructured queries
In the analysis of unstructured querying we use four types

of unstructured queries. These are: title (T), title + de-
scription (TD), title + description + narrative (TDN), and
expanded queries (E). Title, title + description, and title
+ description + narrative queries can easily be formed us-
ing TREC and CLEF topic specifications (see the example
TREC ad-hoc topic 305 above).

On the other hand, expanded queries are usually formed
by manually or automatically extending the topic title with
more query terms. If we assume that the user is willing to
trade his time/effort in stating his query using more query
terms for effectiveness, or an automatic way to expand the
query exists, e.g., using WordNet [27], routing [4], or rel-
evance feedback [33], a simple title of the TREC ad-hoc



query 305 can be transformed into a non-structured query
that looks like:

vehicles crash cars crashworthy death danger

In our approach we use manual query expansion (see [12])
based on a faceted query formulation. Section 5.1 explains
in more details the effects of manual query expansion, as
well as the consequence of using the topic description and
narrative in the query formulation, on retrieval effectiveness.

2.2 Structured queries
As already stated in the Introduction, two types of struc-

tured queries are investigated in this paper: faceted (Boolean)
queries and field-based structured queries. They are ex-
plained below.

2.2.1 Faceted query formulation
The origin of this type of Boolean query formulation can

be found in the generation of faceted queries [12, 17] that li-
brarians used in early days of information retrieval, even be-
fore the computer era. However, not many searchers use and
not many retrieval systems support this kind of query for-
mulation. We try to explore whether faceted search should
be supported in retrieval systems, i.e., if it is more effective
than list-of-term queries.

The generation of faceted queries is based upon the selec-
tion of terms that describe the user information need and on
the classification of these terms. The classification reflects
the distinction between terms that express the same facet.
Query terms that belong to the same facet are expressed us-
ing disjunction (OR combination) on terms, and facets are
combined using conjunction (AND combination). For exam-
ple, if we apply the faceted query paradigm to (expanded)
TREC query 305, the query becomes:

(vehicles OR cars) AND

(crash OR crashworthy OR death OR danger)

So far not many explicit proofs exist that this kind of
query formulation is beneficial for query evaluation, except
for some results presented in [18]. However, there are nu-
merous techniques that use the same idea, except that the
faceted query formulation is hidden in the layer of query
routing and refining, starting with the work of Buckley et
al. [4] and Xu and Croft [39]. Additionally, not many mod-
els are tested for their robustness with respect to faceted
query formulations. We elaborate more on this issue in Sec-
tions 4.2 and 5.2.

2.2.2 Using document structure for query formula-
tion

With the rapid growth of the number of XML (struc-
tured) documents, structured information retrieval has be-
come a requirement for modern retrieval models (see [14]).
Although XML query languages [1, 13, 38] are quite expres-
sive, even the “professional searchers” seem to have prob-
lems with formulating good structured queries that contain
nested elements and contextual hints [20, 21]. However,
a clear indication exists that in XML retrieval structured
queries do help early precision (see [21] and other papers
in [14]). Kamps et al. [21] also point out that, except for
the simple structural query formulation, structure is mostly
used as a hint in the query and it is never an inherent part of
the information need. Following their reasoning we explore

whether and to what extent “structural search hints” in the
form of a (combination of) field search(es) can improve re-
trieval effectiveness.

Structured IR queries express a combination of searches
in different parts of (hierarchically) structured documents
(see e.g., [38] for XML query examples). In the case of
shallow hierarchical documents, such as the ones in TREC
and CLEF collections, structured queries can be formed by
adding one or more field-like structural constraints to the
unstructured query. Looking at the description of the ad-
hoc topic 305 in the TREC collection and knowing what are
the most frequent terms within “subject” elements in the
collection, we can come up with the following structured
query, where the first part is actually the topic title (see
Section 4.3 for more details on forming structured queries):

most dangerous vehicles

SUBJECT: safety automobile accidents

Such queries provide the base for exploring the usefulness
of structured information in poorly structured documents,
such as TREC and CLEF data collections, and for finding
what is the best way of incorporating this additional infor-
mation with the traditional document retrieval. The results
on structural search are presented in Section 5.2.

3. RETRIEVAL SYSTEM AND MODELS
In this section we describe our three-level database sys-

tem, called TIJAH, and explain the instantiation of different
retrieval models in score region algebra.

3.1 Retrieval system architecture
The TIJAH system consists of a conceptual, logical, and

physical level. The central part of the system is the trans-
parent logical level based on score region algebra (SRA) [24].
The transparency is reflected by the ability to instantiate
different retrieval models without affecting the specification
of the logical operators, while keeping the same query lan-
guage at the conceptual level and with the straightforward
physical implementation using arbitrary (low-level) DBMS.

3.1.1 Conceptual Level
Since TIJAH was originally developed for XML retrieval,

on conceptual level we use the syntax of the Narrowed Ex-
tended XPath I (NEXI) query language [38]. NEXI allows
only descendant steps from XPath 1.0 [8] and introduces
an about clause that specifies which part of the document
should be searched and what are the query terms. Therefore,
the simple (title) TREC ad-hoc query 305 can be expressed
in NEXI as:

//DOC[about(., most dangerous vehicles)]

The query is first processed at the conceptual level where
stemming and stopword removal is performed. Additionally,
the retrieval model and its parameters are specified. The
conceptual query, together with the retrieval model specifi-
cation, is then forwarded to the logical level.

3.1.2 Logical level
The logical level is based on the score region algebra [24,

26] that regards a document as a set of regions, where each
region represents an XML (or SGML) element or a term in
a document (for more details on region modeling see [25]).
A region is defined by its starting position (s), end position



Table 1: Score region algebra operators.
Operator Operator definition

σn=name,t=type(R) {r | r ∈ R ∧ r.n = name ∧ r.t = type}
∇(R) {(r.s, r.e, r.n, r.t, fprior(r)) | r ∈ R}
R1 =p R2 {(r1.s, r1.e, r1.n, r1.t, f=(r1, R2)) | r1 ∈ R1 ∧ r1.t = node}
R1 up R2 {(r1.s, r1.e, r1.n, r1.t, r1.p⊗ r2.p) | r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1, t1) = (s2, e2, n2, t2)}
R1 tp R2 {(r.s, r.e, r.n, r.t, r1.p⊕ r2.p) | r1 ∈ R1 ∧ r2 ∈ R2

∧ ((r.s, r.e, r.n, r.t) = (r1.s, r1.e, r1.n, r1.t) ∨ (r.s, r.e, r.n, r.t) = (r2.s, r2.e, r2.n, r2.t))}
R1 I R2 {(r1.s, r1.e, r1.n, r1.t, fI(r1, R2)) | r1 ∈ R1 ∧ r1.t = node}

(e), type (t) that can be either term or node, name (n),
and score (p). The score information depicts the score of a
region with respect to the query.

SRA is organized along four elementary retrieval aspects,
as we mentioned before: element/term selection, element
relevance score computation, relevance score combination,
and relevance score propagation. The set of operators we use
is depicted in Table 1. The first operator models the aspect
of element selection and selects either elements or terms in
a document. The operator ∇(R) models the element prior
and is used in combination with models that need priors to
improve effectiveness.

Operator =p models the element score computation as-
pect based on the abstract function f=(r1, R2). The abstract
function implements the basic retrieval model that assigns
a score to a region r1 looking at its starting position, end
position, and score value. It also takes into account scores
of contained regions from the region set R2. For example,
it can be instantiated using term frequency and document
frequency for the tf.idf model.

Operators up and tp model the score combination aspect
in an AND or OR logical combination of sets of regions,
transparently implemented using abstract operators ⊗ and
⊕ respectively. The last operator in Table 1 models upwards
score propagation and is used for queries that include docu-
ment structure. The instantiation of upwards score propaga-
tion function fI(r1, R2), as well as other transparent func-
tions and operators, is presented in the next section.

Using the operators given in Table 1 we can easily ex-
press the conceptual query in SRA at the logical level. For
example, query 305 can be expressed as:

(σt=node,n=‘DOC’ =p σt=term,n=‘most’)

up (σt=node,n=‘DOC’ =p σt=term,n=‘dangerous’)

up (σt=node,n=‘DOC’ =p σt=term,n=‘vehicles’)

Such a query plan, with the right retrieval model specifica-
tion, is then passed to the physical level for execution.

3.1.3 Physical level
The physical implementation in the TIJAH system is done

using MonetDB kernel [3]. MonetDB is a low level database
engine. For the communication with the kernel we use the
Monet Interpreter Language (MIL). Therefore, each opera-
tor at the logical level is implemented as one MIL function,
or as many in case of transparent operators for score compu-
tation, combination, and propagation. Based on the logical
query plan and retrieval model specification, the call to the
proper MIL functions with specified parameters is achieved.
The output of the query execution, which is a list of elements
with their respective scores reflecting the relevance of an el-
ement/document to a query, is then sorted and transformed
into the proper output for evaluation.

3.2 Instantiating the retrieval model
In TIJAH (SRA) retrieval models are instantiated along

the four elementary retrieval aspects. They are defined at
the logical level but their real implementation is at the physi-
cal level. Element and term selection operator always selects
elements with the computed or default score (in case R is
the set of all regions in the collection), as can be seen in
Table 1. For the default score for all regions in the collec-
tion we choose 1.0. We use only one specification for the
element/term selection aspect: term regions are always se-
lected with the usage of stemming and element regions are
selected by strictly matching their names. For the other
three retrieval aspects we use score region algebra trans-
parency, and several definitions for functions representing
each aspect are explained below.

For transparently specifying scoring functions we use aux-
iliary functions. In these functions ri ≺ rj is used to denote
that the region ri is contained in the region rj (ri ≺ rj ⇔
sj < si ≤ ei < ej) and C is used to denote the set of all
regions in the collection. The auxiliary functions are used
for a number of purposes. The first one counts the number
of regions in the region set R, denoted with |R|. The second
one computes the size of the region r, either based on start-
ing and end index of the region (Equation 1) or the number
of contained terms (Equation 2). Finally, the third one com-
putes the average size of the regions with the region name
n in the collection, denoted with avg size(n) (Equation 3),
also based either on the element index or term count.

sizeelement(r) = r.e− r.s− 1 (1)

sizeterm(r) = |{r1 ∈ C|r1.t = term ∧ r1 ≺ r}| (2)

avg size(n) =

∑
r1∈C|r1.n=n size(r1)

|{r1 ∈ C|r1.n = n}| (3)

The difference between Equation 1 and Equation 2 is that
the former, beside terms, also counts the opening and closing
tags of regions contained in the region r.

For computing the prior we used a length prior as given
in Equation 4. The length prior is based on the assump-
tion that the larger elements are more likely to be the right
answers to a query.

fprior(r) := r.p · size(r) (4)

3.2.1 Element (relevance) score computation
Operator =p models element relevance score computation,

i.e., the concept that the search elements (regions in the first
operand) should contain the term (regions in the second
operand). Therefore, the function f=(r1, R2), applied to a
region r1 and a region set R2, should result in the numeric



value that specifies the relevance of the region (element) r1

given the (term) regions in R2 that it contains. We use five
retrieval models to specify score computation, two baseline
ones: Boolean and tf.idf [34], and three more advanced: Lan-
guage Models (LMs) [18], the Okapi (INQUERY) model [6,
31], and the Garden Point XML (GPX) model [15]3.

The simple Boolean formula for score computation is given
by:

fBool
= (r1, R2) = r1.p · sgn(|{r2 ∈ R2|r2 ≺ r1}|) (5)

For the tf.idf approach we use the following formula:

f tf.idf
= (r1, R2) = r1.p ·

∑

r2∈R2|r2≺r1

r2.p

· ln
|{r ∈ C|r.n = r1.n}|

|{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}| (6)

The language model can be instantiated using auxiliary func-
tions as:

fLMs
= (r1, R2) = r1.p · (λ

∑
r2∈R2|r2≺r1

r2.p

size(r1)
+ (1−λ)

|R2|
size(Root)

)

(7)

The Okapi formula is derived from the original model by
removing the third factor from the product (see [31]). The
reason is that the third factor is based on a size of the query
and it is not supported in other models. The complex func-
tion fOkapi

= is specified as:

fOkapi
= (r1, R2) = r1.p ·

ln
|{r∈C|r.n=r1.n}|−|{r∈C|r.n=r1.n ∧ ∃r2∈R2 ∧ r2≺r}|+0.5

|{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}|+ 0.5

·
(k1 + 1) ·∑r2∈R2|r2≺r1

r2.p

k1((1− b) + b
size(r1)

avg size(r1.n)
) +

∑
r2∈R2|r2≺r1

r2.p
(8)

The element relevance score computation in the GPX
model is specified as:

fGPX
= (r1, R2) = r1.p ·

∑
r2∈R2|r2≺r1

r2.p

|R2|
(9)

Although this is a slightly different formula than the origi-
nal GPX model it showed equally good performance in our
previous experiments [24].

To be able to apply different score combination and score
propagation functions on all score computation models, we
had to normalize the score computation function results for
Okapi and tf.idf models to a range [0, 1]. The resulting scores
of Boolean, GPX, and language model score computation
functions are already normalized.

3.2.2 Element score combination
The abstract operator ⊗ specifies how scores are com-

bined in an AND expression, denoted in SRA by up, while
the operator ⊕ defines score combination in an OR expres-
sion, denoted in SRA with tp. We make different choices for
the implementation of abstract score combination operators.

3Although this is not a well known retrieval model we have cho-
sen it as it is among the most effective ones for XML retrieval
presented at INEX 2004 workshop: http://inex.is.informatik.uni-
duisburg.de:2004.

Besides the simple implementations such as sum, product,
minimum, and maximum ({⊕,⊗} := {+, ∗, min, max}), fol-
lowing [6] and [15], we also define these two abstract op-
erators as probabilistic sum (shown in Equations 10) and
exponential sum (shown in Equation 11):

r1.p{⊕prob,⊗prob}r2.p = 1− (1− r1.p) · (1− r2.p) (10)

r1.p{⊕exp,⊗exp}r2.p =





r1.p+r2.p if r1.p = 0 ∨ r2.p = 0

A · (r1.p+r2.p) otherwise

(11)

Although Equation 11 in combination with the formula in
Equation 9 results in a retrieval model that is slightly dif-
ferent than the original GPX model, it does follow the se-
mantics of the model which is to boost the scores for regions
that contain more query terms.

3.2.3 Element score propagation
The operator I specifies propagation of scores to the con-

taining elements, e.g., from SUBJECT to DOC elements in
the TREC collection. Thus, the function fI(r1, R2) specifies
upwards element score propagation. It is instantiated either
as a simple sum of scores (Equation 12) or as a weighted
sum normalized by the size of regions in the left operand
(Equation 13). We also perform smoothing for the score
propagation to avoid zero scores for, e.g., documents that
do not contain SUBJECT element. The score propagation
smoothing uses the frequency of regions (elements) from the
right operand contained in the regions (elements) having the
name n1 (name of the region in the left operand). The influ-
ence of this “element frequency” is regulated by a smoothing
parameter ω.

f sum
I (r1, R2) = r1.p · (ω ·

∑

r2∈R2|r2≺r1

r2.p +

(1− ω) · |{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}|
|{r ∈ C|r.n = r1.n}| ) (12)

fwsum
I (r1, R2) = r1.p · (ω ·

∑
r2∈R2|r2≺r1

r2.p · size(r2)

size(r1)
+

(1− ω) · |{r ∈ C|r.n = r1.n ∧ ∃r2 ∈ R2 ∧ r2 ≺ r}|
|{r ∈ C|r.n = r1.n}| ) (13)

4. STRUCTURING QUERIES
In this section we present our experimental setup and ex-

plain structured query formulation of faceted and field-based
structured queries.

4.1 Test collections
For the experimental evaluation we use four sub-collections

from the TREC 6 collection: Foreign Broadcast Information
Service (fbis), Federal Register (fr94 ), Financial Times (ft),
and Los Angeles Times (latimes), as well as two Dutch news-
papers from CLEF: Algemeen Dagblad (ad) and NRC Han-
delsblad (nh). The topic set consists of TREC topics 301
to 350, and three sets of CLEF topics: 41 to 90 91 to 140,
and 141 to 200. Accordingly, we use the relevance assess-
ments and trec eval evaluation tool to test the effectiveness
of distinct query specification and different retrieval models.



The unstructured queries that we use are title, title + de-
scription, and title + description + narrative queries from
TREC and CLEF topics. We formed three types of struc-
tured queries: faceted queries, field-based structured queries,
and the combination of the two. Additionally, we use the
list-of-term variant of the faceted queries (called expanded
queries), and compare it with other structured and unstruc-
tured queries.

4.2 Faceted queries
Faceted queries are designed based on the following ap-

proach. The user first analyses the request and identifies
what are the most important keywords in his request and
than groups these keywords into facets. As an example, for
our TREC topic 305 given in Section 1 we can group the
following terms:

vehicles crash cars crashworthy death danger

in two facets:

{(vehicles, cars),(crash crashworthy death danger)}.
The final step is combining terms from the same facet

using the OR operator, and combining these faceted expres-
sions using the AND operator. In such a way we obtain the
NEXI query that looks like:

//DOC[(about(., vehicles) OR about(., cars)) AND

(about(., crash) OR about(., crashworthy) OR

about(., death) OR about(., danger))]

Thanks to Schiettecatte [35] we were in position to use
faceted (Boolean) queries on the TREC collection. We use
the whole set of 50 faceted queries for TREC. As we did
not have such queries for the CLEF collection we developed
them ourselves (see the following section) for CLEF 41-90
and CLEF 91-140 topic sets4.

To test whether query expansion, without taking into ac-
count the classification of query terms and topic descrip-
tion and narrative fields, can improve the effectiveness of
retrieval models, we perform several experiments on TREC
and CLEF expanded queries. The queries are formed based
on faceted queries, i.e., we only use the terms from the
faceted query and remove the connectors (AND and OR)
between terms. An example NEXI query expression for ex-
panded TREC 305 topic is:

//DOC[about(., vehicles cars crash

crashworthy death danger)]

4.3 Field-based structured queries
To structure the queries we first analyzed the two selected

document collections to see what kind of useful information
we can extract and how we can use it to help the user in stat-
ing his query. In our experiments with field-based queries
we only use the LA Times sub-collection of TREC 6 and
the complete CLEF collection as they come with appropri-
ate structure. The other parts of the TREC collection are
not used as they either do not contain meaningful structural
elements or it is too difficult to utilize information contained
in the structural elements for the query formulation.

4Due to the space limitation, the queries used in our
experiments in this paper can be found on the web:
http://www.cs.utwente.nl/∼vojkan/TREC&CLEF-topics.

The LA Times collection contains three types of elements
(tags) that can potentially be used for structured search:
SUBJECT, SECTION, and TYPE. However, except for the
SUBJECT part, the other two were not suitable for query
formulation as the keywords present in these tags are not
well classified and they are difficult to utilize by a user when
forming a query. Additionally, there are many keywords oc-
curring only several times and a few very frequent ones. On
the other hand, the CLEF collection comes with a DTD
and is far better organized. Among others, it also contains
four informative elements that can be used for making struc-
tural queries: GEO (location), HTR (keywords), SEC (sec-
tion), and PER (persons). Furthermore, unlike in the LA
Times collection, tags are populated by a predefined, more
thoughtfully chosen, set of terms.

A potential problem for experiments with field-based queries
was that in both collections only a part of the documents
contain these useful tags. For example, the TREC collection
has a SUBJECT tag in 46 849 out of 131 896 documents.
It is similar with GEO, HTR, and PER tags in the CLEF
collection. Despite this, we decided to use it in our ex-
periments, arguing that well organized collections, with the
complete and consistent document annotation, would prob-
ably give even better results on structured queries.

For the TREC collection we formed structural queries in
two steps. We first select the most frequently occurring
(more than 500 times) keywords in the SUBJECT tags.
Then, for each query, we choose the terms that are most rel-
evant to the query and add them to the original or faceted
query. For example, the original TREC query 305 with
added structural constraints looks like:

//DOC[(about(., most dangerous vehicles) AND

about(.//SUBJECT, safety automobile accidents)]

We added structural constraints to 41 out of 50 TREC queries.
The results of the evaluation of structured TREC and CLEF
queries are given in the next section.

To make structured queries out of CLEF topics we asked
several of our Dutch colleagues to complete advanced search
forms similar to the advanced search forms in for instance
Google or PubMed. Our “users” would first read the CLEF
topic description and narrative and fill in the following:

• what would be an exhaustive query that they will issue
(using TREC faceted queries as an example)?

• what are the persons involved in the query?

• select from a drop-down box whether the topic is about
domestic issues (“binenland”) or foreign issues (“buiten-
land”)?

• select from a drop-down box in which section of the
newspaper the article is likely to be found?

• select from a drop-down box where is the location of
the event (continent and country/city)?

• select from a drop-down box what are the keywords
that could help the search?

For all the fields with drop-down boxes, an additional “no
preference” option is provided. The options for section, lo-
cations, and keywords are automatically extracted from the
collection. The “searcher’s” input is then transformed into a
faceted query, as stated in the previous section, and a field-
based query. For example, for CLEF topic 60 the field-based



Table 2: Query types used in the experiments illustrated on NEXI queries for TREC topic 305.
Query type Abbr. NEXI query

title T //DOC[about(., most dangerous vehicles)]

expanded E //DOC[about(., vehicles cars crash crashworthy death danger)]

title + description TD
//DOC[about(., most dangerous vehicles which are the most crashworthy and

least crashworthy passenger vehicles)]

title + description + narrative TDN
//DOC[about(., most dangerous vehicles which are the most crashworthy and

least crashworthy passenger vehicles a relevant document will
contain information on the crashworthiness ... miles for example)]

faceted F
//DOC[(about(., vehicles) OR about(., cars)) AND (about(., crash) OR

about(., crashworthy) OR about(., death) OR about(., danger))]

field-based + title ST
//DOC[(about(., most dangerous vehicles) AND

about(.//SUBJECT, safety automobile accidents)]

field-based + faceted SF
//DOC[(about(., vehicles) OR about(., cars)) AND (about(., crash) OR

about(., crashworthy) OR about(., death) OR about(., danger)) AND
about(.//SUBJECT, safety automobile accidents)]

structural query expressed in NEXI looks like:

//DOC[about(., de franse corruptieschandalen)

AND about(.//HTR, fraude en corruptie)

AND about(.//SEC, buitenland)

AND about(.//GEO, europa frankrijk)]

5. EXPERIMENTS
In this section we report the experimental results on the

CLEF and TREC collections using unstructured and struc-
tured queries, as well as using different implementations for
score computation, combination, and propagation aspects.
The mean average precision (MAP) values are reported for
all the experiements. We first analyze the results of our
preliminary experiments on unstructured queries, and then
discuss the usage of structure in document retrieval. The
complete list of query types, along with the shorthand nota-
tion and example NEXI queries formed out of TREC topic
305, is presented in Table 2.

5.1 Unstructured queries
Below we discuss experimental results obtained using un-

structured queries.

5.1.1 Best parameters and size estimation
In our preliminary set of experiments on the CLEF 141-

200 topics we try to find the best way to compute the size of
the regions and appropriate parameters for score computa-
tion and score combination aspects, instantiated for different
retrieval models5. The queries that were used to determine
optimal parameter settings were not used in the experiments
in the following sections. Although we assumed that ele-
ment size computation based on region indexes (Equation 1)
would be less effective than term count (Equation 2), espe-
cially because most of the retrieval systems so far use the
latter, this is shown to be a false assumption. This fact is
important since precomputations are not used in TIJAH. As
a consequence, element size computation is approximately
twice as fast as the term count.

Parameter λ in Equation 7 is estimated to be 0.4 which
is also the value that is frequently used for language models
in structured retrieval [26]. The best values of parameters
for the Okapi score computation function (Equation 8) are
k1 = 0.7 and b = 0.4. These are relatively low values with

5As the results of this series of experiments are not of a primary
interest for the paper we do not illustrate them.

respect to the usual values for k1 (1.2) and b (0.75), but this
might be caused by excluding the third factor in the product
from the Okapi model. To estimate the value of parameter
A in the score combination function, used to model the GPX
system (Equations 9 and 11), we ran a set of experiments,
where 10 > A > 0, and obtained a relatively stable MAP for
A > 4. For our further experiments we chose to use A = 7.

5.1.2 Experiments with unstructured queries
The results of our experiments using title (T), expanded

(E), title + description (TD), and title + description +
narrative (TDN) queries are depicted in Table 3. In these
series of experiments we explore what is the best AND score
combination for different score computation implementation
and then analyze the impact of distinct query formulations
on retrieval effectiveness.

We test five different score combination functions: sum,
product, minimum, maximum, and probabilistic sum (Equa-
tion 10), on Boolean, GPX, LMs, Okapi, and tf.idf score
computation functions, and exponential sum (Equation 11)
on GPX. By analyzing the two best performing AND score
combination implementations for each score computation
function, depicted in Table 3, we can see that advanced re-
trieval models by far outperform the baseline ones (Boolean
and tf.idf). Furthermore, for most of the advanced models
the score combination specified in the original formula of
these retrieval models is actually the best AND score com-
bination function. The only exceptions are the tf.idf model
where the sum is not in the two best performing combination
functions, and the Okapi model where the probabilistic im-
plementation (Equation 10) shows comparable performance
to the score combination implemented as sum.

Looking at different query formulations, the effectiveness
is much higher for Boolean and tf.idf models on title and
expanded queries than on long TD and TDN queries. This
is expected due to the score computation specification for
Boolean and tf.idf models (Equations 5 and 6). However,
this is not the case for the advanced models where in most of
the cases the mean average precision values are comparable
among T, E, TD, and TDN queries. The MAP values given
in bold represent the best run for each score computation
model on one topic set.

By comparing original title queries with the expanded
ones we can conclude that in many cases the simple title
queries outperform the expanded ones (especially for the
TREC experiments). In all cases TD queries outperform
longer TDN queries, but it is not clear whether TD or ti-



Table 3: Unstructured queries: experimental results for the two best-performing AND score combination functions

on title (T), expanded (E), title + description (TD), and title + description + narrative (TDN) queries.

AND TREC CLEF 41 – 90 CLEF 91 – 140
Model (⊗) T E TD TDN T E TD TDN T E TD TDN

Bool min 0.0803 0.0317 0.0018 0.0000 0.1288 0.0681 0.0102 0.0000 0.1223 0.0051 0.0081 0.0002
Bool prod. 0.0803 0.0317 0.0018 0.0000 0.1288 0.0681 0.0102 0.0000 0.1223 0.0051 0.0081 0.0002
tfidf min 0.1004 0.0329 0.0018 0.0000 0.1541 0.0701 0.0122 0.0000 0.1600 0.0051 0.0081 0.0002
tfidf prod. 0.1185 0.0493 0.0019 0.0000 0.1698 0.0788 0.0133 0.0000 0.1800 0.0054 0.0095 0.0002
GPX exp. 0.1997 0.1960 0.1308 0.0143 0.2752 0.3137 0.2535 0.1246 0.2896 0.2613 0.2813 0.1791
GPX prod. 0.1514 0.0886 0.0734 0.0559 0.2503 0.1904 0.1776 0.0782 0.2370 0.0714 0.1127 0.0962
LMs min 0.1265 0.0467 0.0339 0.0053 0.1900 0.1025 0.0598 0.0030 0.2206 0.0374 0.0487 0.0133
LMs prod. 0.2223 0.2205 0.2230 0.1878 0.3080 0.3661 0.3594 0.3302 0.3211 0.3370 0.3866 0.3658
Okapi prob. 0.2205 0.2232 0.2239 0.1587 0.3246 0.3728 0.3575 0.3240 0.3237 0.3499 0.3944 0.3923
Okapi sum 0.2205 0.2201 0.2184 0.1551 0.3257 0.3724 0.3592 0.3215 0.3247 0.3425 0.3900 0.3889

Table 4: Faceted queries (F): experimental results with

different OR score combination functions.
AND OR CLEF CLEF

Model (⊗) (⊕) TREC 41–90 91–140

Bool min max 0.0759 0.1608 0.0665
Bool min prob. 0.0759 0.1608 0.0665
tfidf prod. prob. 0.1166 0.2220 0.0965
tfidf prod. sum 0.1167 0.2220 0.1034
GPX exp. exp. 0.1849 0.2965 0.2344
GPX exp. min 0.1603 0.2691 0.2413
LMs prod. prob. 0.2582 0.3751 0.3450
LMs prod. sum 0.2580 0.3754 0.3450
Okapi prob. max 0.2499 0.3857 0.3773
Okapi prob. prob. 0.2207 0.3633 0.3217
Okapi sum max 0.2559 0.3886 0.3765
Okapi sum prob. 0.2329 0.3711 0.3317

tle/expanded queries give better results. While on TREC
topics there is almost no difference in the results (except for
GPX model), on CLEF 41–90 expanded queries outperform
TD and TDN queries, and on CLEF 91–140 TD and TDN
queries outperform T and E queries. This indicates that
throwing relevant terms in the query, without properly clas-
sifying them, does not necessarily leads to higher effective-
ness. The question still remains if the faceted query speci-
fication can outperform both title and expanded queries, as
well as TD and TDN queries.

5.2 Structured queries
The analysis of the retrieval effectiveness on structured

queries is presented below.

5.2.1 Faceted queries
The goal of this experiment series is to test how systems

can benefit from faceted query formulation and to find what
is the best OR score combination instantiation for the best
AND score combination function determined in the pre-
vious section. The results for the two best compositions
of AND and OR score combination functions for Boolean,
GPX, LMs, and tfidf score computation functions, and four
in case of the Okapi score computation function, are de-
picted in Table 4. We report four compositions for the Okapi
score computation function as it gives high MAP values in
combination with the AND score combination implemented
as probabilistic sum or sum (see Table 3).

If we compare the results from the expanded queries in Ta-
ble 3 and the results from the faceted queries in Table 4, we
can see no consistent improvements in the MAP values for
the Boolean, GPX, and tf.idf models, except in the CLEF

41–90 experiments. However, for the language models and
Okapi, for both collections and all three topic sets, there
is a consistent improvement over both title and expanded
queries. Furthermore, in most of the cases and for each
score computation function, AND and OR score combina-
tion functions exist for which the faceted run outperform
the extended one. This shows that structuring queries can
help improving effectiveness.

By comparing the MAP values for faceted runs with the
MAP values for the TD and TDN runs on advanced queries
we can see that on TREC and CLEF 41–90 topics faceted
queries give better results than TD and TDN queries (given
in bold). For example, for the TREC data, the MAP in-
creases up to 16% for Okapi with AND combination im-
plemented as sum and OR combination as maximum, with
respect to TD and TDN (as well as T and E) queries. On
CLEF 91–140 this is not the case, but it can be due to
the high complexity of manually generated faceted queries.
However, faceted queries showed at least comparable perfor-
mance to long TD and TDN queries.

Table 4 also shows that more than one OR score combi-
nation function that has a high MAP exists: LMs with sum
and probabilistic sum implementation and both Okapi mod-
els (AND combination implemented as sum or probabilistic
sum) with maximum or probabilistic sum as OR combina-
tion.

5.2.2 Field-based structured queries
In the last set of experiments we explore how structured

information can be incorporated in retrieval models for doc-
ument retrieval. Then we test whether we can further im-
prove the precision-recall values by adding field-based struc-
tural constraints to the query and using the information that
is tagged in a document. The structural constraints are
added to the original (title) and faceted queries. We report
three advanced models (GPX, language models, and Okapi)
with the best AND and OR score combination functions and
using two score propagation functions. The functions given
in Equations 12 and 13 (sum and wsum) are employed to
test whether and up to what degree we can improve the
effectiveness obtained with unstructured queries.

With the first set of experiments we try to find out how
structured information should be combined with the “doc-
ument search”. In other words, what are the values of the
element smoothing parameter ω that give the highest MAP
for different retrieval models. Furthermore we want to find
out which of the two implementations of the score propaga-
tion function are more effective.



Table 5: Field-based structured queries formed using topic title (ST): estimating the best value of smoothing parameter

ω (from 0.1 to 0.95) on LA Times collection.
Model, ⊗, ⊕ fI T 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

GPX, exp., exp. sum 0.2527 0.2530 0.2530 0.2529 0.2530 0.2531 0.2517 0.2518 0.2518 0.2518 0.2519
GPX, exp., exp. wsum 0.2527 0.2529 0.2529 0.2529 0.2529 0.2529 0.2529 0.2529 0.2529 0.2529 0.2529
LMs, prod., sum sum 0.2804 0.2807 0.2808 0.2810 0.2810 0.2814 0.2818 0.2827 0.2828 0.2863 0.2860
LMs, prod., sum wsum 0.2804 0.2804 0.2805 0.2805 0.2805 0.2805 0.2805 0.2806 0.2806 0.2810 0.2812
Okapi, sum, max sum 0.2819 0.2822 0.2844 0.2868 0.2877 0.2882 0.2859 0.2849 0.2822 0.2784 0.2766
Okapi, sum, max wsum 0.2819 0.2820 0.2837 0.2839 0.2840 0.2838 0.2838 0.2837 0.2839 0.2836 0.2836

Table 6: Comparison of field-based structured queries formed using title (ST) and faceted (SF) queries, and title (T)

and faceted (F) queries: experimental results on CLEF collection.
propagation CLEF 41 – 90 CLEF 91 – 140

Model, ⊗, ⊕ (fI) T ST F SF T ST F SF

GPX, exp., exp. sum, ω = 0.5 0.2752 0.2872 0.2965 0.3071 0.2896 0.2965 0.2344 0.2350
LMs, prod., sum sum, ω = 0.95 0.3080 0.3314 0.3754 0.3853 0.3211 0.3161 0.3450 0.3468
Okapi, sum, max sum, ω = 0.5 0.3257 0.3760 0.3886 0.4313 0.3247 0.3443 0.3765 0.3908

We use the LA Times collection for estimating ω. The re-
sults are depicted in Table 5. Looking at the results, there is
no significant difference in using different values of ω. How-
ever, for models that use sum-like AND score combination
(sum and exponential sum) ω ∼ 0.5 gives slightly better re-
sults, while high values of ω are better for the AND score
combination implemented as product. The best MAP val-
ues for each model and score propagation function are given
in bold. Furthermore, in all cases score propagation imple-
mented as sum gives higher MAP values than score prop-
agation implemented as weighted sum (wsum). Therefore,
or the following experiments we use the Equation 12 and
ω = 0.5 for GPX and Okapi based models and ω = 0.95 for
language model variants.

The mean average precision values of our structured ex-
periments on CLEF collection are reported in Table 6. The
results clearly indicate that the structural constrains added
to the query improve the mean average precision for dif-
ferent variations of language models and Okapi (in 11 out
of 12 runs presented in Table 6) with respect to the title
and expanded queries. Also, the effectiveness of structured
queries is far better on CLEF 41–90 than effectiveness of
TD and TDN queries, while on CLEF 91–140 the results
are comparable. We can also see that the Okapi model with
score combination modeled as sum (⊗) and max (⊕) is more
robust to score propagation and more effective than LM in
all of its variants.

6. CONCLUSIONS AND FUTURE WORK
In this paper we showed that the score region algebra is

a useful framework for analyzing document retrieval with
respect to unstructured as well as structured queries. We
investigated the composition of different implementations of
structured retrieval aspects, i.e., computation, combination,
and propagation of scores, for complex structured query for-
mulations. Furthermore, we illustrate how state of the art
retrieval models, such as language models and Okapi, can
benefit from the formulation of structured queries, having
such a flexible structured retrieval framework.

We evaluated unstructured (title and expanded) and struc-
tured (faceted and field-based) queries on TREC and CLEF
test collections. The effectiveness is improved when using
faceted queries, queries that utilize document structure, as
well as the combination of faceted and structured queries.

Furthermore, the effectiveness of structured queries is com-
parable or better than when using long title + description
or title + description + narrative queries.

We have also shown that the score computation based
on Okapi and language models work well with several score
combination functions. For example, Okapi shows good re-
sults for AND score combination implemented as probabilis-
tic sum or sum and OR score combination implemented as
maximum, while language model shows good results with
AND score combination implemented as product and OR
score combination implemented as probabilistic sum. The
experiments illustrate also that in structured retrieval sum-
ming the scores of containing elements when propagating
them to the document (element) gives high effectiveness.

In the future we want to extend our research to semanti-
cally richer collections, and continue our experimentation on
highly structured documents, such as XML (e.g., [14]). Our
aim is to improve the models used for structured document
retrieval. Additionally we want to compare the outcome
of the experiments presented in this paper to retrieval on
documents that have more complex structure.
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