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ABSTRACT
Many servers on the web offer content that is only accessi-
ble via a search interface. These are part of the deep web.
Using conventional crawling to index the content of these re-
mote servers is impossible without some form of cooperation.
Query-based sampling provides an alternative to crawling
requiring no cooperation beyond a basic search interface. In
this approach, conventionally, random queries are sent to a
server to obtain a sample of documents of the underlying
collection. The sample represents the entire server content.
This representation is called a resource description. In this
research we explore if better resource descriptions can be
obtained by using alternative query construction strategies.
The results indicate that randomly choosing queries from the
vocabulary of sampled documents is indeed a good strategy.
However, we show that, when sampling a large collection,
using the least frequent terms in the sample yields a better
resource description than using randomly chosen terms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—retrieval models, search process,
selection process; H.3.4 [Information Storage and Re-
trieval]: Systems and Software—Distributed Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
distributed information retrieval, query-based sampling

1. INTRODUCTION
The surface web consists of static, easily indexable, pages.

The deep web consists of content that is generated dynam-
ically in response to user queries. These queries are sent
through a search form or interface. The simplest incarna-
tion of a search interface presents a single free-text search
field. These interfaces commonly provide access to an under-
lying database, for example: a database with descriptions of
movies, books or gadgets. The number of deep web pages
that provide search services like this is estimated by one
study to be five hundred times larger with respect to the
amount of normal surface web pages [6].
Copyright c© 2009 A. S. Tigelaar & Djoerd Hiemstra
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The deep web is similar to the surface web: they both
grow fast and offer a diverse range of information. However,
there are some notable differences: the deep web is mostly
structured and difficult to crawl. Some deep web sites ex-
pose direct links to the underlying content making indexing
easier for traditional search engines. Despite this, the major
search engines, Google, Yahoo and Bing, have major trouble
indexing the deep web. A 2004 study shows that they typ-
ically index only 37% of the available deep content [10]. It
has been suggested that a database-centered, discover-and-
forward access model would likely be a better approach for
enabling search of the deep web [16].
An existing conceptual model for this is distributed infor-

mation retrieval. A distributed web search engine accepts
user queries, forwards them to other remote search servers
that index the actual content, merges the returned results
and sends this back to the user. To know what remote search
servers to forward a query to, the distributed web search en-
gine requires a resource description of each server [7].
Query-based sampling can be used to discover the con-

tent available at a remote server. It makes only a mini-
mal assumption: the remote server should be able to re-
ceive and process queries and send back a list of search
results. No other functionality is necessary beyond what
end users would use directly. Random, single-term, queries
are sent to this remote search engine and the returned doc-
uments are fully downloaded locally to create a resource
description of the server. This resource description is a lan-
guage model: terms with occurrence counts. For example:
[(apple, 16) , (pear, 23)]. The vocabulary is defined as the
terms without occurrence counts: apple, pear. The first
query sent is conventionally a frequently occurring word in
the (English) language obtained from an external resource,
for example: a dictionary. The purpose of this first query
is to retrieve some initial search results. Subsequent queries
are terms drawn randomly from the vocabulary of the lan-
guage model constructed so far. Thus, only the query sent in
the first iteration is based on an external resource. The pro-
cess of sending queries, downloading documents and updat-
ing the language model, iterates until a stopping criterion is
reached. For example, when three hundred documents have
been downloaded, or after hundred iterations [8].
This research focuses on the drawing of random terms in

iterations following the first. We explore several alternative
strategies to choose single-term queries based on the con-
structed language model. Our research question is:

“Can query-based sampling be improved by using
an alternative term selection strategy?”



2. RELATED WORK
The foundational work for acquiring resource descriptions

via query-based sampling was done by Callan, et al. [9,
8, 13]. They showed that a small sample of several hun-
dred documents can be used for obtaining a good quality
resource description of large collections consisting of hun-
dreds of thousands of documents. They used uniform ran-
dom term selection, meaning each term in the vocabulary
has an equal probability of being chosen, but suggest that
query terms could be selected from the learned language
model using other criteria. This is what this paper focuses
on. The test collection used in their research, TREC-123, is
not a web data collection. While this initially casts doubt on
the applicability to the web, Monroe, et al. [23] showed that
the query-based sampling approach also works very well for
web data. Even when random queries are used.
Conventionally we compare the language model of the

sample with that of the collection to assess the resource
description quality. Sampling stops when a certain amount
of documents has been obtained. Baillie, et al. [1] propose
using the predictive likelihood as a stopping criterion for
sampling, instead of a fixed number of documents. They
use a set of reference queries that represent typical informa-
tion needs. Performance is measured with respect to this
set of reference user queries. This shifts the focus from sim-
ilarities between language models to the expected real-world
performance, given a representative query set.
A problem with sampling is that some documents are

more likely to be sampled than others. For example: longer
documents are more likely to be sampled than shorter ones.
This problem is commonly referred to as sampling bias. Bar-
Yossef and Gurevich [3] introduce two methods for obtaining
an unbiased sample from a search system. The novelty of
their approach is that they take into account the probability
that a document is sampled. They use stochastic simulation
techniques to produce nearly unbiased samples. Their goal
is to produce realistic estimates of the sizes of search engine
indices. The question is whether we really need unbiased
samples for building resource descriptions [1]. We do not
further investigate this issue in this paper. However, we do
use some of their ideas for a specific querying strategy.
Ipeirotis, et al. [18] introduce a variant of query-based

sampling called focused probing. They apply machine learn-
ing methods to learn the categorization of a remote server
based on the returned content. For example, a server that re-
turns documents containing ‘hepatitis’ and ‘MRSA’, would
be placed in the ‘Health’ category. This information can be
used by a central system to narrow down the server selection
for a user query. For example, all queries typically associ-
ated with Health are forwarded to sites in this category, the
returned results are merged and then presented to the user.
Other approaches go deeper into the functionality of the

search interface itself. For example, Bergholz and Chidlovskii
[5] investigate how to find out what type of complex queries
a free-text search field supports, for example: if it supports
Boolean queries and what operators it supports for such
queries. Another approach assumes that the page on which
the search interface resides contains clues about the under-
lying content [11]. This is suitable for search forms that
contain additional interface elements to narrow a search. In
our research we restrict ourselves to the basic assumption
that there is a single search field devoid of semantic clues.
We send only single-term queries via this interface.

Table 1: Properties of the data sets used.
Name Raw Index #Docs # Terms # Unique

OANC 97M 117M 8,824 14,567,719 176,691
TREC123 2.6G 3.5G 1,078,166 432,134,562 969,061
WT2G 1.6G 2.1G 247,413 247,833,426 1,545,707

3. METHODOLOGY
In our experimental setup we have a single remote server

whose content we wish to estimate by sampling. This server
provides a minimal search interface: it can only take queries
and return search results consisting of a list of documents.
Each document in this list is downloaded and used to build
a resource description in the form of a vocabulary with fre-
quency information, also called a language model [8]. The
act of submitting a query to the remote server, obtaining
search results, downloading the documents, updating the
local language model and calculating values for the evalua-
tion metrics is called an iteration. An iteration consists of
the following steps:

1. Pick a one-term query.

(a) In the first iteration our local language model is
empty and has no terms. Thus, for bootstrap-
ping, we pick a random term from an external
resource.

(b) In subsequent iterations we pick a term based on
a term selection strategy. We only pick terms that
we have not yet submitted previously as query.

2. Send the query to the remote server, requesting a max-
imum number of results (n = 10).

3. Download all the returned documents (1 ≤ n ≤ 10).

4. Update the resource description using the content of
the returned documents.

5. Evaluate the iteration by comparing the language model
of the remote server with the local model (see metrics
described in Section 3.2)

6. Terminate if a stopping criterion has been reached,
otherwise go to step 1.

This set-up is similar to that of Callan and Connell [8]. How-
ever, several differences exist. During evaluation (step five)
we compare all word forms in the index unstemmed which
can lead to a slower performance increase. The database
indices used by Callan and Connell contain only stemmed
forms. Additionally, the underlying system uses fewer stop
words. Callan and Connell use a list of 418 stop words. We
use a conservative subset of this list consisting of 33 stop
words which is distributed with Apache Lucene. We exam-
ine no more than 10 documents per query, as this is the num-
ber of search results commonly returned by search engines
on the initial page nowadays. Callan concluded that the in-
fluence of the number of documents examined per query is
small on average. Examining more documents appears to
result in faster learning, although with more variation [8, 9].
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Figure 1: Kernel density plot of document length
distributions up to 20 KB.

3.1 Data sets
We used the following data sets to conduct our tests:

OANC-1.1: The Open American National Corpus: A het-
erogeneous collection consisting of: transcribed
speech of face-to-face and telephone conversa-
tions, technical documentation, fiction and non-
fiction, research papers and some minor amount
of web data. We use it exclusively for selecting
bootstrap terms [17].

TREC-123: A heterogeneous collection consisting of TREC
Volumes 1–3. Consists of: short newspaper and
magazine articles, scientific abstracts, and gov-
ernment documents [14]. Used in previous ex-
periments by Callan, et al.[8]

WT2G: Web Track 2G: A small subset of the Very Large
Corpus web crawl conducted in 1997 [15].

Table 1 shows some properties of the data sets. It shows the
raw size of document content in bytes, the size of the cor-
responding Apache Lucene index, the number of documents
in the index, and the number of tokens (terms) and types
(unique terms). Figure 1 shows the distribution of docu-
ment lengths in TREC-123 and WT2G as a kernel density
plot [25]. We see that WT2G has a more gradual distri-
bution of document lengths, whereas TREC-123 shows a
sharper decline near two kilobytes. Both collections consist
primarily of many small documents.
The OANC is used as external resource to select bootstrap

queries as follows: on the first iteration of our experiment we
pick a random term out of the top 25 most-frequent terms,
excluding stop words, in the OANC.

3.2 Metrics
Evaluation is done by comparing the complete remote lan-

guage model with the subset local language model each it-
eration. We discard stop words, and compare terms un-
stemmed. Various metrics have conventionally been used to
conduct this comparison. Early query-based sampling pa-
pers relied on Collection Term Frequency (CTF) and the
Spearman Rank Correlation Coefficient (SRCC) [8]. Later
papers challenge the validity of these metrics and opt for us-
ing Kullback-Leibler Divergence (KLD) instead [2]. In this
paper we report results using both CTF and KLD. Addi-
tionally, we use the Jensen-Shannon Divergence (JSD) for
reasons outlined below.

We first discuss the Collection Term Frequency (CTF)
ratio. This metric expresses the coverage of the terms of the
locally learned language model as a ratio of the terms of the
actual remote model. It is defined as follows [9]:

CTFratio

“
T , T̂

”
=
X
t∈T̂

CTF (t, T )P
u∈T CTF (u, T )

(1)

where T the actual model and T̂ the learned model. The
CTF function returns the number of times a term t occurs
in the given model. The higher the CTF ratio, the more
important terms have been found. A ratio of zero indicates
that no terms were found, whereas a ratio of one indicates
that the learned language model is identical to the remote
model. For example, if the remote model consists of the
term ‘pear’ forty-nine times and the term ‘lion’ once, and
we have locally seen only the occurrences of the word ‘pear’,
then the CTF ratio is 98 percent (49÷ (49 + 1) = 0.98).
The Kullback-Leibler Divergence (KLD), sometimes called

relative entropy, gives an indication of the extent to which
two probability models, in this case our local and remote
language models, will produce the same predictions. The
output is the number of additional bits it would take to en-
code one model into the other. It is defined as [21, p. 231]:

KLD
“
T ‖ T̂

”
=
X
t∈T

P (t | T ) · log
P (t | T )

P
“
t | T̂

” (2)

where T̂ is the learned model and T the actual model.
KLD has several disadvantages. Firstly, if a term occurs
in one model, but not in the other it will produce zero or
infinite numbers. Therefore, smoothing is commonly ap-
plied such as Laplace smoothing, which simply adds one to
all counts of the learned model T̂ . This ensures that each
term in the remote model exists at least once in the local
model, thereby avoiding divisions by zero [1]. Secondly, the
KLD is asymmetric, which is expressed via the double bar
notation. Manning [22, p. 304] argues that using Jensen-
Shannon Divergence (JSD), also called Information Radius
or total divergence to the average, solves this. It is defined
in terms of the KLD as [12]:

JSD
“
T , T̂

”
= KLD

 
T ‖T + T̂

2

!
+KLD

 
T̂ ‖T + T̂

2

!
(3)

The Jensen-Shannon Divergence (JSD) expresses how much
information is lost if we describe two distributions with their
average distribution. This average distribution is formed
by summing the counts for each term that occurs in either
model and taking the average by dividing this by two. Using
the average distribution is a form of smoothing which does
not require assigning additional artificial probability weight
in contrast with the KLD. Other differences with the KLD
are that the JSD is symmetric and finite. Conveniently,
when using a logarithm of base 2 in the underlying KLD,
the JSD ranges from 0.0 for identical distributions to 2.0 for
maximally different distributions.
As a final metric we report the Result-List lengNth (RLN).

This is the average number of results returned per iteration.
Since we request only 10 results, the RLN is at least 0 and
at most 10.



4. STRATEGIES
In conventional query-based sampling, terms in iterations

after the first one are selected at random from the language
model constructed so far. This means that if we obtain 100
terms after the first iteration, each term in the language
model has an equal probability of 1/100 = 0.001 of being
selected for the next iteration. The probability of an indi-
vidual term being selected decreases as the vocabulary size
increases. This is called uniform random selection.

4.1 Vocabulary Frequency-Based Measures
A simple improvement over selecting a random query term

is selecting a term based on frequency information of the
terms in the documents retrieved so far. Since a language
model is more than just a vocabulary, it also contains term
occurrence counts. We devised several selection strategies
that exploit this. To illustrate we use the following exam-
ple: [(lychee, 6) , (okra, 3), (rambutan, 1)]. This means that
60 percent of the terms seen so far are lychee, 30 percent
are okra and the remaining 10 percent are rambutan. In a
uniform random selection scenario, which disregards the fre-
quencies, all terms are equally likely to be selected (∼ 33.3
percent). Choosing between them would be like rolling a
three-sided dice. Let us investigate several alternatives to
uniform random selection:

Biased-Random-Collection Terms with a high frequency
in the language model are more likely to be selected.
This simply uses the frequency information to alter the
selection probability. In this case the probability for
lychee would be 0.6, for okra 0.3 and for rambutan 0.1.

Least-Frequent Select the term with the lowest frequency
in the language model. In the example this would be
rambutan, since: 0.1 < 0.3 < 0.6

Most-Frequent Select the term with the highest frequency
in the language model. In the example this would be
lychee, since: 0.6 > 0.3 > 0.1

For these last two approaches, it is possible that there are
multiple terms with the same lowest or highest frequency.
For example: [(apple, 0.1) , (pear, 0.1) , (banana, 0.1)]. Se-
lection among such terms with the exact same frequency
is random. Because the frequency of terms in a vocabulary
follow a Zipf distribution [21, p. 82], such random selection
is more likely to occur at low frequencies.

4.2 Document Frequency Based Measures
In each iteration we obtain a sample of documents. In

the previous section we considered all documents together
as one language model. The approaches in this section use
the individual language models of each obtained document.

4.2.1 Biased-Random-Document
Each iteration we throw an n-faced die where n is the

number of terms in our local language model. However, the
probability of a term being selected is proportional to its
document frequency. The higher the document frequency,
the more likely the term will be selected. This is equivalent
to biased-random-collection, but using document frequen-
cies (in how many documents does a term appear) instead
of collection frequencies (how often does a term occur in the
entire sample of documents concatenated into one).

4.2.2 Document Information Radius
Each iteration we can use the statistical properties of the

documents obtained so far. One way is to adapt the idea be-
hind one of the metrics we use: Jensen-Shannon Divergence
(JSD), explained in Section 3.2. We term this approach
document information radius to prevent confusion with the
metric. The intuition behind this method is: from all the
documents we first select the one that has the most terms
in its language model that diverge from the current local
language model of all sampled documents. From this doc-
ument we select the term that diverges least from the local
language model as query.
Recall that the JSD calculates the divergence between two

language models. In this approach we compare the current
local language model to a pool language model of a group of
documents. We define that S represents the entire sample
of documents. The steps are as follows:

1. Determine document scores:

(a) Each document d ∈ S has an initial score of zero.

(b) For each term t in the vocabulary of S consider
the pool of documents Dt ⊆ S that contain that
term at least once.

i. Increase the score of each document d ∈ Dt

with the JSD between the language model de-
fined over Dt for each term t and the model
of the entire sample S . The document score
is thus a sum of JSD values.

2. Select the document with the highest score.

3. From this document select the term t whose
JSD (Dt, S ) contributed least to the document score.

For example: if we have document A with score 0.5 and B
with 1.0, we would select document B since it has a higher
score. Thereafter we would select from the individual terms
in document B the one with the lowest JSD.

4.2.3 Document Potential
Assume that it is preferable to use terms from many dif-

ferent documents as queries to obtain a good sample. Given
this we need some way to avoid selecting query terms from
one document too often. We need to determine the docu-
ment potential. To do this we use appearance counts. Each
iteration a document appears in the search results, its count
is incremented by one. Thereafter, a query term is selected
randomly from the document with the lowest appearance
count. So, if we have document A with count 1 and a docu-
ment B with count 2, a term will be drawn randomly from
the vocabulary of document A. If there are multiple docu-
ments with the same, lowest, appearance count, a document
is first selected randomly and then a term from that docu-
ment’s vocabulary. So, if A and B both have count 1, we
first select either document A or B with a fifty percent prob-
ability and then randomly select a term from the selected
document as query.
This approach continually attempts to ‘harvest’ terms from

documents that either appeared in more recent iterations or
were neglected before. It indirectly also penalizes long doc-
uments that have a higher probability of appearing in search
results often.



4.3 Controlled Query Generation
Frequency information can also be used in more complex

ways. Controlled query generation was proposed as a means
of evaluating blind relevance feedback algorithms [20]. In
this approach, queries with high discriminative power are
generated from the documents seen so far. Kullback-Leibler
Divergence (KLD), also called relative entropy, forms the
basis for this calculation. The KLD for each term is calcu-
lated between all the documents it appears in and the entire
collection.

score (t, Dt, S ) = P (t | D) · P (t | Dt)

P (t | S )

where t represents a single term, Dt the subset of docu-
ments of the sample in which t occurs and S the sample of
the entire collection seen so far. Hence, Dt ⊆ S . The re-
sulting score represents the power of a term to discriminate
a subset of documents with respect to all other terms.
The highest scoring terms are used for querying. This

might appear counter-intuitive, since terms with high dis-
criminative power imply that these terms also return fewer
and more specific documents. We will see later that return-
ing fewer documents each iteration does not necessarily yield
poor modeling performance.

4.4 Query Cardinality
Bar-Yossef, et al. [3, 4] present several approaches to ob-

tain a uniform random sample from the index of large search
engines to compare their coverage of the web. An important
point they make is that of query overflow and underflow. A
query that underflows is one that returns less than the num-
ber of desired results, whereas one that overflows returns
more. For example: assume that we want each query to
yield 10 documents, if only 5 are returned by a query it is a
query that underflows. We call the number of results that a
query yields the cardinality of the query.
The problem of underflow is relevant to query-based sam-

pling. Each iteration we can send one query and get back
results. Ideally we would always want each query to re-
turn as many document as we request, since processing a
query is a costly operation. If one query yields less than the
amount of requested documents, we are partially wasting
an iteration. This problem is ignored in the foundational
query-based sampling papers [9, 8].
To avoid underflow we adopt the rejection sampling method

which is illustrated in the pool-based sampler of Bar-Yossef,
et al. [3]. To determine which query to send we adopt the
following procedure:

1. Select a random term t from the set of terms T seen
so far (the vocabulary of the local language model).

2. Count the number of documents #D in our sample S
that contain t. Use this count as an estimate of the
number of results that will be returned.

3. If #D is exactly the number of desired documents n,
then accept and use this term. Otherwise: with prob-
ability 1−#D/n reject the term and return to step 1
and with probability #D/n accept and use this term.

Terms that refer to few documents in the sample obtained
thus far have a lower probability of being selected for ob-
taining more documents.

5. RESULTS
In this section we report the results of our experiments.

Because the queries are chosen randomly, we repeated the
experiment 30 times. Thus, all plots shown are based on
30 experiment repetitions. We derived the regression plots
from scatter plots. Based on the shape of the data we fitted
regression lines using y = log (x) + c. The graphs show
results for 100 iterations. We verified that the trends shown
continue beyond the graph limit up to 125 iterations. In each
iteration a variable number of documents is returned. We
show the average number of returned results per iteration in
separate graphs.
Figure 2 shows results on TREC-123 using the basic fre-

quency strategies: random, biased-random-collection, biased-
random-doc, least-frequent and most-frequent. We see that
the baseline, random term selection, performs quite well.
While the biased approaches both perform worse than ran-
dom, although using document frequencies instead of col-
lection frequencies appears to be more optimal. Realize
that document frequencies are in fact coarse collection fre-
quencies. The only strategy that actually performs better
than random is least-frequent. The opposite strategy, most-
frequent, performs worst. Apparently, if we try to sample
from a large underlying collection, using the least frequent
terms as queries is the most optimal approach.
If we regard the region between the least-frequent and

most-frequent strategies in each graph as an upper and lower
limit, we can explain why the random strategy already works
well. Since there are just a few high frequency terms and
many low frequency terms, the probability of randomly se-
lecting a less frequent term is quite large. This is the reason
that random is so close to least-frequent. However, there is
still a probability of selecting a frequently occurring term,
which explains why random is slightly less optimal than al-
ways selecting the least frequent term. The number of re-
turned results per iteration decreases more rapidly for least-
frequent, but this apparently does not affect the strategy’s
capability of optimally sampling the underlying collection.
The most-frequent strategy always returns ten results. How-
ever, these results are likely to be largely the same after each
iteration. This redundancy in the results explains most-
frequent’s relatively poor performance.
Figure 3 shows the results for the advanced strategies.

The random baseline is repeated in this graph for com-
parison. The document potential strategy performs quite
poorly. Even though it manages to consistently select terms
as query that retrieve a relatively stable number of results,
these queries retrieve documents that poorly model the col-
lection. The original scatter plots suggest that this strategy
gets stuck on using query terms from one particular docu-
ment in early iterations. The document information radius
strategy always retrieves ten results, but similarly does not
perform so well. Query cardinality performs just a little bit
worse than random. In contrast, controlled query genera-
tion performs a little bit better than random, comparable
to least-frequent select.
Figure 4 and Figure 5 show the results for the strate-

gies for WT2G. This collection is more representative for
the Web. The pattern for the basic strategies in Figure
4 is mostly the same as for TREC-123. The only differ-
ence is the results per iteration which varies much more for
WT2G. The more heterogeneous nature of the corpus likely
causes this higher variation. Indeed, the performance of
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Figure 2: Results for TREC-123 for the basic fre-
quency strategies Legend in the top right graph.
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Figure 3: Results for TREC-123 for the advanced
strategies. Legend in the top right graph.
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Figure 4: Results for WT2G for the basic frequency
strategies. Legend in the top right graph.

least-frequent is quite good considering how few documents
it retrieves in later iterations. The advanced strategies in
Figure 5 show more difference with TREC-123. Controlled
query generation, a strategy that performed better than ran-
dom for TREC-123, performs quite poorly here. It appears
to get stuck on terms that often retrieve the same docu-
ments. Other than this the result is similar to TREC-123
with query cardinality performing very close to random.
To give further insight into why least-frequent select per-

forms better, Figure 6 shows scatter plots of the Jensen-
Shannon Divergence (JSD) against the number of iterations
and against bandwidth. Recall that the regression lines in
all the previous graphs are based on 30 repetitions. These
scatter plots show about 1000 samples of the source data
per graph. Specifically, the two top graphs show the basis
for the regression lines in the bottom-left graph of Figure 4.
We can see from these two graphs that the random approach
has more outliers than the least-frequent strategy. We be-
lieve that the outliers for random are frequently occurring
terms. Least-frequent never selects these terms. As a result
its performance has less variance which explains the better
regression line.
We also plotted the JSD against the bandwidth consump-

tion, shown as the bottom graphs in Figure 6. The hori-
zontal axis in these graphs is not the number of iterations,
but the combined size in kilobytes of the sample. It appears
that the least-frequent strategy also shows more stable per-
formance when plotted against bandwidth. This suggests
that it retrieves higher quality documents. Where we define
quality in terms of representativeness as measured by the
Jensen-Shannon Divergence (JSD). For random, the quality
of retrieved documents seems to vary more compared with
least-frequent. This implies that least-frequent provides, on
average, better results per unit of bandwidth used.
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Figure 5: Results for WT2G for the advanced strate-
gies. Legend in the top right graph.
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Figure 6: Scatter plots of the Jensen Shannon Di-
vergence (JSD) against the number of iterations
(top) and the bandwidth consumption (bottom) for
WT2G. The left graphs for the Random strategy,
right graphs for Least-Frequent. Each graph is based
on approximately 1000 samples.

6. CONCLUSION
In conventional query-based sampling, remote servers are

sampled by sending random terms as queries, retrieving the
results and using these to build a resource description. We
presented several alternative approaches to using random
terms. Selecting the least-frequent term in the language
model as query yields better performance than selecting a
random term. Most other presented strategies did not show
consistent improvement for the two test collections used.
The results confirm that using random selection is quite

optimal. Yet, using the least-frequent term outperforms
random term selection. Even more interesting is that the
least-frequent strategy outperforms others, while download-
ing less documents per iteration on average. It saves more
bandwidth as the number of iterations increase. Indeed, this
suggests that we need to look beyond the quantity of data,
the number of documents, used to build resource descrip-
tions and pay more attention to quality and representative-
ness of those documents.
Despite the good results for least-frequent, we believe that

the size of the underlying database has a huge influence on
the performance of any querying strategy. As such the re-
sult of this research should be seen as strictly applying to
sites that index a large underlying collection in the same, or
higher, order as the collections used in this research. The ra-
tionale behind this: using a least-frequent strategy on small
collections may result in many iterations with a low number
of search results. Since rarely occurring terms might appear
only in one specific document. For a large collection this
problem is less pronounced. Low-frequency terms likely oc-
cur in at least some other documents. This also increases the
chances that new documents are retrieved, which leads to a
more accurate model in fewer iterations than the random
approach.

7. FUTURE WORK
We regard investigating the exact influence of the size of

the underlying collection as important future work. Combin-
ing this with collection size estimation enables faster and less
costly construction of resource descriptions tailored to col-
lections of specific sizes. We would need to test on a higher
number of recent collections representative of the present
day web with varying sizes to produce robust experimen-
tal results. Other strategies for term selection could also
be explored. However, we believe that improving further
over usage of the sampled language model will be difficult.
We wish to emphasize that a resource description needs to
represent the underlying resource well. It need not neces-
sarily be unbiased. In fact, we believe that some bias makes
resource selection easier. The costs of term selection and
query construction is an other aspect that should be more
deeply evaluated. Directions that explore beyond the usage
of the sampled language model have so far focused on in-
telligently selecting queries from an external resource [18,
19] or using reference queries [1]. Future research could ex-
plore the construction of multi-term queries, which possibly
return a more diverse set of documents each iteration [20].
Additionally, querying in web forms that have more search
field, possibly not all of them free text, could be further
explored [24].
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