
Onebox: Free-Text Interfaces as an Alternative
to Complex Web Forms

Kien Tjin-Kam-Jet, Dolf Trieschnigg, and Djoerd Hiemstra

University of Twente, Enschede, The Netherlands
{tjinkamj,trieschn,hiemstra}@cs.utwente.nl

Abstract. This paper investigates the problem of translating free-text
queries into key-value pairs as an alternative means for searching ‘behind’
web forms. We introduce a novel specification language for specifying
free-text interfaces, and report the results of a user study where we eval-
uated our prototype in a travel planner scenario. Our results show that
users prefer this free-text interface over the original web form and that
they are about 9% faster on average at completing their search tasks.

Keywords: query processing, natural language interfaces, deep web,
structured data, query translation, query reformulation.

1 Introduction

The internet contains a large amount of information that is only accessible
through complex web forms. Journey planners, real estate websites, second-hand
car websites, and other websites commonly require the user to fill in a form con-
sisting of a number of fields in a graphical interface. The user should first inter-
pret the form and then translate his information need to the appropriate fields.
Moreover, filling out these forms can be slow because they require mixed inter-
action with both the mouse and keyboard. A natural language interface (NLI)
alleviates these problems by allowing the user to enter his information need in
a single textual statement. Rather than navigating between and entering infor-
mation in the components of the web form, the user can focus on formulating
his information need in an intuitive way. NLIs require or assume syntactically
well-formed sentences as input, in essence restricting the range of textual input.
However, describing all possible natural language statements and dealing with
query ambiguity can be a time-consuming process [1–4]. Therefore, we introduce
a free-text interface (FTI) which allows the user to freely input any text without
any restrictions. In this paper, we describe and evaluate a prototype system for
specifying FTIs to access information behind complex web forms. The system
has been designed to specify flexible FTIs with relatively little effort.

This work is a stepping stone for further investigation of a single textual
interface to access the deep web [5]. Ideally, we wish to use these techniques to
build a distributed search system which can search multiple resources, including
information behind complex web forms, simultaneously. The contributions of

this paper are as follows: i) we introduce a specification language for describing
free-text interfaces (FTIs) to complex web forms; ii) as a proof of concept, we
show that this language can be effectively used to describe a flexible FTI to a
travel planner web form; and iii) we demonstrate that users find results faster
with an FTI than with a existing web form.

The remainder of this paper is structured as follows: Section 2 describes
the requirements and our prototype framework. Our experiment setup and the
results are described in Section 3. Sections 4 and 5 discuss our work and overview
related work. Finally, Section 6 concludes our work.

2 Free-Text Interfaces to Web Forms

The goal of the FTI is to offer simple textual access to content behind a web
form. The FTI should rank plausible interpretations (basically, ways to fill out a
web form) of the user’s free-text input. Kaufmann and Bernstein [2] showed that
it is important to guide the user during the query formulation process. Therefore,
the FTI should also offer query suggestions to guide users in formulating their
queries. Lastly, it should be easy to specify the capabilities of the FTI (from the
developer’s perspective). Figures 1 and 2 give examples of a complex web form
of a travel planner website (with many input fields and options) and an FTI to
the same web form, respectively.

Fig. 1. A complex web form (that offers
interactive query suggestions), based on
the Dutch Railways site.

Fig. 2. Trajectvinder (‘Route Finder’): a
free-text interface (that offers interactive
query suggestions), tailored to the com-
plex web form.

2.1 Framework

Our framework basically scans the user input for known patterns. Particularly, it
tries to interpret the input by finding valid pattern combinations. The patterns,
and other configurable items, will be described in more detail in Section 2.2.

Obtaining and ranking interpretations. The process of interpreting the
user input follows the following five steps:

1. Scanning for input regions: the user input is scanned for known patterns
from left to right, on a word-by-word basis (a word is delineated by a white
space). At each word, the longest matching pattern(s) starting from that
word is (are) stored. This process yields a set of possibly overlapping input
regions, where each region could have several annotations. (A region could
be matched by different patterns, e.g. a region containing the token ‘2000’
could be annotated as: a year, an amount of money, or a car model);

2. Generating non-overlapping region sets: the set Γ of all non-overlapping sets
of regions with maximal coverage of the input is generated;

3. Generating interpretations: for each region set γ ∈ Γ all possible combina-
tions of annotations are generated. This results in the set of possible inter-
pretations;

4. Filtering interpretations: first, interpretations are ‘cleaned’ by removing ex-
traneous annotations. Examples of extraneous annotations are prefix (or
postfix)-annotations that precede (or follow) annotations which are not spec-
ified by the pattern to which prefix (or postfix) corresponds. Also, all an-
notations that exceed the number of times they are allowed to appear in
the underlying web form are extraneous annotations. Second, the complete
interpretation is removed if it does not satisfy the constraints; and,

5. Ranking interpretations: the interpretations are ranked by the number of
annotations they contain, and by the specified pattern order in the configu-
ration file.

Generating suggestions. We generate two types of suggestions: token ex-
pansions and pattern expansions. The suggestions are interactive query expan-
sions [6], based on the last few input characters, and are only shown when they
are applicable. When the last few input characters denote a prefix of some pat-
tern, this triggers token suggestions of the expected type, only if the type was
defined by a list of tokens. If the expected type was defined by a regular expres-
sion, no suggestions can be shown. When the last few input characters denote
the body of some pattern, and if the set of postfix strings of this pattern is
non-empty, then the default (longest) postfix is shown.

2.2 Configurable Items

The FTI can be configured by specifying the following items: i) the web form’s
lexicon; ii) the constraints, iii) the patterns; and iv) the result generation rules.

Lexicon. The input fields of a web form often syntactically constrain user input,
e.g. limiting the number of characters, or only accepting input from a pre-defined
list of tokens. Regular expressions are used to pose even more syntactic restric-
tions, such as, allowing only numbers or zip-codes. Input fields (e.g. drop-down
menus) may map external strings to internal form values. The lexicon contains
known values (both internal and external): it consists of the regular expressions,
the list of tokens, and the mapping from external to internal values.

Constraints. The constraints denote value restrictions and relations. Example
restrictions are mandatory values (i.e. values that must be found in the input),
or value comparisons (e.g. a price value should be greater than zero). Value
relations are apparent in some web forms. For example, in the car-sales domain,
each value from the class “car brands” can have an associated set of values
from the class “car models”. Whenever a brand is selected, the list of available
models changes accordingly. These relations are useful for: limiting the set of
valid queries, ranking query interpretations, and generating query suggestions.

Patterns. Consider the input query “find me a trip to Amsterdam from Paris”.
Here, the values are ‘Amsterdam’ and ‘Paris’, and the contexts are ‘to’ and
‘from’, respectively. A system that responds with “from Amsterdam, to Paris”
in the first place and “from Paris, to Amsterdam” in the second place, is not
considered user friendly (as it generated a false positive and it may have wasted
the user’s valuable time). Simply scanning text input for known values, without
considering the context of the extracted values, may lead to unnecessary query
interpretations.

Therefore, we adopt a bottom-up approach for capturing the context: a set
of patterns must be specified for each input field. Each pattern consists of three
parts: a prefix, a body, and a postfix part. The affixes (the prefix and postfix)
each denote a finite list of strings, including the empty string. Note that the
affixes can be used to incorporate idioms of natural language. If a particular
value is found (i.e. it matched the body part) as well as a corresponding (non-
empty) affix, that value is then bound to the field to which this pattern belongs.

Two patterns could be combined into a range pattern. A range pattern is
useful for disambiguation. For example, the input ‘1000 - 2000 euros’ would be
interpreted as ‘minimal 1000 euros and maximal 2000 euros’. Without range
patterns, we would find ‘1000’ (it could be a car model, a min price, or a max
price) and ‘2000 euros’ (it could be min price or max price), which would have
to be further processed in order to remove erroneous interpretations.

Result generation rules. A query interpretation is displayed as a result
snippet (see Fig. 3), containing a title, a description, and a URL. To ge-
nerate the title and the description,
an ordered set of field templates must
be specified. A field template specifies
how a field’s value should be displayed.
To generate the URL, the http-request
method (i.e. get or post), the actual
action-URL, and all the form’s input
fields (including hidden fields, fields dis-
played as radio buttons, etc.) must be
specified.

Fig. 3. Interpretation as result snippets.

2.3 A Toy Example

Figure 4 depicts an example configuration file and shows how the lexicon, the
constraints, the patterns, and the result generation rules, are specified.

The tokens element contains token instances. Each instance belongs to a
specific type, has one internal value and a list of external values (treated as
synonyms by the system). Multiple instances can belong to a single type.

The id attribute of a pattern element contains the name of the input field
to which the captured value should be assigned. A pattern’s capture element
specifies the type to be captured. A pattern’s prefix (postfix) element specifies
a list of strings. (This may be specified as a Kleene star-free regular expression,
which is expanded to the list of possible strings.)

The constraints may contain: i) a list of mandatory field combinations; or
ii) a list of comparisons, e.g. comparing the value of one field to the value of
another or to some constant value.

<?xml version=’1.0’ encoding=’UTF−8’ standalone=’yes’ ?>
<root>

<tokens>
<instance type=’station’ internal=’1’>

<external>amsterdam amstel</external>
<external>amstel</external>

</instance>
<instance type=’station’ internal=’2’>

...
</tokens>
<patterns>

<pattern id=’fromloc’>
<option>

<prefix>((depart(ing|ure)?)?from)?</prefix>
<capture>station</capture>

</option>
</pattern>
<pattern id=’toloc’>

...
</patterns>
<constraints>

<mandatory fields>
<fieldset>

<field>fromloc</field>
<field>toloc</field>

</fieldset>
</mandatory fields>
< field field not equal=’fromloc’ to=’toloc’ />

</constraints>
<results>

<url method=’get’>http://www.example.com/search.html?loc1={fromloc}&...</url>
<title max=’3’ starttext=’Example.com: search results for ’>

<fieldtemplate id=’fromloc’ prefix=’from ’ postfix=’ ’ />
<fieldtemplate id=’toloc’ prefix=’to ’ postfix=’ ’ />
...

</title>
<defaults>

<field id=’arrivalTime’ external=’arriving on ’ internal=’true’/>
</defaults>

</results>
</root>

Fig. 4. An example configuration file.

Lastly, the results element specifies what the interpretation’s title, descrip-
tion, and URL should look like. It also contains possible default (internal) values
(with corresponding external values) for input fields. The url element specifies
both the action-URL and http-request method. The title element (just like the
omitted description element) contains an ordered list of field templates.
Each template corresponds to exactly one of the form’s input fields, indicated
by the id attribute. The title (description) is generated by listing the contents
of its start text attribute and concatenating the contents of the active field
templates, up to the specified max number of templates. A template is active if
the value of the input field it refers to is not empty.

3 Experiment and Results

We developed a prototype framework and evaluated it for an existing travel-
planner web form. The web form is as depicted in Fig. 1, the resulting FTI is
depicted in Fig. 2. A total of six information items can be specified in the form:
a departure location, an arrival location, an optional via location, the time, the
date, and a flag indicating whether the date and time are for arrival or departure.

In this experiment, we tried to answer the following questions: i) do people
prefer to use such an FTI over the existing web form in the first place? ii) is
searching by means of an FTI faster than searching by means of a complex
web form? iii) how much variation exists in the query formulations? iv) are
people consistent in their query formulations? v) what are the most positive and
negative aspects of the FTI? and vi) why is the FTI better, or worse, than the
complex web form?

3.1 Experimental Setup

Experimental procedure. The experiment consisted of an offline and an on-
line part, followed by a questionnaire.

During the offline part, the subjects first provided background information
(e.g. age, study). Then, they wrote down their ‘most recent travel question’ if
they could remember it. Next, an information need was shown as a topographical
picture with lines connecting two or three places, along with a desired date and
time. The subjects were asked to fill out the complex web form (on paper) based
on this information need. Next, they were shown a different information need
and had to fill out the FTI (also on paper). Finally, the subjects were shown a
filled out complex web form, and they reformulated that into a question suitable
for the FTI. We aimed to collect query formulations, with as little bias to the
question as possible. That is why we asked the subjects to formulate a query
from memory, and to formulate a query based on pictures instead of textual
descriptions of the information need.

During the online part, the subjects were given time to experiment with the
complex interface of the existing travel planner site. Then, their task was to
find 5 specific train routes and to write down the departure and arrival times.

We recorded the total time to complete all five tasks. Each route was described
textually, with a different order of the information items (i.e. the date, time,
and locations), and with different wordings (e.g. ten past one, or 13:10). Next,
the subjects were given time to experiment with the FTI. After that, they were
asked to find 5 specific routes and to write down the departure and arrival times,
and the total time was also recorded.

All questions in the questionnaire were answered on a five-point Likert scale,
except for the open questions and explanatory questions. The subjects had to
indicate whether they thought the FTI was easy to use, if they could find results
faster using the FTI, and whether the results of the FTI were correct. They
indicated whether or not the FTI was nicer and better, and explained why they
thought so. There were two open questions, asking the subjects to indicate the
most negative and the most positive aspects of the system. Finally, they indicated
which system they preferred.

Analysis. We tested whether the task completion times of the FTI differed
significantly (p < 0.05) from those of the complex web form, using the Paired
Samples T-Test [7]. We also tested whether the five-point Likert scale values
differed significantly from neutral (i.e. the number ‘3’), also using the T-Test.

Further, we evaluated the query formulation consistency by looking at the
order of the information items. Each item was first replaced by a symbol as
follows. We replaced the ‘from’ (location) with A, ‘to’ with B, ‘via’ with V, the
‘date’ with D, and the ‘time’ with T. For example, the input “from Amsterdam
via Haarlem to The Hague, tomorrow at 10am.” was represented as AVBDT.
We then measured the correlation between the subject’s query formulation and
the task description using Kendall’s τ [8]. Lastly, for each subject, we measured
the average Kendall’s τ over the combinations of the subject’s formulations.

3.2 Results

The subjects. A total of 17 subjects (11 male, 6 female) participated in the
study. The age distribution ranged from 21 to 66, with a mean of 32, as most
subjects were between the age of 21 and 33. The background of the subjects
ranged from (under)gradate students in various studies to people working in
healthcare, consultancy, and IT-software development. The overall experiment
(including the questionnaire) took around 30 minutes on average for each subject.

The questionnaire. Comparing the free-text interface (FTI) against the com-
plex web form, the subjects indicated on a five-point Likert scale whether the
FTI was: faster (2.4), nicer (1.8), better (2.5), and preferred (2.0). The num-
bers in parentheses are the average scores, where ‘1’ indicates full agreement,
and ‘5’ denotes the opposite. All results were significant (p < 0.05) except for
the third aspect, whether the FTI was better, which was not significant.

On average, the subjects felt they were a little faster at completing their
tasks with the FTI compared to the complex web form. This was supported by

the times measured for the web form and the FTI, with 7.3 and 6.7 minutes
on average, respectively. The subjects were significantly (p = 0.032) faster, by
about 8–9%, when using the FTI instead of the complex form.

Pros and cons. The subjects listed the most negative and most positive aspects
of the FTI. The following negative aspects were mentioned: 24% of the subjects
indicated that there was no example or short manual (obliging the subjects to
‘just type in something, and it worked’); 18% indicated that the appearance of
the interface was too simple, e.g. it lacked pictures; and 12% mentioned the fact
that they had to ‘clickthrough’ to obtain the same results as with the complex
web form. The following positive aspects were mentioned: 41% of the subjects
liked the fact that the system ‘understood’ dates like tomorrow and Tuesday,
and written time like ‘ten past nine’; 41% liked the fact that you only had to
type (without clicking on menus); 35% mentioned the query-suggestions as a
useful feature; and 18% appreciated the fact that the input order of information
items (e.g. time, date, places) did not matter.

Consistency. When considering only the order of the information items1 in
a query, there were 17 different query formulations. The three most frequent
online query formulations were: ABDT 41%, ABVDT 15%, and, tied at third
place with 6%, were ABTD, DTABV, and TABVD.

The mean Kendall’s τ between the online task descriptions and the query
formulations was 0.42. The task with the highest average τ (0.96) was sequenced
ABDT, the other tasks were BADT (0.67), TABVD (0.39), DTABV (0.09),
and TBAD (-0.02). Two subjects always followed the same information order
of the descriptions and had an average τ of 1.0 (though they used different
wordings). Three subjects had an average τ between 0.6 and 1.0, and the rest of
the seventeen subjects had an average less than or equal to 0.3.

The mean Kendall’s τ for the (within subjects) online query formulations was
0.64. Six subjects always formulated their questions in the same order and had
an average τ of 1; six subjects averaged between 0.7 and 0.9; and, five subjects
had an average τ less than 0.2.

Overall, the subjects were highly consistent in their query formulations. Fur-
ther, the descriptions had little effect on the subjects’ query formulations; the
moderate correlation (0.42) is most probably an artifact of the fact that the sub-
jects consistently formulated their queries as ABDT. (This explains the high cor-
relations between the query formulations and the two tasks ABDT and BADT.)

4 Discussion

4.1 Methodology and Results

We tried to prevent the subjects from mindless copying of the task descriptions
by presenting the tasks on paper instead of on screen. Nevertheless, the large

1 i.e. the ‘date’ (D), ‘time’ (T), and the ‘from’ (A), ‘to’ (B), and ‘via’ (V) locations.

number of different query formulations we collected was surprising, since: i) the
subjects could have just retyped the task descriptions; ii) there were only 17
subjects; and iii) the travel-planner web form was relatively simple. With so
much query variation in this limited scenario (in both the order of information
items and wordings used), even higher variation might be expected in a more
complex scenario.

The paper&pencil-approach demanded manual time measurement. We mea-
sured the total time to complete all 5 search tasks, as it would be more difficult to
obtain accurate measurements for individual tasks. Consequently, we could not
determine whether the time per task decreased or not. Even though we noticed
several times that subjects were clearly experimenting with the free-text inter-
face during the tests (as they were talking out loud, saying ‘what if I typed...’),
the average time of the FTI is still significantly lower than that of the complex
web form.

4.2 Limitations

We used shallow parsing to extract ‘bags of key/value-pairs’. No grammar is
used, therefore, a natural limitation is that we cannot parse nested structures.
For example, we would not be able to parse nested mathematical equations, nor
complex language constructs like “if X, what happens to Y and Z” (where X, Y,
and Z are complex statements containing conjunctions and disjunctions). Note
that this is not necessary since typical web forms do not allow such constructs
either.

4.3 Specialized Features

In some cases, it could be handy to invoke a suitable function with the detected
values as arguments. For instance, to extract the actual ‘dd-mm-yyyy’ time
format from the input ‘next week Friday’, some function similar to ‘getDate()’
should be called to obtain the current date in order to calculate the intended
date. The framework contains several pre-defined functions (e.g. for extracting
dates and times) which can be invoked simply by specifying the field(s) that
accept(s) a function value. Future versions of the framework will allow users to
add user-defined functions.

4.4 Practicality of the Framework

For users. Our work has the potential for solving the deep web problem. Given
a free-text search query, we can generate “real-time deep web results” (i.e. result
snippets with valid query-URLs as data-entry points). Deep web search ulti-
mately enhances our search experience by allowing users to search more content
and to specify attribute or facet restrictions, besides merely a list of key words.

For providers. We believe that web companies will be encouraged to create
their own configuration files for the following reasons: i) we showed that end users
prefer such an interface; ii) (we claim that) it is easy to write a configuration
file; and iii) visibility and user-friendliness are crucial for web companies.

Evidence for the last point can be found in a study by Alba et al. [9], where
they observed that: (1) the revenues of websites depend on the data that users
see on the site’s web pages; (2) websites are extremely motivated to ensure
correctness, accuracy, and consistency on the web pages shown to the end user;
and (3) websites do not accord the same level of significance to the data delivered
by the APIs. Alba et al. show that web companies care greatly for their ‘public
image’, since: i) selling products or services is difficult if users do not know about
you; and ii) users are more inclined to make a purchase if they feel positive about
the website. Furthermore, the large number of articles on the web about search
engine optimization strongly indicates that web companies are spending a lot to
increase their visibility to the users.

Our free-text interface for searching over web forms has the potential to both
increase the visibility of a web site (i.e. deep web search, enabling search over
otherwise uncrawlable data) and to provide more user-friendly search interfaces
for websites that implement this interface.

5 Related Work

A similar problem of filling out a web form for a given text query was tackled by
Meng [10]. Meng used various statistical disambiguation techniques. However,
a drawback of his statistical approach is that it requires (training) data that
is often difficult to obtain (e.g. it requires domain-specific queries in order to
obtain the ‘global’ statistics, and the data must often be annotated manually).
Instead of statistical disambiguation, we scan for valid pattern combinations and
present a ranked list of alternative interpretations to the user.

Weizenbaum described Eliza [11], one of the earliest systems with a natural
language interface. The input text is parsed using decomposition rules triggered
by keywords. Responses are generated based on reassembly rules pertaining to
the decomposition rule. These rules are stored in a script which can be easily
modified. During a session, a re-triggered decomposition rule may generate a
different response. Unlike Weizenbaum, we generate responses depending on a
set of detected patterns instead of a single decomposition rule, and we do not vary
the responses. Recent keyword-based retrieval systems over structured data [12–
16] generate a ranked list of structured queries or query interpretations, such that
the user can select the right interpretation. However, most model the query as
a bag of terms, disregarding the context of the extracted values, whereas we use
patterns to capture the context. Further, they use a probabilistic or heuristic
approach to rank the interpretations. Other grammar-based natural language
interfaces have been developed [17–20]; however, the majority of these systems
were application-specific which made it difficult to port the systems to different
applications [21].

The difficulty of porting a system from one application (domain) to another
is also apparent in information extraction systems, i.e. systems that extract all
entities from large bodies of texts. To overcome the difficulty of porting, Ap-
pelt and Onyshkevych [4] propose the Common Pattern Specification Language
(CPSL). At the heart of the CPSL grammar are the rules. Each rule has a prior-
ity, a pattern and an action. Input matched by the pattern part can be operated
on by the action part of the rule. Ambiguity arises when multiple rules match
at a given input location, and is resolved as follows: the rule that matches the
largest part of the input is preferred, and if two rules match the same portion of
the input, the rule with the highest priority is preferred. In case of equal priorities
of matching rules, the rule declared earlier in the specification file is preferred.
Like Appelt and Onyshkevych, we propose a pattern specification language, and
the patterns are used to scan the input text. However, we generate interactive
query suggestions and we produce a ranked list of interpretations instead of a
single interpretation.

6 Conclusion and Future Work

We introduced a novel specification language for describing a free-text interface
(FTI) to complex web forms. Our system uses patterns to scan the user input
and extract ‘bags of key/value-pairs’. The system is capable of both generating
query suggestions on the fly and generating ranked query interpretations.

We carried out a user study to compare the FTI with an existing travel plan-
ner web form. Our results showed that the subjects were significantly faster at
finding information when using the FTI instead of the complex form by about
8–9%. Furthermore, they significantly preferred using the FTI over using the
original web form. The results also showed that the subjects were highly consis-
tent in their query formulations, and that there was considerable query variation
between subjects, even in such a limited scenario.

In future work we will investigate whether configuring the FTI is really easy
or not, by building FTIs in different domains and analyzing the builders’ opinions
about the configuration process. Also, we will investigate optimizations of the
parsing process, and examine different ways to combine patterns of multiple
websites in one domain.

Acknowledgments This research was supported by the Netherlands Orga-
nization for Scientific Research, NWO, grants 639.022.809 and 612.066.513.

References

1. Sun, J., Bai, X., Li, Z., Che, H., Liu, H.: Towards a wrapper-driven ontology-based
framework for knowledge extraction. In: KSEM’07, Berlin, Heidelberg, Springer-
Verlag (2007) 230–242

2. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query
languages and interfaces to semantic web knowledge bases. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web (2010)

3. Papakonstantinou, Y., Gupta, A., Garcia-Molina, H., Ullman, J.D.: A query trans-
lation scheme for rapid implementation of wrappers. In: DOOD’95, London, UK,
Springer-Verlag (1995) 161–186

4. Appelt, D.E., Onyshkevych, B.: The common pattern specification language. In:
Proceedings of a workshop on held at Baltimore, Maryland, Morristown, NJ, USA,
Association for Computational Linguistics (1996) 23–30

5. Madhavan, J., Ko, D., Kot, L., Ganapathy, V., Rasmussen, A., Halevy, A.: Google’s
deep web crawl. Proc. VLDB Endow. 1(2) (2008) 1241–1252

6. White, R.W., Marchionini, G.: Examining the effectiveness of real-time query
expansion. Information Processing and Management 43(3) (2007) 685–704

7. Kutner, M.H., Nachtsheim, C.J., Neter, J., Li, W.: Applied linear statistical mod-
els. 5th edn. McGraw-Hill (2005)

8. Kendall, M.: Rank Correlation Methods. 4th edn. Second impression. Charles
Griffin (1975)

9. Alba, A., Bhagwan, V., Grandison, T.: Accessing the deep web: when good ideas
go bad. In: OOPSLA Companion ’08: Companion to the 23rd ACM SIGPLAN
conference on Object-oriented programming systems languages and applications,
New York, NY, USA, ACM (2008) 815–818

10. Meng, F.: A natural language interface for information retrieval from forms on the
world wide web. In: ICIS, Atlanta, GA, USA, Association for Information Systems
(1999) 540–545

11. Weizenbaum, J.: Eliza—a computer program for the study of natural language
communication between man and machine. Commun. ACM 9(1) (1966) 36–45

12. Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversification for key-
word search over structured databases. In: SIGIR ’10, New York, NY, USA, ACM
(2010) 331–338

13. Tran, T., Cimiano, P., Rudolph, S., Studer, R.: Ontology-based interpretation
of keywords for semantic search. In: ISWC’07/ASWC’07, Berlin, Heidelberg,
Springer-Verlag (2007) 523–536

14. Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: adapting keyword query
to semantic search. In: ISWC’07/ASWC’07, Berlin, Heidelberg, Springer-Verlag
(2007) 694–707

15. Tata, S., Lohman, G.M.: Sqak: doing more with keywords. In: SIGMOD’08, New
York, NY, USA, ACM (2008) 889–902

16. Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu, H.:
Avatar semantic search: a database approach to information retrieval. In: SIG-
MOD’06, New York, NY, USA, ACM (2006) 790–792

17. Burton, R.R.: Semantic grammar: An engineering technique for constructing natu-
ral language understanding systems. Technical report, Bolt, Beranek and Newman,
Inc., Cambridge, MA. (December 1976)

18. Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Developing a natural
language interface to complex data. ACM TODS 3(2) (1978) 105–147

19. Carbonell, J.G., Boggs, W.M., Mauldin, M.L., Anick, P.G.: The XCALIBUR
project: a natural language interface to expert systems. In: IJCAI’83, San Fran-
cisco, CA, USA, Morgan Kaufmann Publishers Inc. (1983) 653–656

20. Carbonell, J.G., Hayes, P.J.: Dynamic strategy selection in flexible parsing. In:
Proceedings of the 19th annual meeting on ACL, Morristown, NJ, USA, Associa-
tion for Computational Linguistics (1981) 143–147

21. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases – an introduction. Natural Language Engineering 1(01) (1995) 29–81

