
A probabilistic approach for mapping free-text
queries to complex web forms

Kien Tjin-Kam-Jet, Dolf Trieschnigg, and Djoerd Hiemstra

University of Twente, Enschede, The Netherlands
{tjinkamj,trieschn,hiemstra}@ewi.utwente.nl

Abstract. Web applications with complex interfaces consisting of mul-
tiple input fields should understand free-text queries. We propose a prob-
abilistic approach to map parts of a free-text query to the fields of a com-
plex web form. Our method uses token models rather than only static
dictionaries to create this mapping, offering greater flexibility and requir-
ing less domain knowledge than existing systems. We evaluate different
implementations of our mapping model and show that our system effec-
tively maps free-text queries without using a dictionary. If a dictionary
is available, the performance increases and is significantly better than a
rule-based baseline.

1 Introduction

When it comes to web applications, users love the ‘single text box’ interface
because it is extremely easy to use. However, much information on the web
is stored in structured databases and can only be accessed after filling out a
web form with multiple input fields [2, 6]. From a user perspective, it would
be valuable to provide access to these web forms by means of a single text box
interface. Also from a technical perspective like distributed IR [4], accessing and
retrieving structured data by forwarding a free-text query would be valuable.
This work is about automatically mapping a free-text query, the input from a
single text box (Fig. 1), to the fields of a multi-field, complex web form (Fig. 2).

Fig. 1. A free-text interface for searching.

In contrast to previous natural language interfaces, which typically require
grammatically correct sentences as input [3, 11, 5, 1], a free-text interface allows
for shorter, ungrammatical input. A major limitation of current related work on
free-text interfaces over structured data is that support for a complex web form
containing free-text input fields itself is limited [7, 8, 17, 18, 20, 12, 10, 19, 14].
Typically, these approaches first scan the free-text query for dictionary entries

Fig. 2. A complex web form consisting of multiple input fields. It has a free-text input
field of its own: the title field.

and then map those entries to the web form’s input fields. Terms not found in
the dictionary cannot be mapped to a field. Therefore, a system that does not
know every dictionary entry for each field may wrongfully discard query terms
(because the term should actually be mapped to a field). Especially for complex
forms that have free-text input fields of their own, like the ‘Title’ field in Fig. 2,
it is impossible to store all possible input in a dictionary. The dictionaries often
serve as the mechanism for finding the right tokenization of a query. A different
approach in web IR is query segmentation [9, 13], which uses statistics from
large corpora (e.g., query logs or Wikipedia) and tries to group query terms
into phrases in order to improve retrieval performance. However, this does not
aim to map the detected phrases to fields. In this work, we adopt a rule-based
tokenization step and a probabilistic mapping step. As such, we can effectively
map and rank out-of-dictionary query terms to input fields.

Our contributions are as follows. First, we propose a model which supports
the mapping of a free-text query to complex forms, including complex forms
that contain free-text input fields. Second, we propose a probabilistic approach
to rank the query-field mappings, which is based on a Hidden Markov Model.
Third, we evaluate different implementations of our model and show that it can
be effectively used in practice.

The rest of this paper is organized as follows. In Sect. 2 we describe the
problem, our goal, and give an overview our approach. In Sect. 3 we outline the
details of our approach. We describe our experiment in Sect. 4 and discuss our
results in Sect. 5. In Sect. 6 we conclude this paper.

2 Goal and problem decomposition

Given a free-text query and a target web form with a set of input fields F , the
goal is to find the best mapping from parts of the query to fields. The query is
tokenized into tokens. A token is a contiguous part of the query that should be
mapped to a field f ∈ F . F includes a special junk field for terms that should not
be mapped to any actual field of the web form. We identify two problems. First,
how to split a free-text query into tokens. Second, how to map these tokens to
the intended fields. On a high level, our solution is to generate all tokenizations
according to a tokenization strategy. Then generate all possible mappings for

each tokenization and rank these mappings based on their probability. In the
following subsections we first give an intuitive model for formulating a free-text
query, and then discuss the tokenization and ranking in more detail.

2.1 An action model for formulating free-text queries

We now define an action model which describes the actions a user takes to
construct a free-text query. This model is used to obtain and rank possible
interpretations of a free-text query. We define our action model as follows. Given
a complex web form with input fields F , a user: i) decides which input field f ∈ F
to use. Then ii) decides what token to fill in f . Then iii) either decides to use
an additional field, upon which the process repeats itself; or decides to use no
more fields, and the process stops. Each field may be used at most once, except
for the special junk field, which may be used any number of times.

For example, let us consider how a user formulated the free-text query shown
in Fig. 1 for the complex web form shown in Fig. 2. According to our action
model, the user first chose a junk field and then chose the token {a} for that field.
He then chose the genre field and chose the token {thriller}. Then the title

field with the token {titled little big planet}, and finally, the max price field
with the token {for less than $10}. (titled and for less than serve as indicators,
we discuss indicators in the next section.)

2.2 Tokenization

This section explains how to handle unknown terms in a query. Let us first
introduce what can be recognized in a query: i) dictionary entries, i.e. terms
found in a dictionary; ii) hard separators, i.e. a sequence of characters consisting
of at least a punctuation and a white space character (the character set is denoted
by the regular expression [- \?!;,\.]); and, iii) indicators, an indicator is a
hint telling the system that an adjacent piece of text should be mapped to a
specific field. Indicators reside either at the start or at the end of a token and
are referred to as a prefix indicator or a postfix indicator, respectively.

In the scanning step, the system tries to recognize everything it can in the
query. Any part of the query that was not recognized is called a left-over. The
interesting part is how to treat the left-overs. We will investigate three methods:

Naive. Each left-over is considered a single token on its own.
Rigid. Each left-over is further segmented into possibly multiple tokens. The

system selects one or more tokens to map to actual input fields; unselected
tokens are automatically mapped to the junk field.

Tolerant. Like rigid, but now indicators can be also be placed within tokens
created from left-overs. Only indicators at the start or end of a token are
hints, indicators within tokens are no hints.

To illustrate the differences between these methods, imagine a system that only
knows the prefix indicator ‘to’ and receives the query: “Boston to New York”.

We will use striked text to denote unselected tokens; surrounding braces { }
to denote tokens; and surrounding brackets [] to denote indicators. The naive
method will produce only one tokenization: {Boston} {[to] New York}. The
rigid method produces two additional tokenizations: {Boston} {[to] New} York,
and {Boston} {[to]} New {York}. The tolerant method produces even more
tokenizations: {Boston to New York}, {Boston to New} {York}, etc.

Tolerant tokenization is needed when an indicator is part of the actual con-
tent. For example, if one can search for book titles and the word ‘titled’ serves
as an indicator, then only the tolerant method can yield the right tokenization
for the query: “a titled maiden”. In the naive and rigid methods, the indicator
[titled] acts like a token separator, thereby splitting the input into two tokens.

2.3 Ranking with the Hidden Markov Model

The system uses a Hidden Markov Model (HMM) to rank the mappings assigned
to a tokenization. Readers familiar with the HMM can skip to the next para-
graph. A HMM is a probabilistic finite state automaton [15, 16]. It consists of
a set of states, a set of transition probabilities from state to state, and a set of
emission probabilities to model how each state produces some specific output.
There are two special states: a start state and an end state. Except for the spe-
cial states, each state emits one output symbol. The sequence of symbols can be
observed, whereas the sequence of states cannot be observed, i.e. it is “hidden”.
Although the state sequence cannot be observed directly, a sequence of symbols
gives some information about the hidden sequence of states. More specifically,
beginning from the start state and finishing at the end state, the HMM gener-
ated the symbol sequence O = o1, o2, . . . , ok by making k + 1 transitions from
one state to the next. Each state emitted one symbol with some probability. In
other words, we can compute the most likely sequence of states that produced
the sequence O, if we knew the parameters of the HMM. Thus, the action model
from Sect. 2.1 can be cast into an HMM problem: find the most likely sequence
of input fields chosen by the user, given the observed sequence of tokens that
the user has typed.

Building an HMM. Here we explain how to setup simple variants of the HMM
parameters: the set of states, transition probabilities, and emission probabilities.

1. HMM states. Each state corresponds to an input field f ∈ F . Additionally,
there is a start state and an end state.

2. Transition probabilities from one field to the next. Given a set of manually
labelled free-text queries (e.g., each query is manually tokenized, and each
token is manually labelled with the intended input field), we can learn the
maximum likelihood estimate (MLE) PMLE(tij) of the order of input fields
fi to fj as follows:

PMLE(tij) =
Number of times fi appears before fj

Total number of times fi appears
.

3. Token emission probabilities. In our HMM, after each transition from one
(previous) field to the current field, the current field will emit a token with
some probability. If we have the set of tokens emitted at input field fi, we
can determine PMLE(eij) for each token tokj as follows:

PMLE(eij) =
Number of times tokj is emitted at fi
Total number of tokens emitted at fi

.

Applying the HMM. Once the HMM is built, we can use it to output the
most probable field sequence that could have generated a given token sequence.
The learnt probabilities are smoothed beforehand, otherwise, an observation
containing one token that was never seen during training will have a probability
of zero. Smoothing is discussed in the next section. In any case, when applying
the HMM, we must find the state sequence Q which maximizes the probability
of the observation O = o1, o2, . . . , ok, given the model β:

Q = arg max
Q′ ∈ Q

P (O|Q′, β) P (Q′|β) ,

where Q denotes all possible state (field) sequences of length k + 1 that could
have generated the observation (tokens) O.

3 Token models and Smoothing

Each input field has its own dictionary of accepted tokens. As we explained in
the introduction, a dictionary may not be exhaustive and a query could contain
unknown tokens, i.e. tokens not listed in the dictionary. We need methods that
could assign adequate probabilities to such unknown tokens. The MLE assigns
a probability of zero to an unknown token, hence, it is not adequate for our
purposes. One way to obtain non-zero probabilities for unknown tokens is to
apply Laplace smoothing:

PLaplace(tok) =
Number of times tok appears in data + α

Total tokens in data + α ∗ total different tokens in data
,

where α is usually set to one. However, this method assigns the same probability
to each and every unknown token: even two unknown tokens that look completely
different from each other get the same probability. This is also not adequate for
our purposes. Therefore, we will investigate several token models that could
differentiate between unknown tokens.

3.1 Tokens models for discriminating unknown tokens

We now introduce three models based on n-grams and one based on a Poisson
distribution. An assumption we must make when using n-grams, is that the
probability of the next item depends only on the previous n − 1 items. These
models will be used to build the token emission models for each field.

Word n-grams approximate the emission probability for some token based
on the word sequence in that token. Words are separated by (an optional
punctuation mark (;,.!?) followed by) a white space.

Character n-grams approximate the probability that a field emitted a par-
ticular token, based on the sequence of characters of that token.

Word-length n-grams approximate the probability that a field emitted a par-
ticular token, based on the sequence of word-lengths in that token. As a
variation, we can also consider the length differences between the words in
a token, which can be measured as either absolute or relative differences.
We can also decide to categorize the lengths or differences into, for example:
zero, small, medium, and large lengths or differences. One benefit of using
(categorized) length differences instead of plain lengths, is that our training
data becomes less sparse.

Poisson models With n-gram models, to obtain the probability of a complete
token, we must multiply the probabilities of each item in the token. Con-
sequently, longer tokens usually have much smaller probabilities. For this
reason, we adopt a Poisson model to assign probabilities based on the to-
ken’s average word length, conditioned on the number of words in that token.
We first bin all tokens: tokens consisting of one word go in the fist bin, tokens
consisting of two words in the second, and so on. For each bin, we calculate
the average word length. Unlike n-gram models which usually assign higher
probabilities to smaller tokens, this model assigns higher probabilities if the
token’s average word length is closer to the average word length of the bin
the token belongs to. For example, if the expected word length for 3-word
tokens is 5 characters, and our unknown token (consisting of 3 words) has an
average word length of 6.7 characters, then the Poisson probability of that
token is PPois(6.7, 5) = 0.11.

3.2 Smoothing by using linear interpolation

With larger n, n-grams suffer more from data sparseness (i.e. when many items
from the vocabulary are not present in the training data). One solution is to mix
an n-gram with n-grams that have smaller n. For example, by mixing a trigram
(n = 3), with a bigram (n = 2) and a unigram (n = 1) like:

P ′3(wn|wn−2, wn−1) = γ1P1(wn) + γ2P2(wn|wn−1) + γ3P3(wn|wn−2, wn−1) ,

where 0 ≤ γi ≤ 1, and
∑

i γi = 1. Used this way, linear interpolation acts
as a smoothing mechanism for n-grams, this is often referred to as deleted in-
terpolation. Linear interpolation is also useful for combining different kinds of
(smoothed) token models like:

P (tok) = λ1P
′
word(tok) + λ2P

′
char(tok) + λ3P

′
len(tok) + λ4PPois(tok) ,

which in this case, assigns a probability to a token based on (smoothed) word,
character and length n-gram models, and a Poisson model.

In case we know some of the tokens for a field, for example, we could have
an incomplete dictionary, then we could artificially boost the score of the known
token. We could incorporate this in the linear equation as:

P (tok) = λ1P
′
word(tok)+λ2P

′
char(tok)+λ3P

′
len(tok)+λ4PPois(tok)+λ5Pdict(tok) ,

where 0 ≤ λi ≤ 1,
∑

i λi = 1, and Pdict(tok) = 1
|dict| if tok ∈ dict, 0 otherwise.

4 Experiment

We evaluated our system in a travel planning scenario. The system had to find
the best query interpretation without it knowing the actual Dutch train station
names. Our token models were trained on non-Dutch train station names and
should compensate for the lack of Dutch station names. We show that, using the
system reported in [19], near-perfect mapping from free-text queries to fields is
possible in this scenario if a list of Dutch station names is available (MRR 0.95).
The research questions are: i) Does HMM ranking improve this further? And
ii) what performance can be obtained if there is no list of station names?

4.1 Training data for building the HMM

The training data for the token emission models of the from, to, and via input
fields, was a list of station names crawled from Wikipedia; it contained stations
from Belgium, France, Indonesia, the UK, and Germany. The training data for
the token emission models of the junk field was a list of words crawled from
web blogs containing the words ik, trein, and van (in English: I, train, and
from, respectively). We scraped the pages from the web blogs and used simple
heuristics to create sentences: we split the text on certain HTML tags (like

and <p>), on a question or exclamation mark, or on a dot followed by white
space. Only those sentences containing at least two station names were tokenized
with the naive method from Sect. 2.2 and the left-overs constituted the training
data for the token emission model of the junk field.

The training data for the field transition model was manually created, and
based on the field sequences reported in [19]. Those sequences did not contain
any ‘junk’ fields, so we created and added variations containing junk fields. For
example, if the study reported that the transition sequence“from-to” appeared
x times, then we added these sequences to our training data: “junk -from-to”
1
2x, “from-junk -to” 1

4x, and “from-to-junk” 1
4x. This reflects our belief that it

is more likely for “junk” text to appear at the start of a query.

4.2 Validation and test data

We used a list of Dutch train station names from Wikipedia to create queries;
we randomly selected 50% of the stations for creating a validation set and the
other 50% for creating a test set. For each set, we used a script to randomly

generate 50 train station name pairs (from and to) and 50 train station name
triples (from, to, and via) for a total of 100 different information needs. As each
information need can be phrased differently, we also generated 12 different query
formulations based on query templates extracted from the query logs from [19].
As an example, say that we have the information need (“Amsterdam”, “Hoek
van holland haven”), and two query templates “van from naar to op date om
time”, and “naar to from rond time”. We substituted the station names in the
corresponding slots of each template, and we simply replaced the time and date
with 13:00 and 1-1-2012, respectively resulting in the queries: “van Amsterdam

naar Hoek van holland haven op 1-1-2012 om 13:00”, and “naar Hoek van

holland haven Amsterdam rond 13:00”.

4.3 Method – systems without station names

The same transition model (to score the sequence of field names) was used
throughout all experiments. For each tokenization method, using the validation
data, we applied a simple parameter sweep to find the best linear interpolation
weights for the emission models (to predict the score of the tokens – see the final
equation at the end of Sect. 3.2). Each λ could (initially) take a value of 0, 0.01,
0.1, or 1, which was then normalized. For example, if we combined the word
and length models, we could have 0.01P ′word + 0.01P ′len which was normalized
to 1

2P
′
word + 1

2P
′
len (the character, Poisson, and dictionary models are ignored

by setting their λs to zero). As another example, 0.01P ′word + 0.1P ′len would be
normalized to 1

11P
′
word + 10

11P
′
len, and so on. We selected the systems with the

highest MRR (mean reciprocal rank) in the validation data. Then we compared
them with two baseline systems using the test data.

Note that the dictionary did not contain any station names. It was used to
assign a constant score to the dates and times, otherwise the emission probability
of those fields would be zero. Furthermore, we fixed the dictionary’s weight at
0.1 so that all other components could have a lower (0.01), equal (0.1) or higher
(1.0) contribution to the total token score.

4.4 Upper bound – systems with station names

We compared our validated systems C, with two other “baseline” systems A and
B which can be considered as upper bounds. System A is the system reported
in [19]: it knows all station names, ignores unknown parts of the query, and uses
rules to rank the query interpretations. System B is almost like A, it knows all
station names, ignores unknown parts of the input, but uses probabilistic ranking
(i.e. the transition probabilities discussed in Sect. 2.3). The systems in C do not
know the station names and must apply the tokenization methods and emission
models which were introduced in Sect. 2.2 and Sect. 3, respectively. The same
transition probabilities of system B are also used in C.

5 Results and Discussion

5.1 Validation results

Table 1 shows the emission models that yielded the highest MRR results per
tokenization. It also shows the components of the emission model, their corre-
sponding weights are shown in Table 2. The reported average MRR is averaged
over all parameter combinations (i.e. non-zero weights for each component) of
the given emission model. The total average MRR per tokenization is aver-
aged over all parameter combinations of all emission models (not just the stated
components). From these results we can see that, for example for the tolerant
tokenization, it is better to use an emission model consisting of a character and
a dictionary component rather than any other combination of components, since
on average, these two components yield a much higher MRR. We can also see
that, from naive to rigid to tolerant, the difference between the maximum and
the average MRR grows. This difference is consistent across all our validation
results. This can be explained by the fact that each tokenization method induces
a search space. A smaller search space contains less erroneous answers, but on
the other hand, it may often fail to include the right answer in the first place.

Table 1. Validation results: best emission models per tokenization method. The letters
stand for word (W), character (C), length (L), Poisson (P), and dictionary (D). E.g., the
emission model L+P+D consists of a length n-gram, a Poisson model and a dictionary.

Tokenization
Naive Rigid Tolerant

Emission model L+P+D W+C+L+D C+D

Maximum MRR 0.481 0.703 0.725
Average MRR 0.477 0.678 0.666

Total avg. MRR 0.455 0.584 0.447

Table 2. Weights of the corresponding components shown in Table 1.

Normalized weights
Word Character Length Poisson Dictionary

Naive 0.000 0.000 0.048 0.476 0.476
Rigid 0.474 0.474 0.005 0.000 0.047
Tolerant 0.000 0.500 0.000 0.000 0.500

5.2 Test results

The test results are shown in Table 3. The baselines (upper bound A and upper
bound B) are equipped with a dictionary containing all Dutch train station

names. Since they ignore unknown words, they have almost perfect performance;
the only thing they do not know for sure is which station name should be mapped
to which field. In any case, the high MRRs indicate that the ranking heuristics
and the transition probabilities are well suited to the task at hand. By using the
same transition probabilities and discarding the dictionary, we see the impact of
tokenization and token modeling. The tolerant and rigid tokenization methods

Table 3. Test results.

System MRR
With Upper bound A (heuristic) 0.953

dictionary Upper bound B (probabilistic) 0.996
Without System C-Naive 0.533

dictionary System C-Rigid 0.738
System C-Tolerant 0.732

perform much better than the naive method. This can be seen in both the
validation and test runs. There is almost no difference between the rigid and the
tolerant methods. A closer inspection of the data showed that the validation data
contained train station names that contained indicators, while no names in the
test data contained indicators. This explains why the tolerant method was better
than rigid method according to the validation runs, but not according to the test
results. This finding reveals two things. First, it confirms what we mentioned
earlier, that the added value of the tolerant method over the rigid method is
apparent when the tokens contain indicators. Second, even when tokens contain
no indicators, the benefits of the rigid method over the tolerant method are small
in terms of retrieval performance.

System B is significantly better than system A (p <= 0.01). Systems A and
B are both significantly better than (all variants of) system C. Finally, both the
rigid and tolerant methods are significantly better than the naive method.

5.3 Discussion

Generalizability. Why would someone want to use train station names from
other countries as training data to model Dutch station names? Normally, they
would not. We used a large list of train station names that did not contain
the actual Dutch names to avoid overfitting. We may reasonably assume that
if the training data looks more similar to the actual testing data, it will have a
beneficial effect on retrieval performance. More importantly, the station and junk
training data had sufficiently distinct characteristics that allowed the system to
distinguish train stations from junk tokens. We believe that our approach is
generic and that it would work well in other domains. Ideally we would train our
models from query log data. Again, to prevent overfitting, we used junk tokens
that were extracted from blogs instead of query logs.

Flexibility. The fact that baseline B performs even better than baseline A shows
that our approach can alleviate developers from spending effort in designing
ranking heuristics because it is capable of learning a suitable ranking function.
Also, once the system is up and running it could continuously adapt its ranking
function given the stream of query log data.

6 Conclusion and future work

We introduced and examined three tokenization methods and several token mod-
els. We proposed a probabilistic approach based on a Hidden Markov Model to
rank mappings of tokens, i.e. contiguous parts of the query, to the fields of a
complex web form. In contrast to previous work, our approach is able to map
unknown (i.e., out-of-dictionary) tokens to fields; thereby offering greater flexibil-
ity and requiring less domain knowledge than existing systems. We can conclude
that our probabilistic ranking improves over the rule-based baseline when our
system is equipped with a dictionary. Also, even without a dictionary, we can
still correctly interpret many queries; however, we must process the unknown
tokens in a clever way, as the results show that the naive tokenization method is
far inferior the other methods. In future work we will test our approach in more
domains to verify that our approach is indeed generic and that it can be applied
to more than just travel planner websites.

Acknowledgment

This research was supported by the Netherlands Organization for Scientific Re-
search, NWO, grants 639.022.809 and 612.066.513.

References

[1] Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language inter-
faces to databases – an introduction. Natural Language Engineering 1(01),
29–81 (1995)

[2] Bergman, M.K.: The deep web: Surfacing hidden value. Journal of Elec-
tronic Publishing 7(1) (August 2001)

[3] Burton, R.R.: Semantic grammar: An engineering technique for construct-
ing natural language understanding systems. Tech. rep., Bolt, Beranek and
Newman, Inc., Cambridge, MA. (Dec 1976)

[4] Callan, J.: Distributed information retrieval. In: Advances in Information
Retrieval. pp. 127–150. Kluwer Academic Publishers (2000)

[5] Carbonell, J.G., Boggs, W.M., Mauldin, M.L., Anick, P.G.: The XCAL-
IBUR project: a natural language interface to expert systems. In: IJCAI’83.
pp. 653–656. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1983)

[6] Chang, K.C.C., He, B., Li, C., Patel, M., Zhang, Z.: Structured databases
on the web: observations and implications. SIGMOD Rec. 33(3), 61–70
(2004)

[7] Dar, S., Entin, G., Geva, S., Palmon, E.: Dtl’s dataspot: Database explo-
ration using plain language. In: Proceedings of the 24rd International Con-
ference on Very Large Data Bases. pp. 645–649. VLDB ’98, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (1998)

[8] Demidova, E., Fankhauser, P., Zhou, X., Nejdl, W.: Divq: diversification
for keyword search over structured databases. In: SIGIR ’10. pp. 331–338.
ACM, New York, NY, USA (2010)

[9] Hagen, M., Potthast, M., Stein, B., Braeutigam, C.: Query segmentation
revisited. In: Proceedings of the 20th international conference on World
wide web. pp. 97–106. WWW ’11, ACM, New York, NY, USA (2011)

[10] Hassan, M., Alhajj, R., Ridley, M.J., Barker, K.: Simplified access to struc-
tured databases by adapting keyword search and database selection. In:
Proceedings of the 2004 ACM symposium on Applied computing. pp. 674–
678. SAC ’04, ACM, New York, NY, USA (2004)

[11] Hendrix, G.G., Sacerdoti, E.D., Sagalowicz, D., Slocum, J.: Developing a
natural language interface to complex data. ACM TODS 3(2), 105–147
(1978)

[12] Kandogan, E., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., Zhu,
H.: Avatar semantic search: a database approach to information retrieval.
In: SIGMOD’06. pp. 790–792. ACM, New York, NY, USA (2006)

[13] Li, Y., Hsu, B.J.P., Zhai, C., Wang, K.: Unsupervised query segmentation
using clickthrough for information retrieval. In: Proceedings of the 34th
international ACM SIGIR conference on Research and development in In-
formation. pp. 285–294. SIGIR ’11, ACM, New York, NY, USA (2011)

[14] Meng, F.: A natural language interface for information retrieval from forms
on the world wide web. In: ICIS. pp. 540–545. Association for Information
Systems, Atlanta, GA, USA (1999)

[15] Rabiner, L.R.: A tutorial on hidden markov models and selected applica-
tions in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

[16] Rabiner, L.R., Juang, B.H.: Fundamentals of speech recognition (1993)
[17] Sarkas, N., Paparizos, S., Tsaparas, P.: Structured annotations of web

queries. In: Proceedings of the 2010 international conference on Manage-
ment of data. pp. 771–782. SIGMOD ’10, ACM, New York, NY, USA (2010)

[18] Tata, S., Lohman, G.M.: Sqak: doing more with keywords. In: SIGMOD’08.
pp. 889–902. ACM, New York, NY, USA (2008)

[19] Tjin-Kam-Jet, K., Trieschnigg, D., Hiemstra, D.: Free-text search over com-
plex web forms. In: Multidisciplinary Information Retrieval. Lecture Notes
in Computer Science, vol. 6653, p. 14. Springer Berlin / Heidelberg (2011)

[20] Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: Spark: adapting keyword
query to semantic search. In: ISWC’07/ASWC’07. pp. 694–707. Springer-
Verlag, Berlin, Heidelberg (2007)

