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ABSTRACT
Todays web search engines try to offer services for finding
various information in addition to simple web pages, like
showing locations or answering simple fact queries. Under-
standing the association of named entities and documents
is one of the key steps towards such semantic search tasks.
This paper addresses the ranking of entities and models it in
a graph-based relevance propagation framework. In partic-
ular we study the problem of expert finding as an example
of an entity ranking task. Entity containment graphs are in-
troduced that represent the relationship between text frag-
ments on the one hand and their contained entities on the
other hand. The paper shows how these graphs can be used
to propagate relevance information from the pre-ranked text
fragments to their entities. We use this propagation frame-
work to model existing approaches to expert finding based
on the entity’s indegree and extend them by recursive rel-
evance propagation based on a probabilistic random walk
over the entity containment graphs. Experiments on the
TREC expert search task compare the retrieval performance
of the different graph and propagation models.

1. INTRODUCTION
Most retrieval applications aim at ranking a set of docu-
ments according to a given query without taking into ac-
count whether the user’s information need really requires
to return complete documents. Current web search engines
already try to offer further services. If a location or cal-
culation query is recognized, the user gets instead of the
normal list of webpages a map showing the place, respec-
tively the result of the calculation. However, these services
that try to understand the semantics of a given query are
rather limited so far. The problem here is twofold: On the
one hand, systems still need a better understanding of the
query semantics. This issue is addressed in the field of ques-
tion answering research [25, 19]. And on the other hand,
once a system recognized a query correctly as searching for
locations, dates, or persons, ranking methods have to be de-
veloped to serve the search for such entities. If someone is
looking for important persons related to a certain historical
event, it is necessary to directly recognize and rank all found
persons in a collection.

While named entity recognition is a field of research since
years [10], entity ranking has just started to attract the at-
tention of researchers. We define the task as follows: Given
a keyword query, a text collection, and a set of entities oc-

curring in the text collection, rank those entities according
to the query. The entities of interest could be specified in
different ways. In the example query, we would just tell
the retrieval system that we are interested in entities of the
type person. In other cases, the user might even have a
list of certain entities at hand, but still needs to rank them
according to the query and corpus. This paper develops a
general framework for entity ranking and compares different
ranking techniques.

1.1 Expert Finding
A quite typical example of such an entity ranking task is the
problem of expert finding. In expert finding, as performed
in TREC’s enterprise track [7], a system has to come up
with a ranked list of experts with respect to a given topic
of expertise, a corpus of enterprise documents, and a list of
the employees of the company as possible candidates. Al-
though we claim, that our approach in principle addresses
entity ranking in general, we use the problem of expert find-
ing in several ways. First, it serves as a source of inspiration
for theory and methods that can be generalized to the en-
tity ranking task. Furthermore, we have chosen the expert
finding task for evaluation of our entity ranking approaches,
since TREC’s enterprise track provides data, topics and rel-
evance assessments for this task, which allows to experimen-
tally study the performance of our methods and to compare
different approaches.

Expert finding is a young field of information retrieval re-
search [11]. It has become popular after the upcoming of
TREC’s enterprise track [7]. Early approaches build query-
independent profiles for each candidate expert by merging
all documents related to the expert into one expert model.
Experts are ranked then by measuring the similarity of their
profile to the query [20]. Most effective approaches on the
TREC task now measure instead the similarity between
query and documents (usually emails), and infer thereafter
an expert ranking from the top retrieved documents. When
deriving expert ranks from related documents, we see again
different strategies used. Algorithms of the one kind rank
candidates by the aggregated relevance of all related top doc-
uments [2, 21]. Another kind of methods build query depen-
dent social networks from the top retrieved documents [4,
5]. More precisely, so-called bibliographic coupling graphs
are generated by using documents as links between persons
(e.g. by utilizing from and to email fields). Candidates
are ranked then on such social networks by popular cen-
trality measures, such as Kleinbergs HITS algorithm [15].



However, these centrality based approaches have failed to
show similar performance as the simpler aggregation meth-
ods so far. Both aggregated relevance and centrality based
methods still ignore some properties of data. Methods using
aggregated relevance do not reflect the relation between ex-
perts, whereas the centrality measures on the coupling graph
simply model documents as unweighted links between can-
didates, neglecting their relevance to the query. We will
show in this paper that graph-based approaches are able to
incorporate both kinds of information.

1.2 Graph-based Entity Ranking
Whereas document, passage, or XML retrieval employs stan-
dard retrieval models – passages or nodes are regarded as
small documents in that case – the same models would fail
for entity ranking. The simple reason is that query words in
general do not occur as a part of a named entity. Therefore,
entity ranking is always based on the association between
entities and documents. In general we will speak of text
fragments instead of documents to capture also approaches
that perform sentence or text window based entity ranking.
We have seen in related work on expert finding that the basic
approach is to first rank those text fragments according to
the keyword query and thereafter propagating the relevance
of the text fragments to their included entities, respectively
experts. This relevance propagation step will be the main is-
sue of this paper. We show that graph-based approaches are
most useful here for several reasons. Firstly, a graph makes
the propagation process transparent. It becomes easy to
describe and to visualize. It also allows to recognize and
use indirect connections of paths longer than one. Secondly,
we show that even non-graph-based approaches for expert
finding can often be interpreted in terms of a graph-based
equivalent.

For the rest of this paper, one should keep in mind the gen-
eral processing model of our approach. While the named
entity recognition can take place beforehand, the query de-
pendent processing is divided in the following three steps:

(1) Initial retrieval of text fragments,

(2) Building of an entity containment graph,

(3) Relevance propagation within the graph.

The first step remains a standard retrieval run on the en-
tire text collection in order to select the most relevant text
fragments. Those are used then for building a graph model
that shows the containment of entities within retrieved text
fragments (Section 2). In the third step we exploit the graph
structure in order to rank the entities, respectively to propa-
gate the relevance information (Section 3) within the graph.

2. ENTITY CONTAINMENT GRAPHS
This section proposes and discusses the modeling of appro-
priate graphs that represent the association between entities
and documents. We will further on call them entity contain-
ment graphs.

Suppose we have a set of documents or sentences, in gen-
eral text fragments D, with relevance scores from an initial
retrieval run and a set of entities E, like persons, dates or
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Figure 1: Entity Containment Graphs

Figure 2: Real entity containment graph

locations, that finally should get ranked according to the
given query q. Furthermore, we know the containment rela-
tion of text fragments and entities, thus for each text frag-
ment which entities are occurring inside. This relation can
be represented in a graph, where both text fragments and
entities become vertices and directed edges symbolize the
containment condition. Such a graph is always bipartite,
since all edges point from text fragments to entities.

Figure 2 shows a typical entity containment graph computed
for one of the TREC queries. The graph representation pro-
vides several useful features of the entities. It shows in how
many different documents they are occurring. Moreover,
whether they are connected over common text nodes with
other entities, or remain uncoupled (like all vertices in the
lower part of the figure). Behind the last feature stays the
hypothesis that entities mentioned in the same text frag-
ment also have a stronger relation to each other than those
which never appear together. Notice that in contrast to
the bibliographic coupling graph, which models documents
as edges between entities, such a bipartite graph of text and
entity vertices captures both the direct containment relation
as well as the indirect 2nd-degree neighborhood of entities
to each other. In the following we show several modeling
options and parameters:



(a) Initial retrieval scores (b) Associations weights

Figure 3: Weighting Models

Modeling Prior Scores.The initial retrieval run does not
only return a ranked list of text fragments, but also their
corresponding relevance score according to the given query.
The simplest way to incorporate such prior knowledge into
the graph model is to assign weights w(v) to the vertices:

w(v) =

{
0 if v |= entity,

P (d|q) if v |= document d.

P (d|q) denotes here the probability that document d is rel-
evant given query q. If the applied score function does not
directly return probabilities, the raw scores should be trans-
formed into probabilities. The assigned weights can later be
used for relevance propagation through the graph.

For recursive propagation models, such as random walks or
HITS, the initial setting of prior vertex weights has no influ-
ence on the final relevance of the vertices. For those models,
we change the graph slightly by adding a further “virtual”
query vertex q to the graph, which is connected with all text
fragments. Instead of vertex weights, we can now similarly
assign edge weights w(d, q) (see Figure 3(a)):

w(d, q) = P (d|q) if d |= document, q |= query.

The additional query node is represented here as an ad-
ditional “entity” contained in all documents. In order to
motivate this modeling, one should think of the query as a
set of terms, which is indeed contained in those documents
to a certain degree, corresponding to the initial score.

Association Weights between Documents and Entities.
The graph contains a directed edge from the document to
each included entity, however, it does not provide so far any
information about the strength of this association, in other
words, how important the entity is for the document. To in-
clude such information an edge weight function w(d, e) can
be defined (see Figure 3(b)). Without any further domain
knowledge, all occurrences of an entity should be treated
equally. In a better known domain, like the expert find-
ing task, occurrences of an expert in a document might be
weighted differently. If an expert is the author of an email,
she / he is probably more influential on the content than an-
other expert who is just mentioned somewhere in the text.

(a) Further entity types (b) Further connections

Figure 4: Modeling additional information

Including Further Entity Types.In expert finding and
many other cases of entity ranking the focus of interest will
lie on a certain entity type. When speaking of entity types we
mean a categorization of entities into semantically meaning-
ful groups, such as persons, locations, and dates. Although
a task like expert finding might only be interested in expert
entities, it might still be useful to include nodes of other en-
tity types into the graph (see Figure 4(a)). The motivation
behind such a graph expansion would be to show the connec-
tion between entities of different types and to increase the
relevance propagation between them. If one would search
for instance for important dates in the live of the painter
Pablo Picasso, it is probably useful to add more than date
entities to the graph. In this case, further person or location
entities might reveal important connections as well.

Including Further Edges.The suggested entity contain-
ment graph only models the relation of documents and in-
cluded entities. One modification could be to include fur-
ther document to document or entity to entity edges (see
Figure 4(b)). The first ones for links between documents,
the second ones if the found entities are standing in a known
relation to each other. We think here for instance of exploit-
ing known hierarchical ontologies, like Cape Town is part of
South Africa, or 21 April 2006 and 2006 are date entities
supporting each other. In case of expert finding, enterprises
will often have a hierarchical organization overview of its
personnel. By including such additional edges, the graph
gains a higher density and enables more relevance propaga-
tion, but it looses its strict bipartite property.

Controlling Graph Size and Topical Focus.Apart from
the graph modeling itself, the most influential parameter on
the graph size and density is the number of top ranked doc-
uments taken into account while building the graph. Notice
that for the unweighted graph only the restriction to the top
ranked documents makes the graph model query dependent.
Hence, by including more lower ranked documents more in-
cluded entities are found and usually the graph’s density
increases with the drawback of loosing the topical focus.

3. RELEVANCE PROPAGATION
Once having an entity containment graph, there are several
relevance propagation models that can be used for ranking of
the entity vertices. For abbreviation of the notation, Γ+(v)
denotes the set of vertices adjacent to v over outgoing edges,
respectively Γ−(v) marking those adjacent over incoming



edges. Furthermore, we use different letters to distinguish
between a document vertex d and an entity vertex e.

All propagation methods are introduced in this section in
their weighted version, that incorporates the initial query
scores. However, a unweighted counterpart can always be
obtained by simply setting all weights to 1. We will later
compare the retrieval performance of the unweighted vari-
ants, depending purely on the structure of the graph with
the weighted models that propagate the initial document
weights through the graph network.

3.1 Maximal Retrieval Score
The simplest model of entity ranking can be described by
the following process. Walking down the ranked list of doc-
uments, we add all included entities that have not been
encountered before in that order to the final ranked list.
The equivalent propagation model on the entity contain-
ment graph assigns to each entity vertex the weight of the
highest ranked linked document node:

wMAX(e) = max
d∈Γ−(e)

w(d).

Although the model is formalized within the graph-based
framework, it ignores most of the features provided by the
entity containment graph. We will refer to it later as a
baseline ranking model in order to compare it to other rel-
evance propagation models that consider more features of
the graph.

3.2 Weighted Indegree
The theoretically most sound methods for expert finding
proposed by Balog et al. [2] and Macdonald et al. [21] can
be expressed as an expertise inference on a linear Bayesian
network q → d → e:

P (e|q) =
∑
d∈D

P (e|d) P (d|q).

It uses the query to find relevant documents and then candi-
date experts occurring in these documents. The higher the
number of the most relevant documents mentioning a can-
didate expert, the higher its probability of being an expert.
Thus the initial scores of documents related to candidate ex-
pert are aggregated with respect to the candidate. Talking
in graph terms, this model calculates the weighted indegree
of an expert candidate wIDG(e) in the entity containment
graph:

wIDG(e) =
∑

d∈Γ−(e)

w(d, e) w(d).

In contrast to the Bayesian network model, w(d, e) and w(d)
are not necessarily probabilities here.

3.3 Probabilistic Random Walk
Although the linear Bayesian network provides a sound the-
oretical foundation for the direct inference from document
to expert probabilities, such a propagation model does not
take into account all features of the graph, yet. It is reason-
able to extend the one-way inference model and to assume
that (1) entities can also influence the relevance of docu-
ments and (2) entities affect the relevance of other entities
if they are 2nd-degree neighbors, thus appear together in

the same text fragment. In other words, relevance should
not only be propagated from documents and accumulated
at entity nodes, but should flow further through the graph.

Let us motivate the idea by outlining an expert finding sce-
nario: We can easily imagine a searcher for expertise who
got some list of highly relevant documents from a retrieval
system. She realizes that the expertise, she is looking for, is
partly contained in these documents and partly in the ex-
perts heads. Her search process can be seen as an (infinite)
process involving the following actions at each step:

(1) At any time: (a) Randomly read a document, most
probably from the top of the ranked list.

(2) After reading a document: (a) Consult a candidate ex-
pert mentioned in this document, or (b) check for other
linked documents and read one of them.

(3) After consulting with an expert: (a) Consult another
person which is recommended by the expert, or (b) read
further documents mentioning this expert.

The above considerations can be modeled as a Markov pro-
cess whose stationary probability distribution for candidate
nodes should show the level of their expertise:

P (e) = λ1

∑
d

P (e|d)P (d) + λ2

∑
e′

P (e|e′)P (e′),

P (d) = λ0P (d|q) + λ1

∑
e

P (d|e)P (e) + λ2

∑
d′

P (d|d′)P (d′).

with
∑

λi = 1. The settings of the different λi steers the
decision between the different optional steps in the above
outlined process. The model does not contain a probabil-
ity to consult an arbitrary expert at any time. For a uni-
form computation, one could add here zero probabilities to
the model instead. Notice also that we implicitly added a
query node (as in Figure 3(a)) and reverse edges to the graph
model, since the document vertices are reachable from the
query and from all entities. The entire graph is therefore
connected.

Although the motivating scenario was described in terms of
expert search, it is obviously not restricted to this type of
entity ranking. The Markov process describes here a random
walk on an entity containment graph. Apart from the edge
transition probabilities P (e|d), P (d|e), all necessary infor-
mation for the iterative calculation of the stationary proba-
bilities is already included in the entity containment graph.
Adopting the work of Balog et al. [2], the association weights
w(e,d) between documents and entities get simply normal-
ized to real probabilities:

P (e|d) = w(d, e)/
∑

e′∈Γ+(d)

w(d, e′),

P (d|e) = w(d, e)/
∑

d′∈Γ−(e)

w(d′, e).

The above proposed generic model of the walk even assumes
entity to entity edges and links between documents (as in
Figure 4(b)). Unfortunately, the TREC data used in the
experimental study does not have such additional links, but



for the completeness of the approach we wanted to show
how to incorporate this type of relevance propagation as
well. Our propagation model stands in close relation to the
random walk on web graphs proposed by Shakery and Zhai
[24] that also controls the walk to different neighborhoods of
a node by a set of steering probabilities λi.

3.4 HITS
We have chosen the HITS algorithm in order to compare our
random walk with other known graph-based weight propa-
gation models. HITS was originally used to characterize a
hyperlinked network of web-pages consisting of portal pages
with a high number of outgoing links, so-called hubs, on the
one hand, and cited content bearing pages with a higher
number of in-links on the other hand, so-called authorities.
We can easily transfer this distinction to our entity contain-
ment graphs with text fragments (hubs) pointing to entities
(authorities). HITS can be seen as a straightforward ex-
tension of the weighted indegree model. Instead of a 1-step
propagation from hub to authority nodes, the hub weights
are equivalently defined by their weighted out-degree, which
leads to a mutually recursive definition of hubs and author-
ities:

Auth(e) =
∑

d∈Γ−(e)

w(e, d) Hub(d),

Hub(d) =
∑

e∈Γ+(d)

w(d, e) Auth(e).

In order to incorporate the query dependent weighting of
the documents, we use here weighting model that includes
the query as an additional (entity) vertex in the graph (Fig-
ure 3(a)). Since we have a bipartite graph with links from
document to entities only, documents will only have hub
scores and entities will get authority scores only.

We have to make two remarks about the HITS algorithm
as it is applied here. First, including the query node as
an additional entity introduces an indirect “random jump”
possibility. Since all document nodes are connected to the
query, each of them is reachable from the others. Secondly,
notice that the HITS algorithms performs a normalization
step on its hub and authority values after each iteration not
mentioned in the above given definition. Therefore, the edge
transition weights do not have to be probabilities. We can
for instance set them uniformly to 1 with the implication
that a document does not divide its importance among its
contained entities but propagates its full weight to all of
them, vice versa for the propagation from entities to docu-
ments.

The HITS algorithm was adapted in other ways to incorpo-
rate a prior vertex weighting (among others by Bharat and
Henzinger [3]). Since we use HITS mainly for comparison,
we stick here to the more basic propagation model but com-
pute it as mentioned on the entity graph extended by the
additional query node.1

4. EXPERIMENTAL STUDY ON EXPERT
FINDING

1The basic model was even showing better results in initial
experiments on expert ranking.

We used TREC’s expert finding task to evaluate our entity
ranking approach, since it is a typical entity ranking task
and the required evaluation data (collection, topics, and as-
sessments) are available. Although we cannot claim that
all observations made for expert finding will be valid also
in other entity ranking domains, we expect to find similar
results there.

The corpus used in TREC for expert finding is the W3C-
corpus consisting of emails and web documents from the
W3C working groups. A list of potential experts for all top-
ics, in this case people participating in the W3C working
groups, is provided with the TREC data. We preprocessed
the corpus data in order to convert it to proper XML for-
mat with the least possible changes to the data itself, and
secondly for tagging all occurrences of experts within the
corpus. A simple string-matching tagger marked a candi-
date when it either matched the complete candidate name
or her/his email-address. We disregarded abbreviations of
the names since they could also mislead to different persons.
All experiments in this section are performed on the email
part of W3C corpus, which is the most clean and structured
part of the corpus. Using the entire W3C corpus yielded in
slightly worse results in general, however the order of com-
pared techniques with respect to their retrieval performance
remained the same.

For the initial ranking as well as for the graph generation the
PF/Tijah retrieval system [14] was employed. It allows to
rank the text content of an arbitrary set of XML nodes, and
also provides the full functionality of the XQuery language
to specify the output. For this experiment, we generated
XQueries that directly output entity containment graphs in
graphml format given a title-only TREC query.2 A stan-
dard language modeling retrieval model was employed for
the initial scoring of text nodes. The generated graphs were
later analyzed with a Java graph library, adapted by our
own weighted propagation models.

4.1 Testing the Models of Relevance Propaga-
tion Models

Before analyzing the influence of single parameters, Table 1
gives an overview on the performance of all discussed rele-
vance propagation models. Mean average precision (MAP)
is reported in all experiments since it was used for the TREC
evaluation as well. The results are based solely on the expert
ranking, not taking into account the supporting documents
also used in the TREC evaluation. Wherever appropriate,
we also show how the precision on the top of the ranked
list (P10) is influenced by the different parameter settings.
Here, and in all other cases where not stated otherwise, we
used the 1500 top ranked documents for building the en-
tity containment graph and included only expert entities;
domain specific edge weighting schemes are not considered.
In case of the random walk, we set the random jump prob-
ability to a small value, λ0 = 0.1, in order to emphasize the
walk on the graph structure. Such a setting is also typical
for the use of random walks for web retrieval.

The table reveals the three main results of the evaluation:

2Title + description queries were tested as well without any
improvements in the results.



Table 1: Performance of the relevance propagation
models

Model unweighted weighted
MAX 0.352
IDG 0.342 0.371
HITS 0.343 0.376
PRW 0.340 0.386
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Figure 5: Influence of interpolation factor λ in HITS
and PRW

(1) By adding more graph-based features to the relevance
propagation model, the results improve. From the baseline
model (MAX), followed by the weighted indegree (IDG) to-
wards the probabilistic random walk (PRW) we can see a
slight but constant improvement on each step. (2) Even
pure unweighted graph structure provides useful features
for entity ranking – otherwise the MAP values for the un-
weighted models would be by far lower – but incorporating
the probabilities of the initial ranking clearly improves the
results. (3) The non-recursive indegree performs reasonably
well compared to the more sophisticated relevance propaga-
tion models like HITS or the random walk. Differences are
still visible, but in many applications the fast to compute
weighted indegree might be sufficient.

Setting of the Interpolation Factor.The random walk re-
quires to set the probabilities λi for taking a step to the dif-
ferent neighborhoods of a node. Since we do not have direct
edges between documents and entities here, the parameter
space can be reduced to one variable: λ0 = λ, λ1 = 1 − λ.
Figure 5 shows how different settings of λ influence the re-
trieval performance of the random walk. The MAP curve
suggests to set the interpolation factor close to 0, however,
the relative flat gradient shows that the relevance propaga-
tion is rather insensitive to this setting. Not only the mean
average precision, also the precision on top of the ranked list
(P10) remains unchanged by different settings of λ.

Limiting the Number of Iterations.The recursive propa-
gation models, HITS and the random walk, are computed
iteratively until the overall change of the probabilities in the
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Figure 6: Retrieval performance for n-step random
walks

graph between two consecutive iterations is smaller than ε,
usually given by the numerical precision of a system. Af-
ter roughly 50 iterations the values converge in our experi-
ments. Since we observed already good performance for the
non-iterative indegree model, the question arises, whether
less iterations would be enough to achieve the wanted prob-
ability propagation within the graph. In the random walk
model, a limitation to n iterations can be interpreted as an
n-step random walk. Figure 6 shows the retrieval perfor-
mance for such n-step walks. Obviously, the first few steps
yield the highest improvements, and the precision gain for
rest of the iterations remains minimal.

Furthermore, we want to remark here, that the weighted
versions of the propagation models converge in general faster
than their unweighted counterparts relying on the pure graph
structure, which makes them computational less cost inten-
sive.

4.2 Analyzing the Graph Modeling

Number of Included Text Fragments.The first param-
eter to investigate here is the number of top ranked text
fragments that are taken into account when building the
entity containment graph. Notice that not all of these top
ranked documents will become a vertex in the graph, but
only those containing at least one expert node. In fact, this
filters out a large part of the retrieved document list. E.g.
from 1500 top ranked documents on average 650 contain
expert entities with a high variation among queries.

Figure 7 shows the influence of the number of top ranked
text fragments on the retrieval performance. Remarkably
here is the difference between the weighted (wPRW) and un-
weighted version (PRW) of the random walk. The weighted
random walk gains higher MAP values and does not loose
precision on top of the ranking. Apparently it does not suffer
from the weakened topical focus. However, the precision at
10 retrieved entities degrades rather soon for the unweighted
variant relying on pure graph statistics. Also the mean av-
erage precision deteriorates in the unweighted walk when
more than 1500 top ranked documents are considered for
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Table 2: Including Person Entities
Model unweighted weighted
HITS 0.343 0.375
PRW 0.342 0.388

the graph building.

Including Person Entities.In order to achieve a denser
graph we tried to include further entity types apart from ex-
perts. One straightforward idea was to tag all other person
occurrences throughout the whole corpus from those per-
sons known as an author of at least one mail in the email
sub-collection. Similar to the experts we used the full name
or email-address for identification. Experts who also wrote
emails were not tagged twice. The additional person entities
increased the graph-sizes by far, since also documents con-
taining a person but no experts were included in the graph
network as well.

Since the indegree of experts nodes will not be influenced
by the additional entity vertices, we take a look only on
the recursive propagation models. Table 2 provides a re-
sult overview as for the expert-only graphs before (Table 1).
Unfortunately, the overall changes remain minimal here for
both tested propagation models. Initial experiments on the
full W3C-corpus have shown higher improvements for the
inclusion of person entities, but cannot be approved on the
email corpus.

5. RELATED WORK
Graph-based ranking methods are first of all known from
web retrieval. Among them, Pagerank [22] and HITS [15]
are probably the most popular, and their usage is widely
studied in the field of hypertext retrieval. Similar to our
work here, more recent graph-based approaches try to in-
corporate as much information into the graph as possible.
Pagerank can be regarded in general as a Markov process,
or a random walk on the web graph [12]. Several attempts
have been made in the last years to make this walk query

and content dependent. The intelligent surfer [23] walks to
linked pages biased by their relevance to the query. The
surfer model proposed by Shakery and Zhai uses a similar,
but bi-directional walk considering both out-links and in-
links of a node [24].

Graph-based ranking methods often find applications be-
yond the bounds of hyperlinked corpora. They were recently
adapted for spam detection [6] and blog search [16]. Kurland
and Lee experimented with structural re-ranking for ad-hoc
retrieval, first using Pagerank [17] and later HITS [18] in bi-
partite graphs of documents and topical clusters. Erkan and
Radev use implicit links between similar sentences to com-
pute their centrality for text summarization [9]. More close
to our work, Zhang et al. studied query-independent link
analysis in post-reply networks for expert detection com-
paring Pagerank and HITS centralities [27]. Another new
study by Agarwal et al. generalizes completely from the ap-
plication and tries to learn the best edge weighting function
for a Markov walk from relevance assessments [1]. Their
notion of entities here is even broader than ours and also
includes the documents itself.

6. CONCLUSIONS
Formulating the task of entity ranking as a graph-based rel-
evance propagation has shown to be a fruitful theoretical
model. It does not only motivate and justify the suggested
propagation models, but we could also show that exploiting
more and more graph features improved the expert ranking
in our empirical study. Since our experiments only study
the problem of expert finding, we cannot claim that all sug-
gested techniques will work similarly in other domains of
entity ranking, but the general propagation model will be
useful there as well.

The main findings of the experimental study on expert find-
ing can be summarized as follows. The pure unweighted
graph structure of the entity containment graph provides
useful additional hints for the expert ranking, but cannot
come up with high quality rankings on its own. Similarly,
our baseline ranking approach that relies solely on the ini-
tial ranking of documents remains beaten by all graph-based
relevance propagation models. It is thus necessary to com-
bine both the structural features of the graph as well as the
initial document ranking to yield the best retrieval perfor-
mance. From the three relevance propagation models that
make use of graph features, the simplest one – the weighted
indegree model – is already showing a rather good perfor-
mance. The more sophisticated random walk seems slightly
superior, but comes with the disadvantage of a more costly
computational model and further parameters that require to
be set appropriately. However, even a very limited number
of random steps on the graph yields in the best performing
model found here.

We currently see two interesting directions of future work.
Since the paper claims to provide an approach for entity
ranking in general, but carries out its experiments on expert
finding only, it will be necessary to study other entity rank-
ing tasks. Especially working with multiple types of entities,
as with candidate experts and other persons, needs more ex-
ploration to deliver improving results. Another challenging
task linked to expert ranking in general is the problem of



finding useful supporting text fragments for the given rank-
ing. Although we explained in the introduction that the
added value of entity ranking compared to passage or XML
retrieval is that it directly returns the extracted ranked list
of entities, it is important to notice that such a result list is
in many cases only useful in combination with links to sup-
porting sentences or passages. Our graph-based propagation
models might be useful here as well, since they also rank the
text fragments with respect to the included entities.
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