
PF/Tijah Documentation
for version 0.3.0 (Pathfinder version 0.20.0)

PF/Tijah (Pathfinder/Tijah, pronounce as "Pee Ef Teeja") is a flexible open source text search system
developed at the University of Twente in cooperation with CWI Amsterdam and TU München. The system is

integrated in the Pathfinder XQuery database system and can be downloaded as part of MonetDB/XQuery.

http://dbappl.cs.utwente.nl/pftijah

Authors: Djoerd Hiemstra, Henning Rode, and Jan Flokstra
Copyright (C) 2007 University of Twente

Permission to make copies of all or part of this work for personal use is
granted without fee provided that copies bear this notice on the first page.

PF/Tijah Documentation

PF/Tijah Documentation 1

Features And Goals
PF/Tijah is a a text search system (Tijah) that is integrated with the Pathfinder (PF) XML database
management system. PF/Tijah includes out-of-the-box solutions for common tasks like index creation,
document management, stemming, and result ranking (supporting several retrieval models), but it remains the
same time open to any adaptation or extension. On the one hand, the system aims to be a general purpose tool
for developing IR end-user applications using XQuery statements with text search extensions. On the other
hand, the system aims to be a playground for the information retrieval scientist and advanced user to easily set
up and test new search systems. Advanced users can hook in the system at an intermediate level that provides
the database scripting language MIL and several pre-defined operations on terms and XML elements called
Score Region Algebra operators. The PF/Tijah system has a number unique selling points that distinguish it
from other information retrieval systems.

PF/Tijah supports retrieving arbitrary parts of the textual data, unlike traditional information retrieval
systems for which the notion of a document needs to be defined up front by the application developer.
For instance, if the data consist of scientific journals one can query for complete journals, journal
issues, single articles, sections from articles or paragraphs with no need to adapt the index or any
other part of the system configuration;

•

PF/Tijah supports complex scoring and ranking of the retrieved results by means of so-called NEXI
queries. NEXI stands for Narrowed Extended XPath: a query language that only supports the
descendant and the self axis step, but that is extended with a special about() function that takes a
sequence of nodes and ranks those by their estimated probability of relevance to the query;

•

PF/Tijah supports ad hoc result presentation by means of its query language. For instance, when
searching for a special issue of a journal, it is easy to print any information from that retrieval result
on the screen in a declarative way (i.e., not by means of a general purpose programming language),
such as the special issue title, its date, the editors and the preface. This is simply done by means of
XQuery element construction;

•

PF/Tijah supports text search combined with traditional database querying, including for instance
joins on values. For instance, one could search for employees from the financial department that also
worked for the sales department and that sent an email about "tax refunds"

•

PF/Tijah Documentation

Features And Goals 2

Table of Contents
Running the Server1.
Getting Started2.
Show Cases (Example code and queries)

Cranfield Demo (How to run a TREC experiment)♦
INEX Demo (A recipe for an INEX experiment)♦
SIGIR Demo (A simple web-based search application)♦

3.

Install from CVS4.
Quick Reference5.

PF/Tijah Documentation

Table of Contents 3

1 Running The Server
PF/Tijah runs on a light database backend: MonetDB. To get started, you have to start the MonetDB server
and load the Pathfinder module (of course you first have to install the system, see Download). If your run
PF/Tijah under Windows, you start the server via the start menu on the task bar (Start -> MonetDB ->
MonetDB XQuery Server). In unix-based systems, open a terminal window and type:

 Mserver --dbinit="module(pathfinder);"

Depending on your hardware and installation, you get get a report similar to the following. (Read the
MonetDB4 documentation if the server does not start properly.)

 # MonetDB Server v4.20.0
 # based on GDK v1.20.0
 # Copyright (c) 1993-2007, CWI. All rights reserved.
 # Compiled for i686-suse-linux-gnu/32bit with 32bit OIDs; dynamically linked.
 # Visit http://monetdb.cwi.nl/ for further information.
 # PF/Tijah module v0.3.0 loaded. http://dbappl.cs.utwente.nl/pftijah
 # MonetDB/XQuery module v0.20.0 loaded
 # XRPC administrative console at http://localhost:50001/admin

Warnings like the following: !WARNING: GDKlockHome: created directory
/local/MonetDB/ etc. are normal: the server creates an empty database if you run it for the first time.
Let's assume the file test.xq contains the following query:

 <test> { for $i in (1, 2, 3) return $i } </test>

Under windows, you can run XQuery statements by double clicking the test.xq file, which opens the query
results in your web browser. Alternatively, you can open a DOS command prompt window and operate the
system as done in Unix-based systems described next: Open another terminal window and type:

MapiClient -lxquery test.xq

resulting in

 <test>1 2 3</test>

You now can go on using the system as described in the Getting started.

PF/Tijah Documentation

 1 Running The Server 4

2 Getting Started
As XML is mainly a language for document mark-up, text search querying or information retrieval querying
is a natural extension to traditional database querying. Text search querying provides best matching instead of
exact matching, that is, the results of a PF/Tijah text search query do not exactly match the query: Some
results may partially match the query. However, the best results are returned first, that is, the results are not in
document order, but in decreasing order of the estimated probability of relevance to the query. The PF/Tijah
extension for text search uses built in XQuery functions and is therefore fully compliant with XQuery 1.0.

Quick Start

To use PF/Tijah search functionality, a full-text index has to be created on a (document) collection. Of course,
you first need to start your Mserver (see Running the Server). After loading XML documents into a new
collection,

 let $dir := "/home/pftijah/"
 let $files := ("mydata.xml", "moredata.xml", "yetmoredata.xml")
 for $file in $files
 return pf:add-doc(concat($dir, $file), $file, "MyCollection")

the parameter-free call of

 tijah:create-ft-index()

creates such a full-text index on all existing XML collections in the database. The index is automatically
updated when new documents are inserted using the standard MonetDB/XQuery document management
function pf:add-doc(). You are now ready to query the collection. The following XQuery returns the
titles of HTML nodes in descending order of their relevance to the query "ir db":

 let $c := collection("MyCollection")
 for $res in tijah:query($c, "//html[about(., ir db)]")
 return $res/head/title

Indexing

A full-text index is always associated with one (or many) MonetDB/XQuery collections, like an index on
database table. The index is created by the tijah:create-ft-index() function. The following
example shows how to create an full-text index on two collections:

 let $col := ("MyTRECcollection", "MyCLEFcollection")
 tijah:create-ft-index($col)

Whenever documents are added to one of the associated collections, the full-text index will be updated as
well. So you can create the ft-index before or after adding documents to the database. At a later stage, new
collections can be associated to an existing index with the function tijah:extend-ft-index():

 let $col := ("NEWcollection")
 tijah:extend-ft-index($col)

The indexing can also be parameterized with the several options as described below:

 let $opt := <TijahOptions stemmer="snowball-english"/>
 let $col := ("MyTRECcollection", "MyCLEFcollection")

PF/Tijah Documentation

 2 Getting Started 5

 tijah:create-ft-index($col, $opt)

With the <TijahOptions/> element, the function tijah:create-ft-index() is told to use a
specific stemmer, tokenizer, stop words, etc. see Table 1. It is possible to create several indexes, for instance
one with stemming and another without. This is specially helpful in scientific evaluations of retrieval
approaches. To create multiple indexes, name the index with the TijahOptions attribute ft-index. The
ft-index attribute can be used during indexing and during querying. At query time the query processor can
then be forced to use a certain named full text index.

Attribute Values Description

ft-index string
Name of full-text index that
should be used to process the
query

stemmer ["none", "porter-english", "porter-dutch",
"snowball-english", "snowball-dutch"]

Defines the stemmer to be used
during indexing

Table 1, TijahOptions for indexing (the bold value is set by default).

MonetDB/XQuery Document management

PF-Tijah builds its full-text indexes on collections (or single documents) stored in a MonetDB/XQuery.
MonetDB/XQuery provides built-in functions to persistently store XML documents in the database.
Documents are added as follows:

 pf:add-doc("/home/pftijah/mydata.xml", "mydata.xml")

The first argument is the exact path or URL to the document, the second argument is the logical name with
which it can be referenced in queries. If you intend to add many small documents, it is wise to group them in
MonetDB/XQuery collections as follows. Here, the collection is called MyCollection.

 let $dir := "/home/pftijah/"
 let $files := ("mydata.xml", "moredata.xml", "yetmoredata.xml")
 for $file in $files
 return pf:add-doc(concat($dir, $file), $file, "MyCollection")

Text Search

Text search is performed with the built-in function tijah:query(), which inputs a node sequence and a
so-called NEXI query. NEXI is an acronym for Narrowed Extended XPath I. NEXI queries are 'narrowed
XPath' because the only use the descendant step (and self step) from XPath, and they are 'extended XPath'
because of the special about() function:

 let $c := collection("MyCollection")
 for $res in tijah:query($c, "//html[about(., ir db)]")
 return $res/head/title

The function tijah:query() returns a ranked sequence of nodes, that is, the nodes that best match the
NEXI query are returned first. Each returned node is scored by PF/Tijah. It is hard to return nodes and scores
directly because of the XQuery data model. Therefore, PF/Tijah provides additional built in functions to
access nodes and scores separately. To access the scores the query is broken down in a first step:
tijah:query-id(), which returns a unique id, and follow-up steps which can be used to return either the
nodes with tijah:nodes(), or the scores with tijah:score(), or both as shown below.

 let $c := collection("MyCollection")

PF/Tijah Documentation

Indexing 6

 let $qid := tijah:query-id($c, "//html[about(., ir db)]"))
 for $res in tijah:nodes($qid)
 let $score := tijah:score($qid, $res)
 return <title score="{$score}"> {$res/head/title/text()} </title>

The functions are defined such that tijah:query() semantically equals
tijah:nodes(tijah:query-id()), though the latter needs longer to execute.

The system supports two more functions, tijah:queryall() and tijah:queryall-id(), that
search all collections indexed by the full text index. The functions are equal to tijah:query() and
tijah:query-id(), except that they do not take the first parameter of those functions, the start node-set.
In case our ft-index is associated only to the collection MyCollection, we could abbreviate the
introductory example as follows:

 for $res in tijah:queryall("//html[about(., ir db)]")
 return $res/head/title

All query functions allow the inclusion of any number of options by means of a special empty XML element
<TijahOptions/> as the last parameter.

 let $opt := <TijahOptions returnNumber="10" ir-model="NLLR"/>
 let $c := collection("MyCollection")
 for $res in tijah:query($c, "//html[about(., xml)]", $opt)
 return $res//title

Of course, options can also be loaded from a file with let opt := doc("options.xml"). With these
options, the user can for instance overwrite the default for scoring in an about clause (using the attribute
ir-model), or specify the number of nodes that need to be returned (using the attribute returnNumber).
Table 2, lists the options that are currently supported. Please note, some combinations of options might not be
supported.

Attribute Values Description

ir-model ["NLLR", "LMS", "LM",
"OKAPI"] Specifies the model used to generate scores

collection-lambda float (between 0 and 1) Specifies the interpolation parameter for the ir-models
"NLLR" and "LMS"

okapi-b float Specifies the ir-model "OKAPI" (BM25) parameter b
okapi-k1 float Specifies the ir-model "OKAPI" (BM25) parameter k1

ft-index string Name of full-text index that should be used to process the
query

returnNumber integer Maximum number of nodes to be returned
rmoverlap ["false", "true"] Remove overlapping elements from the query results

txtmodel_returnall ["false", "true"] If true, then all queried elements (matching and
non-matching) are returned

debug ["0","1", ... "9"] Provide different levels of debug information (0 is no
debug information)

Table 2, TijahOptions for querying (the bold value is set by default).

Next: See example usages of PF/Tijah in the Show Cases.

PF/Tijah Documentation

Text Search 7

3 Show Cases
Here we gather example usage of PF/Tijah, both for research purposes as for rapid development of search
applications.

Cranfield Demo (How to run a TREC experiment)1.
INEX Demo (A recipe for an INEX experiment)2.
SIGIR Demo (A simple web-based search application)3.

PF/Tijah Documentation

 3 Show Cases 8

3.1 Cranfield Demo
The evaluation of information retrieval systems was pioneered in famous experiments conducted at the
University of Cranfield by Cyril Cleverdon and his collegues in the late 1950's and early 1960's (Cleverdon
1967). In the Cranfield studies, retrieval experiments were conducted on test databases in a controlled,
laboratory-like setting. The aim of the research was to find ways to improve the retrieval effectiveness of
information retrieval systems by developing better indexing languages and methods. The components of the
Cranfield experiments were:

a collection of documents (cran.xml),1.
a set of user requests (crantop.xml), and2.
a set of relevance judgments (cran.qrels), that is a set of documents judged to be relevant to each
query

3.

Together, these components form an information retrieval test collection. The success of the Cranfield
experiments led to researchers arguing for the need of creating an `ideal' test collection (Sparck Jones and Van
Rijsbergen 1975). The wish for bigger and more realistic test collections was realised by the Text Retrieval
Conferences, TREC for short. The basis of TREC is that a central organisation (the USA National Institute for
Standards and Technology: NIST) builds the test collection, and researchers around the world use it to test
their own methods and systems. TREC provides common common tasks, common effectiveness measures,
and common evaluation procedures (Voorhees and Harman 2005).

How to run a simple TREC experiment

We use the Cranfield data to show how to run a simple TREC experiment. We create a full text index with:

 tijah:create-ft-index(<TijahOptions stemmer="snowball-english"/>)
 <>

and we insert the data. We call the collection "CRAN".

 pf:add-doc("http://dbappl.cs.utwente.nl/pftijah/data/cran.xml",
 "cran.xml", "CRAN")
 <>

(Please note that <> on the last line is optional. It is used in the interactive terminal to mark the end of a
query.) In this case the test data consist of a single XML file, but in collections of more realistic size we will
have to add several files. Of course, the Cranfield data at that time was not marked up as XML (or SGML for
that matter). We converted the data to XML following the standard markup of most TREC collections. The
following query executes Cranfield topic 14 on the data (in TREC, requests are called 'topics').

 declare function tijah:cran-test001($query_num as xs:integer, $query as xs:string)
 as xs:string*
 {
 (: given query number and query, return the top 1000 documents
 in TREC output format :)
 let $opt := <TijahOptions ir-model="NLLR" collection-lambda="0.8"
 returnNumber="1000"/>
 let $query_text := tijah:tokenize($query)
 let $query_nexi := concat("//DOC[about(., ", $query_text, ")]")
 let $coll := collection("CRAN")
 let $id := tijah:query-id($coll, $query_nexi, $opt)
 for $doc at $rank in tijah:nodes($id)
 return string-join((string($query_num), "Q0",
 normalize-space(exactly-one($doc//DOCNO/text())), string($rank),
 string(tijah:score($id, $doc)), "UT001"), " ")
 };

PF/Tijah Documentation

 3.1 Cranfield Demo 9

 tijah:cran-test001(14, "papers on shock-sound wave interaction")
 <>

The user-defined function tijah:cran-test001() contains all details of the experiment. The return
line of the function creates non-XML output for the trec_eval program, the standard software provided by
TREC to compute effectiveness measures for a run. trec_eval needs relational input; it cannot read XML.
We use standard XQuery string operations (see: http://www.w3.org/TR/xpath-functions/) to return a sequence
of strings that simulates relational output. Pathfinder will format such a sequence as comma-separated strings
on separate lines with quotes. For trec_eval, quotes and commas need to be removed (see below).

The following query cran-trec.xq executes a complete TREC experiment on the Cranfield data. Such an
experiment is called a run in the remainder of this section. The query creates the output for all requests in the
file topics.xml .

 declare function tijah:cran-test001($query_num as xs:integer, $query as xs:string)
 as xs:string*
 {

function as above
 };

 let $topics_doc := doc("http://dbappl.cs.utwente.nl/pftijah/data/crantop.xml")
 for $top in $topics_doc//top
 let $query_num := exactly-one($top/num/text())
 let $query := exactly-one($top/description/text())
 return tijah:cran-test001($query_num, $query)
 <>

For large collections, running all topics as a single query, i.e., as a single database transaction, is unwise,
since the whole transaction fails in case of a small error in one of the queries. The transaction will also fail if
there is not enough memory to run all 225 Cranfield topics in one transaction.

MapiClient -lx cran-trec.xq -odm | tr -d '",' > experiment.out

The command tr -d '",' removes the quotes and commas (tr is a standard Linux command; under
Windows, open the output file in an editor and use find-replace to remove quotes and commas): The
trec_eval program can be downloaded from http://trec.nist.gov/trec_eval . It needs the output run and the
cran.qrels file. The evaluation results are generated as follows:

 trec_eval cran.qrels experiment.out

Next: Read how to do an evaluation for the Initiative for the Evaluation of XML Retrieval in: INEX Demo.

References

Cyril W. Cleverdon (1967). The Cranfield Tests on Index Language Devices, Aslib Proceedings 19,
pages 173-192. (Reprinted in Readings in information retrieval, pages 47 - 59, 1997)

•

Karen Sparck Jones, C.J. (Keith) van Rijsbergen (1975). Report on the need for and provision of an"
ideal" information retrieval test collection. British Library Research and Development Report

•

Ellen M. Voorhees and Donna K. Harman, editors (2005). TREC: Experiment and Evaluation in
Information Retrieval, MIT Press

•

Ellen M. Voorhees and Donna K. Harman. Common evaluation measures. In: ''Proceedings of the
15th Text Retrieval Conference (TREC), 2006 pdf

•

PF/Tijah Documentation

How to run a simple TREC experiment 10

3.2 INEX Demo
The INitiative for the Evaluation of XML retrieval (INEX) was set up in 2002 to assist the evaluation of XML
search systems. INEX provides several large XML test collections and appropriate scoring methods. Much of
the development of the Tijah system was motivated by these collections and methods. This page contains a
small recipe for doing INEX with PF/Tijah.

NB The documents, queries and relevance judgements described on this page are available to INEX
participants only.

Indexing INEX Wikipedia

INEX 2007 uses a document collection made from English Wikipedia documents. The collection consists of
the 4.6 GB of data divided over 659,388 single XML article files, consisting of about 30 million XML
elements in total. PF/Tijah is optimized for loading big XML files. The fastest way to insert the data in the
database is to glue all tiny XML files together into bigger files, and insert those. This is shown in the
following script:

 #!/bin/sh -e
 # Script to index INEX wikipedia. The scripts glues for each part of
 # the data the XML files together. The glued files are put in /tmp
 # The script assumes that the server can access /tmp, i.e., it runs
 # on the same machine
 #
 MAPI='MapiClient -lx '
 echo "tijah:create-ft-index()" | $MAPI
 for d in `ls -d part-*`
 do
 echo "$d"
 echo "<wiki part=\"$d\">" >/tmp/$d.xml
 find $d -name "*.xml" -exec cat \{\} \; | grep -v "<?xml" >>/tmp/$d.xml
 echo "</wiki>" >>/tmp/$d.xml
 echo "pf:add-doc(\"/tmp/$d.xml\", \"$d.xml\")" | $MAPI
 rm -f /tmp/$d.xml
 done

This should take about an hour, provided that your machine has enough main memory. If you insist on
inserting the files "as they are", you should group them into Pathfinder collections, and you should add them
in a small number of transactions (for instance per directory).

Querying INEX Wikipedia

Inex provides topics: small natural language descriptions of a user's information need consisting of a so-called
title, a description and a narrative. Additionally, the topic contains a 'castitle', or content-and-structure title: a
structured information retrieval query using NEXI. NEXI stands for Narrowed Extended XPath I, a narrowed
version of XPath that uses descendant steps only, and that is extended with a special about() function.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE inex_topic SYSTEM "topic.dtd">
 <inex_topic topic_id="405" ct_no="197">
 <title>"The Old Man and the Sea"</title>
 <castitle>//*[about(.//collectionlink,"the old man and the sea")]</castitle>
 <description>Looking for references to the book "The Old Man and the Sea"</description>
 <narrative>I am writing an essay on the book "The Old Man and the Sea" and would
 like to get all the contexts in which the book is referenced.</narrative>
 <ontopic_keywords>Old Man Sea Hemingway Ernest</ontopic_keywords>
 </inex_topic>

PF/Tijah Documentation

 3.2 INEX Demo 11

The query below produces the output for INEX topic 289. The query starts of with a function for generating
the paths of the result elements. The query gets the nexi query from the topics file 289.xml, executes the query
and gathers all results to produce the official INEX run result. For more information, see the: INEX 2006
Retrieval Task and Result Submission Specification

 (: INEX query for topic 289 written by Roel van Os :)
 declare function tijah:getINEXPath ($node as node()) as xs:string
 {
 (: This function determines for a given XML element the path to it from
 the article root. This path expression is a valid XPathâexpression,
 in the form /article[1]/sec[1]/p[3]
 :)
 let $pathelements := for $a in $node/ancestor-or-self::*
 where (name($a) != "books" and name($a) != "journal" (: for IEEE collection :)
 and name($a) != "wiki")
 return
 if (name($a) = "article") then "article[1]"
 else concat(name($a), "[" ,
 count($a/preceding-sibling::*[name()=name($a)]) + 1, "]")
 return string-join($pathelements, "/")
 };

 (: Configuration of the IR subsystem. Many more options apply,
 see Documentation :)
 let $options := <TijahOptions returnNumber="1500"/>
 let $topic := doc("/local/inex/topics-2006-005/289.xml")//inex_topic
 let $nexi := string-join($topic/castitle/text(),"")

 (: Perform the IR query, returning a sequence of nodes :)
 let $nodes := tijah:queryall($nexi, $options)

 (: Return a topic element :)
 return <topic topic-id="{$topic/@topic_id}"> {
 for $node at $rank in $nodes
 return
 <result>
 <file> { data($node/ancestor-or-self::article/name/@id) } </file>
 <path> { tijah:getINEXPath($node) } </path>
 <rank> { $rank } </rank>
 </result>
 } </topic>

To get evaluation results for a full INEX run, you need the INEX relevance judgements and the EvalJ
evaluation program.

Next: Read how to make a simple web-based search application in the SIGIR Demo.

PF/Tijah Documentation

Querying INEX Wikipedia 12

3.3 SIGIR Demo
The SIGIR demo can be found here: http://www.sigir2007.org/search

PF/Tijah is perfect for rapid prototyping and for quickly developing search applications. This page describes
the use of XQuery for building a web-based search engine. We describe the SIGIR search demo developed for
the 30th anniversary of SIGIR. The demo system searches the abstracts the SIGIR proceedings of the last 30
years: (sigir.xml). Below you see an excerpt of the data.

 <proceedings>
 <mtitle>SIGIR 2004</mtitle>
 <paper>
 <authors>
 <author>Djoerd Hiemstra</author>
 <author>Stephen E. Robertson</author>
 <author>Hugo Zaragoza</author>
 </authors>
 <locations>
 <location>The Netherlands</location>
 <location>UK</location>
 </locations>
 <title>Parsimonious language models for information retrieval</title>
 <abstract>
 We systematically investigate a new approach to estimating the parameters
 of language models for information retrieval, called parsimonious
 language models. Parsimonious language models explicitly address the
 relation between levels of language models thatare typically used for
 smoothing. As such, they need fewer (non-zero) parameters to describe
 the data.
 (...)

Inserting the data

As before, the data is inserted in the database by creating the index, and adding one or more documents. In the
following query, we combined index creation and document insertion in one single database transaction. We
named the index "SIGIR" and use Porter's stemmer for English. (<> at the end is only needed in the
interactive terminal to mark the end of the query.)

 let $opt := <TijahOptions ft-index="SIGIR" stemmer="snowball-english"/>
 return
 (tijah:create-ft-index($opt),
 pf:add-doc("http://dbappl.cs.utwente.nl/pftijah/data/sigir.xml", "sigir.xml")
)
 <>

Querying the data

The demo shows several search applications that return elements that do not themselves contain the content
searched for: expert search, temporal search and geographical search. For instance, when searching for an
expert on "XML retrieval", the author element itself does not contain the word XML" nor the word "retrieval".
For each distinct author, therefore, we have to aggregate (in this case: sum up) the scores of papers they
authored, and order the authors by the aggregated scores. The top author can be considered the SIGIR expert
on XML retrieval. This is done in the following query.

 let $doc := doc("sigir.xml")
 let $nexi := "//paper[about(.//title, XML retrieval) or
 about(.//abstract, XML retrieval)]"
 let $opt := <TijahOptions ft-index="SIGIR" ir-model="LMS"
 collection-lambda="0.8" returnNumber="50" />

PF/Tijah Documentation

 3.3 SIGIR Demo 13

 let $qid := tijah:query-id($doc, $nexi, $opt)
 let $nodes := tijah:nodes($qid)
 let $result :=
 for $author in distinct-values ($nodes//author) (: for every distinct author :)
 let $papers := for $paper in $nodes
 where $paper//author = $author
 return $paper (: get his/her papers :)
 let $score := sum(for $paper in $papers
 return tijah:score($qid, $paper) div
 count($paper//author)) (: sum up the scores per author :)
 order by $score descending
 return
 <expert tijahscore="{$score}"> <name> { $author } </name>
 { for $p at $r in $papers
 where $r < 5
 return
 <evidence> { $p//title }
 <authors> { string-join($p//author, ", ") } </authors>
 <booktitle>Proceedings of { $p/../mtitle/text() } </booktitle>
 </evidence>
 }
 </expert>
 (: to get the first 10 :)
 for $res at $rank in subsequence($result, 1, 10)
 return $res
 <>

The output of this query contains XML elements like <expert> and <evidence> that have to be
translated by the web application to HTML tags. In a real search application, the user must be able to inspect
the abstracts of the returned documents, the full proceedings in which they appeared, and the other SIGIR
papers written by the expert. Since PF/Tijah is embedded in MonetDB/XQuery, this information is easily
selected from the database by ordinary queries. For instance, selecting all SIGIR papers authored by "Norbert
Fuhr", is done as follows:

 for $p in doc("sigir.xml")//paper[.//author = "Norbert Fuhr"]
 return $p
 <>

Using CGI and the MapiClient

Have a look at the following basic Perl CGI script, sigirtest.cgi, for a simple but complete example
implementation of the SIGIR expert search application. The script is meant to run on an Apache Web server.
Please note that the script can be improved in several ways (for instance by proper use of the Perl modules
like CGI.pm). The exact same script is running here: SIGIR demo test version.

Using XML RPC

MonetDB provides a standard interface for XML Remote Procedure Calls (XML RPC), which allows calling
simple remote XQuery functions such as sigir:ExpertSearch() as defined in the following module
that is stored on the server: http://pathfinder.cs.utwente.nl:54775/export/sigir.xq (for security reasons we have
closed access from some ip numbers, drop us a message if you like to get access, or download the XRPC
example method here: sigir.xq) The function sigir:ExpertSearch() acts as a stored procedure that can
be called from a client programme using XML RPC. Have a look at the following simple Java class
TijahSoap.java and the Java programme ExpertSearch.java for an example of how to call the expert search
function via XML RPC in Java. Please note that these Java examples can be improved in several ways again,
for instance using standard classes for XML RPC instead of simply passing the XML RPC call via HTTP to
the server. More information about XRPC in MonetDB can be found in the MonetDB XQuery documentation.

PF/Tijah Documentation

Querying the data 14

4 Install From CVS
The development is done on the pathfinder CVS. To install the CVS version of pathfinder (on a Linux or
other Unix-based system), download and run the following script: install-pftijah-cvs.sh, change it's
MONETDB_PREFIX variable to point to the install directory of your preference. The script follows the steps
explained below.

Requirements

You need the following tools to compile MonetDB and pathfinder from CVS:

make•
a C/C++-compiler. gcc is recommended.•
autoconf•
automake•
autogen•
libtool•
flex (or equivalent)•
bison (or equivalent)•
python, including headers and python-devel•
libxml2, including headers•

You first have to decide where your MonetDB installation should reside. You can install it locally e.g. in a
subdirectory of your home directory, or you can install it globally (system-wide). In the case of a system-wide
installation, no extra steps have to be performed: you can skip step 1 and proceed directly to step 2.

Step 1 (local installation): prepare directories and search
paths

In case of a local installation you have to prepare this directory before installing. Suppose you are using
/local/MonetDB as the installation directory:

 export MONETDB_PREFIX=/local/MonetDB
 mkdir $MONETDB_PREFIX

Of course, the latter command is only necessary if the directory did not exist yet. In the remainder of this
page, $MONETDB_PREFIX signifies the installation directory you chose. The following can be placed at the
end of your shell's configuration file (e.g. ~/.bashrc):

 PATH=$PATH:$MONETDB_PREFIX/bin
 export PATH

Step 2: checkout, compile and install

Pathfinder/Tijah is split into several modules. The ones of interest to us are:

buildtools: these tools are required to compile MonetDB and pathfinder from CVS.•
MonetDB: this is the database kernel, with only the common functionality shared by the different
front-ends.

•

clients: contains among others the MapiClient•
MonetDB4: contains version 4 of the database server•
pathfinder: contains the XQuery frontend to MonetDB. This includes the PF/Tijah extension.•

PF/Tijah Documentation

 4 Install From CVS 15

To checkout, compile and install PF/Tijah, you have to perform the following steps for each of the modules
above, in the order listed. The order is important because for example the clients module depends on the
MonetDB module.

 cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb \
 checkout modulename
 cd modulename
 ./bootstrap
 ./configure --prefix=$MONETDB_PREFIX --enable-pftijah=yes
 [--enable-bits=64] [--enable-oid32]
 make install

Notes about configure:

If you are performing a system-wide installation, you can omit the --prefix argument.•
Use --enable-bits=64 in case you are compiling on a 64-bit machine. You might then also add
--enable-oid32 to use 32-bit object identifiers (oids). This is recommended if you don't need the
scalability of 64-bit object identifiers: these take up a lot of disk space and memory.

•

Important: charming the python

After installing the buildtools, but before installing the other packages, you have to set the $PYTHONPATH
environment variable:

 export PYTHONPATH=`find $MONETDB_PREFIX/lib*/python* -type d -name "site-packages"`

Using a release branch instead of the development branch

The cvs command above checks out the development version of all the modules. This development version is
often unstable. To get a reasonably stable working installation, you can check out the most recent stable
branch, which receives bugfixes only. To do this, pass the following tag names using the -r option to CVS:

buildtools: MonetDB_1-20•
MonetDB: MonetDB_1-20•
clients: Clients_1-20•
MonetDB4: MonetDB_4-20•
pathfinder: XQuery_0-20•

So, the command to check out the stable version of the buildtools becomes:

 cvs -d:pserver:anonymous@monetdb.cvs.sourceforge.net:/cvsroot/monetdb \
 checkout -r MonetDB_1-20 buildtools

After installing the system, you should proceed with Running the server

PF/Tijah Documentation

Step 2: checkout, compile and install 16

5 Quick Reference

Table of contents

pf:add-doc•
tijah:create-ft-index•
tijah:delete-ft-index•
tijah:extend-ft-index•
tijah:ft-index-info•
tijah:nodes•
tijah:query•
tijah:query-id•
tijah:queryall•
tijah:queryall-id•
tijah:resultsize•
tijah:score•
tijah:tokenize•

pf:add-doc

Signatures: pf:add-doc($url as xs:string, $name as xs:string) as docmgmt
pf:add-doc($url as xs:string, $name as xs:string, $coll as
xs:string) as docmgmt

Purpose: Add a document to the database
Parameters: $url: full path or url of the XML document

$name: logical name of the document in the database (must be unique)
$coll: name of collection to which the document is added (optional)

Returns: Nothing (docmgmt is an internal type that is returned by document management functions.
Items of type docmgmt are not serialized as XML)

Status: IMPLEMENTED

Remarks: If no collection is specified, the logical name of the document will function as a collection with
one document.

tijah:create-ft-index

Signatures: tijah:create-ft-index() as docmgmt
tijah:create-ft-index($colls as xs:string*) as docmgmt

tijah:create-ft-index($opt as node()) as docmgmt

tijah:create-ft-index($colls as xs:string*, $opt as node())
as docmgmt

Purpose: Create a full text index on one or more Pathfinder collections.
Parameters: $colls: Sequence of collection names to index. (optional)

$opt: A single node <TijahOptions /> (optional)

Returns: Nothing (docmgmt is an internal type that is returned by document management functions.
Items of type docmgmt are not serialized as XML)

Status: IMPLEMENTED
Remarks: If no collections are specified, the full text index is created for all collections in the database.

PF/Tijah Documentation

 5 Quick Reference 17

tijah:delete-ft-index

Signatures: tijah:delete-ft-index() as docmgmt
tijah:delete-ft-index($opt as node()) as docmgmt

Purpose: Delete a full text index.
Parameters: $opt: A single node <TijahOptions /> (optional)

Returns: Nothing (see tijah:create-ft-index())
Status: IMPLEMENTED

Remarks: The option node is only needed to remove named indexes, for instance <TijahOptions
ft-index="myindex"/>.

tijah:extend-ft-index

Signatures: tijah:extend-ft-index($colls as xs:string*) as docmgmt
tijah:extend-ft-index($colls as xs:string*, $opt as node())
as docmgmt

Purpose: Extend a full text index with one or more Pathfinder collections.
Parameters: $colls: Sequence of collection names to index. (optional)

$opt: A single node <TijahOptions /> (optional)
Returns: Nothing (see tijah:create-ft-index())

Status: IMPLEMENTED

Remarks: The option node is only needed to extend named indexes, for instance <TijahOptions
ft-index="myindex"/>.

tijah:ft-index-info

Signatures: tijah:ft-index-info() as element()*
tijah:ft-index-info($ft-index as xs:string) as element()*

Purpose: Give info about existing full text indexes.
Parameters: $ft-index: Name of full text index (optional)

Returns:
A single element for each index, for instance <ftindex collections="*"
tokenizer="flex" stemmer="nostemming">DFLT_FT_INDEX</ftindex>, or
nothing if there is no index.

Status: IMPLEMENTED

tijah:nodes

Signature: tijah:nodes($qid as xs:integer) as node()*
Purpose: Get the result nodes given a query result identifier.

Parameters: $qid: the query identifier must be created by tijah:query-id() or
tijah:queryall-id() in the same XQuery statement.

Returns: A sequence containing the result nodes sorted on relevance.
Status: IMPLEMENTED

PF/Tijah Documentation

 tijah:delete-ft-index 18

tijah:query

Signatures: tijah:query($start as node()*, $nexi as xs:string) as node()*
tijah:query($start as node()*, $nexi as xs:string, $opt as
node()) as node()*

Purpose: Run an NEXI query on a predefined full-text index.
Parameters: $start: Sequence of nodes to restrict the query on.

$nexi: NEXI query.
$opt: A single node <TijahOptions /> (optional)

Returns: A sequence of nodes, sorted on relevance
Status: IMPLEMENTED

Remarks: Semantically, this function is a shortcut for tijah:nodes(tijah:query-id()).

tijah:query-id

Signature: tijah:query-id($start as node()*, $nexi as xs:string) as
xs:integer

tijah:query-id($start as node()*, $nexi as xs:string, $opt as
node()) as xs:integer

Purpose: Run an NEXI query on a predefined full-text index.
Parameters: $start: Sequence of nodes to restrict the query on.

$nexi: NEXI query.
$opt: A single node <TijahOptions /> (optional)

Returns: A unique query result identifier.
Status: IMPLEMENTED

tijah:queryall

Signatures: tijah:query($nexi as xs:string) as node()*
tijah:query($nexi as xs:string, $opt as node()) as node()*

Purpose: Run an NEXI query on all data in a predefined full-text index.
Parameters: $nexi: NEXI query.

$opt: A single node <TijahOptions /> (optional)
Returns: A sequence of nodes, sorted on relevance

Status: IMPLEMENTED
Remarks: Semantically, this function is a shortcut for tijah:nodes(tijah:queryall-id()).

tijah:queryall-id

Signature: tijah:queryall-id($nexi as xs:string) as xs:integer
tijah:queryall-id($nexi as xs:string, $opt as node()) as
xs:integer

Purpose: Run an NEXI query on a predefined full-text index.
Parameters: $nexi: NEXI query.

$opt: A single node <TijahOptions /> (optional)
Returns: A unique query result identifier.

PF/Tijah Documentation

 tijah:query 19

Status: IMPLEMENTED

tijah:resultsize

Signature: tijah:resultsize($qid as xs:integer) as xs:integer
Purpose: Return the size of the result of a tijah query.

Parameters: $qid: the query identifier must be created by tijah:query-id() or
tijah:queryall-id() in the same XQuery statement.

Returns: Number of nodes to be returned by the query.
Status: IMPLEMENTED

tijah:score

Signature: tijah:score($qid as xs:integer, $node as node()*) as
xs:double*

Purpose: Get the score values from a sequence of nodes.

Parameters: $qid: the query identifier must be created by tijah:query-id() or
tijah:queryall-id() in the same XQuery statement.
$node: sequence of nodes

Returns: A sequence containing the scores of the nodes passed in the second argument, in the same
order. If a node was not scored it gets a score zero.

Status: IMPLEMENTED

tijah:tokenize

Signature: tijah:tokenize($str as xs:string) as xs:string
Purpose: Tokenize a string using the standard Tijah tokenizer.

Parameters: $str: The string to be tokenized.
Returns: The tokenized string

Status: IMPLEMENTED

PF/Tijah Documentation

tijah:queryall-id 20

	PF/Tijah Documentation
	PF/Tijah | Main / Features And Goals
	PF/Tijah | Documentation / Documentation
	PF/Tijah | Documentation / Running The Server
	PF/Tijah | Documentation / Getting Started
	PF/Tijah | Documentation / Show Cases
	PF/Tijah | Documentation / Cranfield Demo
	PF/Tijah | Documentation / INEX Demo
	PF/Tijah | Documentation / SIGIR Demo
	PF/Tijah | Documentation / Install From CVS
	PF/Tijah | Documentation / Quick Reference

