
Ranking XPaths for extracting search result records

Dolf Trieschnigg, Kien Tjin-Kam-Jet and Djoerd Hiemstra
University of Twente

Enschede, The Netherlands
{trieschn,tjinkamj,hiemstra}@cs.utwente.nl

ABSTRACT
Extracting search result records (SRRs) from webpages is
useful for building an aggregated search engine which com-
bines search results from a variety of search engines. Most
automatic approaches to search result extraction are not
portable: the complete process has to be rerun on a new
search result page. In this paper we describe an algorithm to
automatically determine XPath expressions to extract SRRs
from webpages. Based on a single search result page, an
XPath expression is determined which can be reused to ex-
tract SRRs from pages based on the same template. The
algorithm is evaluated on a six datasets, including two new
datasets containing a variety of web, image, video, shopping
and news search results. The evaluation shows that for 85%
of the tested search result pages, a useful XPath is deter-
mined. The algorithm is implemented as a browser plugin
and as a standalone application which are available as open
source software.

Categories and Subject Descriptors
H.2.8 [Database applications]: Data mining; I.5.4 [Pat-
tern Recognition]: Applications—Text processing ; H.3.5
[Information Storage and Retrieval]: Online Informa-
tion Services—Web-based services

General Terms
Algorithms, Experimentation, Performance

Keywords
Web extraction, Scraper, Wrapper, Search result extraction

1. INTRODUCTION
Reusing search results from existing search engines can be

useful for a variety of applications. For instance, for building
a meta-search engine which aggregates results from multi-
ple sources [28]. Or for automatic analysis and processing

CTIT Technical report
Copyright 2012.

of the search results, such as clustering. Reusing search
results requires them to be available in a machine readable
format. Such a format can be obtained in a number of ways.
First, some search engines (such as Google) provide a custom
API which allows programmers to directly use search func-
tionality from their program. Second, some search engines
provide their search results through (extended) syndication
formats, such as RSS and Atom feeds. The OpenSearch
standard1 specifies such extended syndication formats and
additionally allows to specify the interface of the search en-
gine. A drawback of both APIs and syndication formats is
that these results do not always correspond to the results
obtained from the web interface used by ordinary users [30].
Third, the search results can be scraped or extracted from
the webpage presented to the user of a search engine. The
search results are typically presented with a combination of
HTML, Javascript and Cascading Style Sheets (few search
engines provide their results in Flash). An advantage of
scraping is that the scraped search results correspond to the
results obtained during a normal search session. The ac-
tual conversion from the presentation format to a machine
readable format is carried out by a wrapper (or scraper). A
search result wrapper for a particular search engine can be
1) manually programmed; 2) constructed interactively with
a user; 3) learned from one or more manually labelled search
result pages; or 4) fully automatically constructed without
any interaction with the user.

The focus of this paper is on automatically constructing a
search engine wrapper based on only a single HTML search
result page. In contrast to recent work, which proposes fully
automatic methods which have to be rerun on each search
result page (see Section 2), our method tries to automati-
cally determine a wrapper which can be reused on all result
pages based on the same template. The wrapper is specified
in terms of a single XPath (XML Path language2) expres-
sion3.

Figure 1 illustrates the approach. The figure shows a
search result page from Bing web search. In the bottom-
left of the figure four possible XPaths to extract search re-
sult records are shown. The first, //li[./div/a], specifies 10
nodes from the HTML document highlighted and numbered
in the figure. By specifying the nodes in terms of structure
and attributes values of its adjacent nodes, the XPath is
likely to be reusable for other search result pages from Bing,

1http://www.opensearch.org/
2http://www.w3.org/TR/xpath/
3In the remainder of this paper, we will use the term XPath
to refer to an XPath expression.

Figure 1: Finding and ranking XPaths for extracting search result records.

including pages which do not include ads. A large advantage
of this approach is that the found XPath is portable to other
applications: most popular programming languages support
executing XPath statements on a Document Object Model
(DOM)4 parsed from an HTML page.

The use of XPaths for web extraction has been previ-
ously explored by Myllymaki and Jackson [32]. They em-
phasize the flexibility of XPaths for extraction and advo-
cate the use of “content-based” (based on text on the web-
page), “attribute-based” (the value of node attributes) and
“structure-baed” (local node structure) XPaths rather than
full paths such as /html[1]/body[1]/table[3]/tr. At a more
abstract level, these content, attribute and structure-based
XPaths provide a partial solution to the “access path depen-
dence”noted by Codd as one of the problems for the integra-
tion of information systems [11]. The XPaths depend less on
the complete data structure of the HTML page. Myllymaki
and Jackson’s work is limited to an analysis of manually de-
fined XPaths for extraction information from websites. In
this work, we automatically determine structure-based and
attribute-based XPaths.

The contributions of this paper are the following.

• We describe a method to fully automatically obtain
reusable search result wrappers based on only a single
search result page.

• We evaluate this method on a number of test tests,
including a new and up-to-date test set covering a large
variety of search results.

4http://www.w3.org/DOM/

• We make the algorithm and test sets publicly available
for follow-up research.

The overview of this paper is as follows. In section 2
related work is presented. In section 3 we describe our ap-
proach of determining XPaths for search result extraction.
In section 4 the experimental setup is described. In section 5
the results of the evaluation are discussed. We wrap-up with
a discussion and conclusion in sections 6 and 7, respectively.

2. RELATED WORK
Before describing related work, we define the terminology

we use throughout this paper. We define a wrapper as a
method to extract records from a webpage. A record is some
(structured) information about a single entity or object. In
case of a search result record (SRR), a record represents a
single search result. A record consists of multiple attributes,
pieces of information with a designated meaning. A SRR
can consist, for example, of a title, a description and a url
attribute. A template defines how the records are displayed
on a webpage.

Related work can be found in the area of web information
extraction. In contrast to conventional information extrac-
tion systems, which rely more on natural language process-
ing techniques such as natural language parsing (e.g. [36]),
web information extraction leverages additional features avail-
able in web documents, for instance the node structure of
the webpage.

The term wrapper has been used for a large variety of sys-
tems, offering different levels of functionality: some wrap-

pers only detect a record (e.g. [17, 43]), some also deter-
mine the attributes in each record and align them to each
other (attribute alignment, see e.g. [10, 16, 29, 35]) and
the last also assign meaningful labels to the attributes (at-
tribute labeling, e.g. [40, 45, 47]). Another distinction can
be made in the type of pages the wrapper targets: some
aim at extracting information from ‘single record’ or detail
pages (e.g. [4, 38]); many others focus on pages with multiple
records.

Early work has shown a focus on manual wrapper con-
struction, in which users with varying levels of expertise
are involved in manually constructing extraction patterns
and scripts (e.g. [5, 12, 20, 34]). Later the development
focused on techniques requiring less or less intensive inter-
action with the user. Based on a number of labelled ex-
amples, the systems induced a wrapper for pages based on
the same template (e.g. [10, 19, 25]). In interactive meth-
ods, users are continuously involved in the wrapper induc-
tion process and users can correct mistakes made by the
method (e.g. [6, 45, 46]). The last group of wrappers is
fully automatic and can be run without any user interaction
(e.g. [2, 9, 27, 35, 40, 42, 43]).

Wrappers also vary in the amount of data they require for
operation. Some require multiple example pages (e.g. [14,
44]) to induce a wrapper. The systems relying on manually
labelled data vary in the amount of training data they re-
quire. This varies from a single record example on a single
page (e.g. [10, 46]), to records on multiple training pages
(e.g. [13, 14, 22, 26]).

Different page features are used to extract records and
attributes. Many early wrappers treat the webpage as a se-
quence of tags and text (e.g. [10, 18]). Later wrappers treat
the page as a tree of tags (e.g. [7, 46]). More recently intro-
duced wrappers also involve information about the rendering
of parts of the page(e.g. [29, 31, 35, 43, 47]). Also features
separate from the page to be wrapped can be used for in-
formation extraction. For instance, labels found in search
forms associated with the page can be used for attribute
labeling (e.g. [37, 40]).

Another distinction between information extraction sys-
tems is their output. Some methods result in a wrapper (a
program) which can be reused to extract records (e.g. [10]).
Other methods are wrappers: they only return the records
they found on the current page (e.g. [21, 29]).

A large variety of techniques is used in extracting records,
varying from grammars (e.g. [12]) and grammar learning
(e.g. [1, 10]), using patricia trees (e.g. [9]), to the use of sim-
ilarity measures (e.g. [21]), sometimes in combination with
clustering techniques (e.g. [31, 33]). Frequently, heuristics
are employed to reduce the algorithmic complexity or sim-
ply to improve accuracy (e.g. [17, 21]).

For more extensive surveys on web information extraction
systems, see [8, 23, 24].

In this work we build a system for 1) record detection;
which 2) is fully automatic; 3) requires only a single page as
input; 4) uses the document tree and rendering information
as features; 5) outputs a reusable wrapper and 6) is based
on similarity measures and heuristics.

A number of researchers have recently investigated the us-
age of XPaths for information extraction. Anton proposes a
method which automatically determines a relative XPath for
information extraction based on a set of annotated example
documents [3]. In contrast to our method, it allows the con-

struction of complex XPaths, which also include predicates
about node siblings. Dalvi et al. propose a method to learn
robust XPath wrappers based on noisy example data [16].
Urbansky et al. use XPaths to extract enumerations of enti-
ties from webpages. Based on an example node a full XPath
is constructed from which the indices are removed. In our
algorithm we use a similar approach to determine the gen-
eralized XPath of a node [39]. Tran et al. propose a method
for XPath wrapper induction for extracting product infor-
mation from webpages. The method uses information about
product details in user queries for ranking the XPaths [38].
Zheng et al. propose the use of a ‘broom’ to extract records
from webpages [46]. The broom stick is used as a full XPath
to the top of the record region. The broom head describes
the DOM tree which contains the record. A major difference
to our work is that the system requires manual labeling of
records.

3. AUTOMATICALLY FINDING
SEARCH RESULT XPATHS

Using XPaths to extract search result records
Our goal is to create an algorithm which, given a single
search result webpage, suggests a ranked list of XPaths which
can be used to extract the search result records. Ideally,
each of the nodes retrieved with the highest ranked XPath
completely captures a single SRR.

Figure 1 illustrates the approach. Given a single web
search results page from Bing, four XPaths are suggested
for extracting SRRs. Using the first XPath, 10 nodes are
extracted, each representing a complete SRR. The extracted
nodes are highlighted and numbered in the figure. Note that
the advertisement above the search results is ignored.

For some webpages it is impossible to completely capture
a SRR with a single node. For instance when the search
results records are represented by multiple sibling nodes, as
in the following example:

<dl>
<dt>Title of SRR1</dt>
<dd>Description of SRR1</dd>
<dt>Title of SRR2</dt>
<dd>Description of SRR2</dd>
...
</dl>

Even in those cases, a method based on XPaths can be
useful for retrieving SRRs. As suggested in [32], the nodes
retrieved with an XPath can be used as an anchor to locate
part of the SRR. The remaining part of the search result can
be described relative to this anchor. For instance, //dt can
be used to retrieve the node with the title of the SRR and
serve as an anchor to retrieve the corresponding description
with the XPath ./following-sibling::dd[1].

Approach
Our overall approach is as follows:

• Generate candidate XPaths based on node repetition
and node attributes.

• Rank the candidate XPaths based on a number of fea-
tures, including the visibility and rendered area of the
nodes, the similarity of the nodes and the detection of
a grid.

In the following sections these two steps are discussed in
more detail.

For flexibility and efficiency we make we make the follow-
ing assumptions:

1. A single XPath expression can be used to extract (parts
of) all SRRs on a search result page. It is convenient
to be able to specify the SRR nodes with a single ex-
pression.

2. We assume that the search result records are found at
the same depth in the DOM tree. Similar assumptions
are made in e.g. [27, 46].

3. Only ‘basic’ XPath expressions are considered: a se-
quence of parent-child nodes with zero or more predi-
cates.

4. A search result node is either an anchor node (a tag)
or contains at least one anchor tag.

3.1 Finding candidate XPaths
Finding candidate XPaths is a four-step process.

3.1.1 Find anchor nodes
In the first step all anchor nodes on the page are extracted.

These are all nodes specified with the XPath //a.

3.1.2 Group nodes based on their generalized XPaths
The nodes found in the previous step are grouped accord-

ing to their generalized XPath. The generalized XPath of a
node is defined as the node names encountered when travers-
ing from the document root to that node. For instance, all
list item nodes (li) found in the example HTML tree in
Figure 2, have the generalized XPath /html/body/div/ul/li.
Only generalized XPaths which retrieve more than a mini-
mal number of nodes (by default three) are kept.

3.1.3 Build predicate tables
For each generalized XPath a predicate table is built. The

predicate table maintains for each level of the generalized
XPath the possible predicates and the number of anchor
nodes extracted using that predicate. The predicates are
based on the node attributes used by the ancestors (of the
nodes retrieved by the generalized XPath) at that level.
Each node attribute results in a single XPath predicate.
For instance, if a node has an attribute width with a value
100%, the predicate @width='100%' is added. id attributes and
class attributes are handled differently: the class value is
split based on whitespace and added as multiple predicates.
This is to handle nodes which use a number of style classes
simultaneously. If the value of the id attribute value ends
with a number, these numbers are discarded and the pred-
icate starts-with(@id, 'value') is used. This is to capture
groups of nodes with a common id prefix. In the predicate
table, the subset of anchor nodes selected is represented by
a nodemask for fast comparison.

Figure 2 shows a simple HTML node tree containing two
div nodes and three and ten list (and anchor) nodes found
below them respectively. Table 1 lists the corresponding
predicate table.

Next, the following type of predicates are removed:

• predicates which select fewer than the minimal number
of nodes.

html

body bgcolor='white'

div id='ads' div id='results'

ul ul

li li li li
class='odd'

li
class='even' ... 6 more ... li

class='odd'
li

class='even'

a a a a a ... 6 more ... a a

Figure 2: Example HTML tree.

Level Predicates # a-nodes Nodemask

0 /html

1 /body @bgcolor='white' 13 1111111111111

2 /div @id='results' 10 0001111111111

@id='ads' 3 1110000000000

3 /ul

4 /li @class='even' 5 0000101010101

@class='odd' 5 0001010101010

5 /a

Table 1: Example predicate table for for the gen-
eralized XPath /html/body/ul/li/a which retrieves 13
nodes (corresponding to Figure 2)

• predicates which do not reduce the number of selected
nodes.

• predicates which select the same set of nodes as a
shorter (measured in the number of characters) predicate—
i.e. prefer shorter predicates.

3.1.4 Generate candidate XPaths
Each of the remaining predicates in the predicate table is

used to initiate a search for candidate XPaths. For instance,
the predicate @id='results' in Table 1 results in the XPath
/html/body/div[@id='results']/ul/li/a.

Subsequently, this XPath is further explored by testing
the nodes at a higher level. For the example
/html/body/div[@id='results']/ul/li/a/.. (which can be rewrit-
ten as /html/body/div[@id='results']/ul/li[./a]),
/html/body/div[@id='results']/ul[./li/a] etc. are tested. The
‘highest’ XPath resulting in a distinct number of nodes is
added as a candidate XPath.

Finally each of the candidate XPaths is simplified by con-
structing a relative XPath. First, when available, identifier
predicates are added to the XPath. Then the leftmost part
is iteratively removed until a larger set of nodes is retrieved
by the simplified XPath.

We note that predicates can also be combined, leading to
an exponential number of predicate combinations to be used
in candidate XPaths. In our experiments we noticed that in
most cases an XPath with a single predicate is expressive
enough to select the exact set of search result nodes. We
therefore limit our candidates to XPaths with a single con-
straint from the predicate table. Note, however, that more
predicates can be added in the simplification process.

3.2 Ranking and filtering candidate XPaths
The set of candidate XPaths is ranked according to the

following criteria:

1. The similarity of the nodes retrieved by the XPath.
SRRs are expected to look similar and there should be
no ‘outliers’: no SRR should be very different from the
rest.

2. The presentation of the search result nodes. Search re-
sults are frequently presented as either a vertical list,
where the search results appear below each other. Or,
in case of shopping results or image search results, the
records are frequently displayed in a grid with a num-
ber of rows and columns.

3. The rendered area the nodes retrieved by the XPath.
The search result nodes are expected to take up a large
part of the screen. This requires the webpage to be
rendered so width and height can be determined.

In summary: XPaths with a similarity exceeding a sim-
ilarity threshold and with a grid or row presentation are
ranked according to descending rendered area.

Based on initial results of this ranking (and with an early
version of the candidate generation process), two additional
filtering heuristics are introduced.

The first heuristic handles a preference for XPaths retriev-
ing ‘rows’ of results. A limitation of this approach is that
in case the search results are presented in a grid, an XPath
retrieving rows of search results can be preferred over an
XPath which retrieves the cells found in the grid. The rows
form a coherent group and also its presentation below each
other make it a plausible list of search results. Moreover, the
rows take up at least as much or more space than the cells
found in these rows. The heuristic compares all candidate
XPaths and removes an XPath p when an XPath c can be
found for which the following constraints hold:

• The number of nodes retrieved by c is a multiple of p:
|c| > 2|p|
• The nodes retrieved by c form a grid with more than

one column.

• Each node retrieved by c is a descendant of a node
retrieved by p.

• Each node retrieved by p has at least on descendent
retrieved by c.

The second heuristic deals with ‘invisible’ nodes. Websites
may add nodes to the page DOM tree which are not directly
visible5 to the user. These nodes may form, for instance, a
dropdown menu and become visible when the user hovers
over the navigation menu. This heuristic removes XPaths
which retrieve invisible nodes.

In the following subsubsections the similarity calculation
and the detection of the presentation are described.

3.2.1 Similarity calculation
The similarity calculation determines two values for a set

of nodes retrieved by an XPath: an average similarity and
a minimal similarity. The first value indicates whether on

5invisible nodes can be realized with cascading style sheets
in several ways: by setting the ‘opacity’ to zero; setting the
‘visibility’ to ‘hidden’; setting the ‘display’ to ‘none’; or by
reducing the width and height to zero.

Dimension length

li 1
li/p 3
li/p/b 2
li/p/img 1

Table 2: Vector representation of a node

average the nodes are structurally similar. The second value
indicates whether there exists a single node which is consid-
erably different from all the other nodes (an outlier).

The structure of a node is represented as a vector. The
dimensions of the vector are relative XPaths to reach the
descendants of the node. The size indicates the number of
descendant nodes with this relative path.

For example, the node n is represented in HTML as fol-
lows:

<p>Title of the result</p>
<p>Description of the result</p>
<p></p>

The structure of n is represented by the vector in Ta-
ble 2. Note that the length of other dimensions (other rela-
tive XPaths) is 0.

Given two vectors v1 and v2, representing two nodes, the
similarity is calculated using the cosine similarity:

sim(v1, v2) =
v1 · v2
|v1||v2|

(1)

where · is the dot product and |v1| and |v2| are the lengths
of the vectors.

The average similarity could be calculated by averaging
all pair-wise node comparisons. However, this calculation
would have a complexity of O(n2) where n is the number of
nodes retrieved by an XPath. To reduce the complexity to
O(2n), we first calculate a centroid vector vc by summing
the vectors of the retrieved nodes.

vc =
∑
v∈V

v (2)

Where V is the set of vectors representing the nodes re-
trieved by the XPath and. The average and minimal simi-
larity are then calculated as follows:

avgSim =
1

|V |
∑
v∈V

sim(vc, v) (3)

minSim = min
v∈V

sim(vc, v) (4)

3.2.2 Determining presentation
The presentation of the search result page is determined

by analyzing the positions of the nodes on the rendered web-
page. In a single pass the top and left coordinates of the
rendered nodes are counted. The highest frequency of a top
coordinate indicates the number of columns; the highest fre-
quency of a left coordinate indicates the number of rows.

In case the number of nodes retrieved by an XPath does
not correspond to the number of nodes you would expect

on the detected grid, the XPath is discarded. In a formula,
an XPath retrieving n nodes on a detected grid with r rows
and c columns is discarded when n > (r + 1)c. r + 1 is used
to accommodate for slightly more nodes in the grid.

Also XPaths resulting in a detected grid with only a single
row are discarded.

3.3 Parameters
Three parameters are required by the algorithm:

• minSimilarityThreshold. The minimum value of the
minSimilarity required for a XPath. This value in-
dicates the tolerance for an outlier in a set of result
nodes. Based on initial experiments set to 0.55.

• avgSimilarityThreshold. The minimum value of the
avgSimilarity required for a candidate XPath. This
value indicates how similar the set of result nodes should
be. Based on initial experiments set to 0.65.

• minimumNodeCount. The minimum number of nodes
a generalized XPath has to retrieve. Set to 3.

3.4 Implementation and availability
The algorithm is implemented in Javascript running as ei-

ther a Mozilla Firefox plugin (Figure 1 shows a screenshot)
or as a XUL6 application. The program uses Firefox for
retrieving the webpage, constructing the document object
model (node tree) and rendering the webpage. The Firefox
plugin presents a GUI to highlight the nodes retrieved by
the ranked XPaths. The XUL application provides an API
to run the algorithm on a webpage. Given a URL, the appli-
cation returns the highest ranked XPath for that page. The
source code is available for download7.

4. EXPERIMENTAL SETUP
The proposed method is evaluated based on six datasets

with web search results. We first describe the datasets used.
Then we describe the evaluated aspects.

4.1 Datasets
Six datasets with web search results are used for the eval-

uation. The first three (zhao1-3) were used before in [43].
It contains a total of 246 search result pages found in dif-
ferent domains (general, news, government, medical etc.).
The fourth dataset (yamada) was assembled by Yamada et
al [41] and contains a variety of 51 search result pages. In
Yamada’s original dataset multiple pages from each search
engine are available; in our evaluation we only use a single
search result page from each engine. Note that this is a
considerably harder task.

We found that these four datasets are limited for a num-
ber of reasons. First, these datasets are rather old, mak-
ing them unrepresentative for the current state of the web.
Not only has the layout changed, also the technology has
changed. In our experience techniques such as CSS are cur-
rently more frequently used than HTML tables. Second,
image and video search results are underrepresented in the
datasets. Third, the datasets only contain the HTML source
of the search result pages making them incomplete for ren-
dering in their original form: images and cascading style
sheets were discarded by the creators.

6https://developer.mozilla.org/En/XUL
7http://www.ewi.utwente.nl/~trieschn/srf/

Testset #Pages Number of SRRs
Min Max Mean Median

zhao1 97 4 50 14.8 10
zhao2 102 5 437 25.6 10
zhao3 47 3 50 18.7 15
yamada 50 5 160 22.0 10
web1 115 5 999 30.6 11
web2 105 6 100 19.4 15

Table 3: Dataset statistics

Hence, we decided to assemble two additional datasets
(web1-2). The first has been used to develop the system and
was used to train the parameters. The second was assem-
bled separately and only used for the evaluation. For web1
the search result pages were gathered from the top 500 US
websites listed by Alexa8. Websites requiring a user account
(LinkedIn, facebook), websites containing pornographic ma-
terial and torrent downloads were discarded. The search
function on the main page of the webpage was used to ob-
tain a search result page. The complete result page was
downloaded in Mozilla Archive Format9, which includes all
images and CSS files and removes javascript. For web2 the
list of top UK websites listed by Alexa was used in a similar
fashion. Websites already used for web1 were skipped.

For all datasets, we manually determined a single XPath
to extract all and the complete SRR. In most cases (87 %)
this was possible. For 13% of the pages it was not possible to
use a single XPath to retrieve the complete SRR; for instance
when all titles and descriptions are sibling rows in the same
table. In these cases only the title (or image, in case of
image/video search) was selected.

We note that in some cases determining the set of SRRs
of a page is debatable. In all cases we left out ads in the
desired set of SRRs. In case of multiple result sections, we
chose the in our opinion most important section.

The characteristics of the datasets are listed in Table 3.
The datasets and ground truth can be downloaded from the
website mentioned before.

4.2 Evaluation aspects
We evaluate our method on a number of aspects.
First, the most important evaluation aspects is accuracy.

Does the highest ranked XPath retrieve the complete and
exact set of manually annotated SRRs on a page? This can
be achieved by comparing the nodes retrieved by the highest
ranked XPath with the manually determined XPath. How-
ever, this can be deceitful since two different nodes can re-
trieve almost exactly the same SRR. Consider, for instance,
a single SRR which is enclosed by a table containing a sin-
gle row. Both the table node and the row node retrieve
the complete search result. In our evaluation, we therefore
compare a text-only representation of the nodes. This rep-
resentation consists of the text found below a node and the
values of alternative-text and src attributes. We classify the
accuracy of the method for a particular search result page
in 4 categories: perfect, when all the intended SRR-nodes
are precisely retrieved, too many and too few when at least

8http://www.alexa.com/topsites
9http://maf.mozdev.org/

one intended node is precisely retrieved but too many or
too few nodes are returned, and incorrect when one of the
previous does not apply. We think that such a classification
is more insightful than micro or macro precision, recall and
F-measure, which can easily mask small errors by averaging
over a large set of SRRs. We carry out an error analysis to
determine what causes the errors.

Second, we determine the contribution of the various heuris-
tics used in the algorithm. Using a heuristic might aid in
solving a problem on one page, but might cause an error on
another. We would have liked to compare our algorithm to
an existing algorithm, but to the best of our knowledge no
existing systems give comparable output (i.e. given a single
webpage returns an XPath to retrieve SRRs). We therefore
carry out this breakdown analysis of the method.

Third, we analyze the running time of the algorithm. The
complexity of the major components of the algorithm is lin-
ear to the number of nodes and attributes in the HTML
page, which can be considerably different across pages. The
running time statistics give a clear impression of the speed
of the algorithm.

5. RESULTS

5.1 Accuracy
Table 4 lists the accuracy of the algorithm for the six

datasets. As expected, the performance on the web1 dataset
is highest since this set was used to develop the algorithm.
For 84 webpages (73%) an XPath is suggested which pre-
cisely and completely matches the SRRs in the ground truth.
For 4 pages (3%), all ground truth SRRs are extracted, plus
one or more incorrect SRRs; for 15 pages at least some
ground truth SRRs are extracted and for 12 pages only
incorrect SRRs are extracted. For web2 , the accuracy is
slightly lower (67% precisely correct). The percentage of
correctly suggested XPaths for the other and older testsets
varies between 53% and 63%. The test sets zhao1-3 and
yamada show a relatively high number of pages where too
many SRRs are extracted. In contrast, web1-2 have more
pages where too few SRRs are extracted.

Table 5 provides more insight into the errors made. For
each page with too many, too few or incorrectly extracted
SRRs we determined the cause of the error. Moreover, we
judged whether a (limited but) useful set of SRRs was ex-
tracted. We judged the extracted sets as useful when 1) next
to all SRRs, up to three additional rows were included; 2)
when 80% or more of the SRRs was found and only correct
SRRs were retrieved and 3) when a part of all SRRs was
retrieved which could be used as an anchor. Note that in
Table 5 the errors of all test sets were aggregated. Figure 3
illustrates four types of causes. We will limit the follow-
ing discussion to the most frequent causes. In most of the
cases when too many SRRs were extracted, the additional
records were navigational rows directly above or below the
actual search results. This happened particularly often with
the older test sets, which contain relatively many tables for
presenting the results. Most of the extracted nodes are still
useful as search results. In four cases the SRRs were ‘dou-
bled’: in those cases each SRR is represented by multiple
nodes. The cases where too few result nodes are retrieved
show a limitation of the bottom-up approach the algorithm
takes. Since links (anchor tags) are used as a starting point
for finding SRRs, this approach can easily make an incom-

Accuracy / Cause Count Useful

too many (50)
up to 3 additional rows (header,
navigation, ad)

46 46

double results 4
too few (46)

missed special type 14 14
missed SRRs lacking attribute 13 12
irregular tree structure 8 8
missed indented result 5 5
multiple SRRs as single node 3 2
many incorrect 2
prefers larger area 1 1

incorrect (89)
double results 20
description over title 12 12
unclear 10
prefers blocks of results 9
prefers larger repetitive parts 7
nested tree structure 5
prefers larger area 5
undetected hidden elements 4
no strict grid 4
ground truth problem 3 3
similarity 4 1
irregular structure 3 3
missed SRRs lacking attributes 2 2
no anchors in SRRs 1

total 185 109

Table 5: Error analysis of pages from which SRRs
were not completely and precisely extracted

plete selection of SRRs of a particular type. For instance, by
only selecting the SRRs which have a cache-link, or a link to
a product with contact information. Since groups of similar
nodes are preferred, XPaths also including SRRs of a spe-
cial type (e.g. movies, news or images) can be discarded. In
most of those cases (26 of 27) the nodes which are extracted
are still useful as search results. Another type of errors is
caused by an irregular tree structure: the first result is then
found at a different level than the other search results. Also
indented search results (typically indicating a near duplicate
or closely related result) are sometimes missed. In both cases
the remaining search results are complete and correct. Miss-
ing SRRs of a special type or missing indented SRRs is fre-
quently observed in the web test sets. The results illustrate
that modern search engines more frequently present blended
aggregated search results (e.g. images and news mixed with
web results) and use indentation in their result presentation.
Finally, we analyzed the pages which were initially labelled
incorrect. Most of the incorrect results are pages in which
‘double’ are detected. A typical example is a table with each
row representing a SRR. The algorithm incorrectly identifies
two or more result cells in each row. Another large group
of pages is labelled as incorrect because not the title but
a larger node (linked to the correct SRR) is preferred over
the title. Such nodes can still be used as useful anchors to
extract the complete SRR.

Table 5 puts the modest correct percentages of Table 4 in
perspective: many (109 out of 185) of the not-correct results
are still useful for extraction. On average (over all test sets)
this would result in useful XPaths for 85% of the pages.

Result zhao1 zhao2 zhao3 yamada web1 web2

correct 63 65% 54 53% 28 60% 32 64% 84 73% 70 67%

too many 13 13% 16 16% 5 11% 5 10% 4 3% 7 7%

too few 5 5% 5 5% 6 13% 4 8% 15 13% 11 10%

incorrect 16 16% 27 26% 8 17% 9 18% 12 10% 17 16%

Table 4: Accuracy of the method on six datasets

(a) up to 3 additional rows (b) double results

(c) missed special type (d) description over title

Figure 3: Screenshots of some typical non-correct cases (see Table 5)

5.2 Heuristics
Table 6 lists the impact of the various heuristics imple-

mented in the algorithm. Each row shows the change in
the correct number of pages. A positive value indicates that
turning the heuristic off leads to more correctly extracted
pages. The percentage indicates the fraction of the number
of correct pages.

The heuristic of removing XPaths retrieving invisible nodes
turns out to have only little effect. The manual analysis al-
ready showed that in some cases invisible nodes were not
detected. In early versions of the algorithm, which used a
topdown approach to select nodes which contain links, the
heuristic was observed to be more important.

Unexpectedly, the heuristic of removing rows of results
turns out to hurt the performance more than it helps: for all
test sets the number of correctly extracted pages increases
with the heuristic turned off. For the zhao testsets, the
heuristic only has a negative effect. This can be explained by
the fact that these testsets contain many results in tabular
format (fixing many of the “double results” mentioned in
Table 5). For the other test sets some pages improve, but
more are hurt by the heuristic.

The other three heuristics do show a positive improvement
of the results.

Using the predicate table has the strongest positive impact
on the web test sets. This can be explained by the fact that
these pages depend more on the usage of cascading style
sheets and classes. Using these as predicates in XPaths for
SRR extraction is useful.

The detection of a grid (and the requirement of multi-
ple rows and number of nodes approximating the nodes in
the grid), also turns out to have a positive effect on SRR
extraction. Especially the web test sets benefit from these
heuristics. An explanation is that these results contain many
results in grid form, such as image and shopping result pages,
which are more frequently shown in a grid.

The re-ranking based on similarity shows to have the largest
positive impact on performance, leading to up to 17 more
correctly extracted pages in comparison to not using the
heuristic.

5.3 Running time
Table 7 shows the running time statistics of the algorithm

on the test sets. It should be noted that the algorithm has

Heuristic zhao1 zhao2 zhao3 yamada web1 web2

remove invisible nodes 1 2% 0 0% 0 0% 0 0% -1 -1% 0 0%

remove rows of results 2 3% 5 9% 2 7% 1 3% 2 2% 7 10%

use predicate table -3 -5% 0 0% 0 0% -1 -3% -9 -11% -2 -3%

grid detection -3 -5% -1 -2% 0 0% 0 0% -6 -7% -10 -14%

similarity filtering/ranking -5 -8% -8 -15% -1 -4% -3 -9% -17 -20% -13 -19%

Table 6: Change in correct number of web pages with individual heuristics turned off (a negative value
indicates the heuristic improves the results)

Min Max Mean Median

zhao1 54 6,309 621 388
zhao2 34 11,930 967 327
zhao3 49 2,995 527 428
yamada 40 4,784 718 346
web1 161 58,695 2,752 1,285
web2 133 63,925 4,398 1,819

Table 7: Running time per page in milliseconds

been implemented in Javascript and probably could be fur-
ther optimized. Tests were performed running in the back-
ground on a 2.2 GHz laptop with 2 GB RAM. On average,
processing a page takes up to 4.4 seconds. The outlier (tak-
ing the algorithm over a minute to complete) is a page with
over 1300 links in a very deep hierarchical structure. The
1300 links result in many deep generalized xpaths which
are further explored for candidate XPaths. The algorithm
could be made more efficient by pruning generalized XPaths
which retrieve a set of nodes covering only a small area of the
screen. A typical (median) page takes between 327 milisec-
onds and 1.8 seconds, which we consider acceptable. From
the running time statistics we conclude that current web
search results have become increasingly large and complex.

6. DISCUSSION
The evaluation shows that retrieving SRRs can be achieved

using automatically determined XPaths. In this section we
will discuss the limitations of the work presented here.

Some caveats can be encountered when using the pre-
sented approach in practice. The method uses the Docu-
ment Object Model (DOM) generated by the parser. In
case of real-world (dirty) HTML pages, constructing the
DOM is not trivial; different HTML parsers may repair in-
correct HTML in different ways, potentially leading to dif-
ferent DOM trees, resulting to different XPaths from our
algorithm. This would make the approach using XPaths
less portable than we intended. The fix to this problem is
to make sure the same parser is used for finding the XPaths
and when later using the XPaths for extracting. When the
pages are compliant with the HTML standard no problems
should occur.

A limitation of this work is that we have not evaluated
the reusability of the extracted XPaths for other search re-
sult pages from the same template. We will carry out this
evaluation in future work. We did notice that the current
algorithm has a preference for XPaths which strongly rely
on structure rather than on attribute predicates. We think

this explains the only limited impact of using the predicate
table: a (set of) node(s) turns out to be precisely specified
by only the relative structure of its parent and child nodes.
What these XPaths look like might influence its reusability
on pages from the same template. This could extend re-
cent work from [15], who proposed a probabilistic model for
finding robust XPath extractors.

The evaluation of the contribution of the individual heuris-
tics shows that devising such heuristics is far from trivial.
A heuristic which solves a problem on one page can eas-
ily introduce more problems on other pages. An interesting
direction for future work would be to devise a number of
potentially useful heuristics and finding an optimal combi-
nation based on machine learning.

7. CONCLUSION
In this work we have proposed an automatic approach to

suggest XPaths for extracting search result records from web
search result pages. We have evaluated the approach on a
number of old and two new test sets. The results on the test
sets show that search result pages have become increasingly
complex; there is a large variety between search result dis-
plays. Moreover, individual search result pages have become
complex with for example aggregated search results. XPaths
can be effectively used to extract search result records, either
by extracting the search result as a whole, or by providing
an anchor to part of the record. The algorithm presented
here suggests precise and correct XPaths for up to 74% of
the pages in the test sets. Overall, for 85% of the search
result pages, useful search results can be extracted with the
suggested XPaths. The algorithm and used datasets are
available for download for follow-up research10.

Acknowledgements
We thank Robin Aly for his insightful suggestions. This
research was supported by the Netherlands Organization for
Scientic Research, NWO, grant 639.022.809.

References
[1] B. Adelberg. NoDoSE - a tool for semi-automatically ex-

tracting structured and semistructured data from text doc-
uments. In SIGMOD ’98, pages 283–294, 1998.

[2] M. Álvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda.
Extracting lists of data records from semi-structured web
pages. Data & Knowledge Engineering, 64(2):491–509, 2008.

[3] T. Anton. XPath-wrapper induction by generalizing tree
traversal patterns. Lernen, Wissensentdeckung und Adap-
tivitt (LWA), pages 126–133, 2005.

10http://www.ewi.utwente.nl/~trieschn/srf

[4] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In SIGMOD ’03, pages 337–348, 2003.

[5] G. Arocena and A. Mendelzon. WebOQL: Restructuring doc-
uments, databases and webs. In 14th International Confer-
ence on Data Engineering, pages 24–33, 1999.

[6] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web
information extraction with lixto. In VLDB ’01, pages 119–
128, 2001.

[7] D. Buttler, L. Liu, and C. Pu. A fully automated object
extraction system for the world wide web. In 21st Interna-
tional Conference on Distributed Computing Systems, pages
361–370, 2001.

[8] C. Chang, M. Kayed, M. Girgis, and K. Shaalan. A survey
of web information extraction systems. IEEE transactions
on knowledge and data engineering, pages 1411–1428, 2006.

[9] C. Chang and S. Lui. Iepad: information extraction based
on pattern discovery. In WWW ’01, pages 681–688, 2001.

[10] B. Chidlovskii, J. Ragetli, and M. de Rijke. Automatic wrap-
per generation for web search engines. In H. Lu and A. Zhou,
editors, Web-Age Information Management, volume 1846 of
Lecture Notes in Computer Science, pages 399–410. Springer
Berlin / Heidelberg, 2000.

[11] E. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, 1970.

[12] V. Crescenzi and G. Mecca. Grammars have exceptions.
Information Systems, 23(8):539–565, 1998.

[13] V. Crescenzi and G. Mecca. Automatic information extrac-
tion from large websites. Journal of the ACM, 51:731–779,
September 2004.

[14] V. Crescenzi, G. Mecca, P. Merialdo, et al. Roadrunner:
Towards automatic data extraction from large web sites. In
VLDB ’01, pages 109–118, 2001.

[15] N. Dalvi, P. Bohannon, and F. Sha. Robust web extraction:
an approach based on a probabilistic tree-edit model. In
SIGMOD ’09, pages 335–348, 2009.

[16] N. Dalvi, R. Kumar, and M. Soliman. Automatic wrappers
for large scale web extraction. VLDB Endowment, 4:219–
230, January 2011.

[17] D. Embley, Y. Jiang, and Y. Ng. Record-boundary discovery
in web documents. In SIGMOD ’99, pages 467–478, 1999.

[18] D. Freitag. Information extraction from html: Application of
a general machine learning approach. In National Conference
on Artificial Intelligence, pages 517–523, 1998.

[19] D. Freitag. Multistrategy learning for information extrac-
tion. In Fifteenth International Conference on Machine
Learning, pages 161–169, 1998.

[20] J. Hammer, J. McHugh, and H. Garcia-Molina. Semistruc-
tured data: The TSIMMIS experience. In First East-
European Workshop on Advances in Databases and Infor-
mation Systems, pages 1–8, 1997.

[21] J. Hong, E. Siew, and S. Egerton. Information extraction
for search engines using fast heuristic techniques. Data &
Knowledge Engineering, 69(2):169–196, 2010.

[22] C. Hsu and M. Dung. Generating finite-state transducers for
semi-structured data extraction from the web. Information
systems, 23(8):521–538, 1998.

[23] S. Kuhlins and R. Tredwell. Toolkits for generating wrap-
pers. Objects, Components, Architectures, Services, and Ap-
plications for a Networked World, pages 184–198, 2009.

[24] A. Laender, B. Ribeiro-Neto, A. da Silva, and J. Teixeira.
A brief survey of web data extraction tools. ACM Sigmod
Record, 31(2):84–93, 2002.

[25] M. Lam, Z. Gong, and M. Muyeba. A method for web infor-
mation extraction. Progress in WWW Research and Devel-
opment, pages 383–394, 2008.

[26] K. Lerman, C. Knoblock, and S. Minton. Automatic data
extraction from lists and tables in web sources. In IJCAI-
2001 Workshop on Adaptive Text Extraction and Mining,
volume 98, 2001.

[27] B. Liu, R. Grossman, and Y. Zhai. Mining data records in
Web pages. In SIGKDD ’03, pages 601–606, 2003.

[28] K. Liu, W. Meng, J. Qiu, C. Yu, V. Raghavan, Z. Wu, Y. Lu,
H. He, and H. Zhao. Allinonenews: development and evalu-
ation of a large-scale news metasearch engine. In SIGMOD
’07, pages 1017–1028, 2007.

[29] W. Liu, X. Meng, and W. Meng. Vide: a vision-based ap-
proach for deep web data extraction. IEEE Transactions on
Knowledge and Data Engineering, pages 447–460, 2009.

[30] F. McCown and M. L. Nelson. Search engines and their
public interfaces: which apis are the most synchronized? In
WWW ’07, pages 1197–1198, 2007.

[31] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E.
Moser. Extracting data records from the web using tag path
clustering. In WWW ’09, pages 981–990, 2009.

[32] J. Myllymaki and J. Jackson. Robust web data extraction
with xml path expressions. IBM Research Report, 23, 2002.

[33] N. Papadakis, D. Skoutas, K. Raftopoulos, and T. Var-
varigou. Stavies: A system for information extraction from
unknown web data sources through automatic web wrap-
per generation using clustering techniques. IEEE Transac-
tions on Knowledge and Data Engineering, pages 1638–1652,
2005.

[34] A. Sahuguet and F. Azavant. Building intelligent web ap-
plications using lightweight wrappers. Data & Knowledge
Engineering, 36(3):283–316, 2001.

[35] K. Simon and G. Lausen. Viper: augmenting automatic
information extraction with visual perceptions. In CIKM
’05, pages 381–388, 2005.

[36] S. Soderland. Learning to extract text-based information
from the world wide web. In KDD ’97, pages 251–254, 1997.

[37] W. Su, J. Wang, and F. Lochovsky. ODE: Ontology-
assisted data extraction. Transactions on Database Systems,
34(2):12, 2009.

[38] N. Tran, K. Pham, and Q. Ha. XPath-wrapper induction
for data extraction. In International Conference on Asian
Language Processing, IALP ’10, pages 150–153, 2010.

[39] D. Urbansky, M. Feldmann, J. Thom, and A. Schill. En-
tity extraction from the web with WebKnox. Advances in
Intelligent Web Mastering-2, pages 209–218, 2010.

[40] J. Wang and F. H. Lochovsky. Data extraction and label
assignment for web databases. In WWW ’03, pages 187–
196, 2003.

[41] Y. Yamada, N. Craswell, T. Nakatoh, and S. Hirokawa.
Testbed for information extraction from deep web. In WWW
Alt. ’04, pages 346–347, 2004.

[42] Y. Zhai and B. Liu. Web data extraction based on partial
tree alignment. In WWW ’05, pages 76–85, 2005.

[43] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu. Fully
automatic wrapper generation for search engines. In WWW
’05, pages 66–75, 2005.

[44] H. Zhao, W. Meng, and C. Yu. Automatic extraction of
dynamic record sections from search engine result pages. In
VLDB ’06, pages 989–1000, 2006.

[45] S. Zheng, M. R. Scott, R. Song, and J.-R. Wen. Pictor:
an interactive system for importing data from a website. In
SIGKDD ’08, pages 1097–1100, 2008.

[46] S. Zheng, R. Song, J.-R. Wen, and C. L. Giles. Efficient
record-level wrapper induction. In CIKM ’09, pages 47–56,
2009.

[47] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma. Simulta-
neous record detection and attribute labeling in web data
extraction. In SIGKDD ’06, pages 494–503, 2006.

