Closed Form Maximum Likelihood Estimator Of
Conditional Random Fields

Zhemin Zhu

Djoerd Hiemstra
Peter Apers
Andreas Wombacher

Z.ZHUQUTWENTE.NL
D.HIEMSTRAQUTWENTE.NL
P.M.G.APERSQUTWENTE.NL
A.WOMBACHERQUTWENTE.NL

PO Box 217, CTIT Database Group, University of Twente, Enschede, the Netherlands

Abstract

Training Conditional Random Fields (CRFs)
can be very slow for big data. In this pa-
per, we present a new training method for
CRFss called Empirical Training which is mo-
tivated by the concept of co-occurrence rate.
We show that the standard training (un-
regularized) can have many maximum like-
lihood estimations (MLEs). Empirical train-
ing has a unique closed form MLE which is
also a MLE of the standard training. We
are the first to identify the Test Time Prob-
lem of the standard training which may lead
to low accuracy. Empirical training is im-
mune to this problem. Empirical training is
also unaffected by the label bias problem even
it is locally normalized. All of these have
been verified by experiments. Experiments
also show that empirical training reduces the
training time from weeks to seconds, and ob-
tains competitive results to the standard and
piecewise training on linear-chain CRFs, es-
pecially when data are insufficient.

1. Introduction

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are undirected graphical models that model con-
ditional probabilities rather than joint probabilities.
Thus CRFs do not assume the unwarranted indepen-
dence over observations. CRFs define a distribution
conditioned by the whole observation. This global con-
ditioning allows the use of overlapping and global fea-
tures. CRF's have been successfully applied to many

tasks in natural language processing (McCallum & Li,
2003; Sha & Pereira, 2003; Cohn & Blunsom, 2005;
Blunsom & Cohn, 2006) and many other areas.

Despite the apparent successes, the standard training
(SD) of CRFs can be very slow (Sutton & McCal-
lum, 2005; Cohn, 2007; Sutton & McCallum, 2012).
The partition function Zgq(X) is a global summation
over the whole graph and depends not only on model
parameters but also on the input data. When we
calculate the estimated marginals and Zs4(X) using
the forward-backward algorithm, the global summa-
tion can be localized to local summations over factors
based on the factorization and the intermediate re-
sults can be reused by dynamic programming within a
training instance, but they can not be reused between
different instances. Thus we have to calculate them
from scratch for each instance in each optimization it-
eration. In our POS tagging experiment (Tab. 6), the
standard training takes several weeks even though the
graph is a simple linear chain. Slow training prevents
CRFs from being applied to big data.

For scaling CRF's, piecewise training (PW) (Sutton &
McCallum, 2005) approximates Zsq4(X) by an upper
bound Z,,(X). Zp,(X) is calculated by multiplying
local summations over pieces independently. Accord-
ing to their experiment results, piecewise training out-
performs the standard training in two of three real-
world NLP tasks. This result is encouraging and in-
spiring. It shows that a local normalized model can
also perform well and inspires us to think about the
problems of the standard training. Nevertheless, piece-
wise training has its own problems (Sec. 3.6). It is not
scalable to the variable cardinality (Sutton & McCal-
lum, 2007) and the MLE of the piecewise training is
normally not a MLE of the standard training. Accord-
ing to Sutton & McCallum (2005), pieces can be any
disjoint subgraphs. But it is unclear what is a good
selection of pieces.
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Another option for sequence labelling is directed
models such as Maximum Entropy Markov Models
(MEMMs) (McCallumallum & Freitag, 2000) which
can be trained efficiently. But they suffer from the la-
bel bias problem (Lafferty et al., 2001) which leads to
low accuracy.

In this paper, we propose empirical training which was
motivated by the concept of Co-occurrence Rate. We
show that the standard training (unregularized) can
have many MLEs. Empirical training has a unique
closed form MLE which is also a MLE of the stan-
dard training. We identify that some MLEs of the
standard training suffer from the Test Time Problem.
To our knowledge, the current paper is the first to
identify this problem. If the optimizer stops at such a
MLE, the accuracy of the standard training can be low.
Empirical training is unaffected by this problem and
also the label bias problem even it is locally normal-
ized. All these statements have been verified by exper-
iments. Experiments on two real-world NLP data also
show that empirical training reduces the training time
from weeks to seconds, and obtains competitive results
to the standard and piecewise training on linear-chain
CRFs, especially when data are insufficient.

2. Co-occurrence Rate (CR)

CR is the exponential function of Pointwise Mutual
Information (PMI) (Fano, 1961) which was first intro-
duced to NLP community by Church & Hanks (1990).
CR and conditional CR are defined as follows:

o _ P(X177X")
CR(X1;...; Xn) = P(X1)..P(X,)’

o  P(X1,.., X |Y)
CR(X1;.;:X,|Y) = P(Xl |Y)P(Xn | Y). @

CR can be any value in [0, +00). CR models the occur-
rence relation between events and has clear intuitive
interpretation: (i) If 0 < CR < 1, events occur repul-
siwely; (ii) If CR = 1, events occur independently; (iii)
If CR > 1, events occur attractively. CR is symmetric
while the conditional probability is antisymmetric.

Based on the concept of CR, a joint probability can
be considered as a multiplication of independent com-
ponents: CRs and unary probabilities. We will see
this view of a joint probability is critical (Sec. 3.2.1,
3.4.3). The concept of Copula (Elidan, 2012) in prob-
ability theory has a very similar idea. But copulas use
cumulative densities instead of just probabilities.

The following equations can be used for factorizing
a joint probabilities into CRs and unary probabilities
which can be easily proved:

CR(X;Y;Z)=CR(X;YZ)CR(Y; Z); (2)
CR(X;YZ)=CR(X:;Z), if XLY|Z (3

3. Empirical Training (EP)

There are three steps in empirical training:

(1) Factorization (Sec. 3.1): factorize a joint probabil-
ity into CRs and unary probabilities.

(2) Parameterization (Sec. 3.2): set different parame-
ters to independent factors.

(3) Estimation (Sec. 3.3): estimate the parameters by
optimizing the objective function.

In this paper, we focus on linear-chain CRFs (Fig. 1).
X =[Xy, ..., X,] is the observation sequence and ¥ =
[Y1,...,Y,] is the tag sequence.

Figure 1. Linear-chain CRFs

3.1. Factorization

Based on Eqn. (2, 3),, the linear-chain CRFs can be
factorized into CRs and unary probabilities as follows:

P(Y|X) = CR(Yi;...; Yn|X) H (Y;|X)

= H CR(Y:; Vi |X) |

=1

P(Y;1X). (4)

<.
Il 3
-

Assume the training data D consist of independent,
identically distributed (IID) instances {(Y, X)}, then:

n—1 n
P(D) = H [H CR(Yi;Yip1|X) | | P(Y51X)]. (5)
(Y, X)eD i=1 =1

3.2. Parameterization

Eqn. (4) is parametrized as follows:

CR(Yi; Yit1|X) = ¢(Yi, Yig1, Xi, Xit1), (6)
P(Y;1X) = 4(Y;, X;).

¢ and 9 are parameters defined over pairwise and
unary factors. Obviously, these parameters are subject
to the pairwise constraints (Eqn. 7), unary constraints
(Eqn. 8) and non-negative constraints (Eqn. 9):
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> ¢V, Yirr, Xiy X ) (Y, Xo)oo(Yier, Xivr) = 1
YiYit1

(7)
Do, Xy =1, (8)
Y;
¢(Y;,Y;;+1’Xi,Xi+1) Z 07 w(YﬁXJ) Z 0’ (9)

The fact that we treat CR(Y;;Y;+1]|X) as a single pa-
rameter is critical as explained in Sec. 3.2.1.
3.2.1. UNIQUENESS

If in Eqn. (4), we replace CRs with their definition
(Eqn. 1), Eqn. (4) can be rewritten in many different
factorizations, such as Eqn. (10) and Eqn. (11):

[T/ P(Yi,Yiq1|X)

n—1 ? (10)
[li= P(Y;]X)
PYLYalX) [ PV Vi X). (11)

These factorizations may tempt us to think about dif-
ferent parameterizations in which CRs are not treated
as a single parameter. Here we show that such at-
tempts do not work.

Suppose that we set a parameter to each factor in Eqn.
(10) as follows:

P(Y3,Yi41]|X) = (Y3, Yig1, Xi, Xig1),
P(Y;1X) = (Y5, X;).

This parameterization is illegal. Because
P(Y;,Y;11|X) and P(Y;|X) are not independent. As
P(Y,,Yia|X) = P(Yi[X)P(Yi1| X)CR(Y;: Vi |X)
which includes P(Y;|X), if P(Y;|X) increases, then
P(Y;,Y;1+1|X) increases accordingly. If we treat them
as different parameters, this relation will not be
retained any more. If we maximize Eqn. (10), the
P(Y;|X) in the denominator will be minimized which
leads to the trained model deviates radically from
the unary empirical marginal. We did experiments
according to this parameterization. Results show that
either the optimizer can not achieve convergence or
the accuracy is very bad.

Another attempt is to parameterize Eqn. (11):

P(YhYVQ‘X) = ¢(1/17Y27X17X2)7
P(Yis1|Yi, X) = ¥(Yig1, Vi, Xit1).

This parameterization is legal but does not work well.
These factors are independent with each other because

P(Y1,Y2|X) = P(Y1|X)P(Y2|X)CR(Y1;Y2|X) and
PYi|Yi, X) = CR(Yi11; Y| X)P(Yiy1|X), where
2 < 4. There is no common component shared by
any two factors. But as P(Y;11]Y;, X) are local condi-
tional probabilities, this parameterization suffers from
the label bias problem (Sec. 3.5).

There can be many other factorizations. By a thor-
ough check, we find that Eqn. (6) which consists of
CRs and unary probabilities is the unique parameter-
ization which works well.

3.3. Maximum Likelihood Estimation (MLE)

By parameterizing the log likelihood of Eqn. (5) ac-
cording to Eqn. (6), we obtain the following objective
function with its constraints:

n—1

Z [Z log ¢(Yi, Yig1, Xi, Xit1)

(Y,X)eD i=1

Lop =

+) logy(Yj, X;)]

j=1

s.t. Z o(Yi, Yigr, Xi, Xax 1)V (Yi, Xo)Y(Yigr, Xig1) =1
YiYiqa

dow(Y;, X)) =1,

Yj

¢(Yi7Y;+17Xi7Xi+1) 207 w(Y]7XJ) 207

With Lagrange Multiplier, we can transform this con-

strained optimization problem to an unconstrained

problem by introducing a new parameter A for each

equation in constraints (At this step we ignore the

non-negative constraints):

n—1

Z [Z log ¢(Y3, Yit1, Xi, Xiy1) + ZIOEH/J(YJ% X;)]
=1

(Y,X)eD i=‘1

+ Z [)\YiYH»IXiXH»l( Z (ZS(YIWYi-!—hXi?Xi-H) - 1)]

YiYip1 X Xi41 YiYiq1

+ ) Dyyx, O vy, X5) = 1)l
Y, X, Y;

Lep =

Calculate the first derivative for each parameter and
set them to zero, we get the unique closed form MLE
of empirical training, denoted by €p:

den(Ys: X;) = P(Y;1X;), (12)

P(Y:, Y] X, Xiya)
P(Y;|X3)P(Yig1| Xit1)

bep(Yi, Vi, Xi, Xig1) = , (13)

where
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#(Y5, X,|D)
>y, #(Y;, X4|D)’

#(Y5, Yir1, Xo, Xiga|D)
P(Y:, Yia | X, X, ,
( +1‘ +1) ZY Vi (Yi7)/i+1,Xi7Xi+1‘D)

are the unary and pairwise empirical marginals.
#(Y;, X;|D) means the number of times that the pat-
tern (Y}, X;) occurs in dataset D. “means estimated
and " means empirical. Fortunately the non-negative
constraints which were ignored are automatically met.

P(Yj|X;) =

3.4. Standard Training (SD)

In this section, we first review the MLE conditions of
the standard training. With these conditions we can
check if an estimation is a MLE of the standard train-
ing. Then we prove that the MLE of empirical training
meets these conditions. Finally we give another MLE
of standard training to show the Test Time Problem.

3.4.1. REVIEwW OF THE MLE CONDITIONS

Following Lafferty et al. (2001), linear-chain CRF's can
be parameterized as follows:

n—1 n

1

P(Y|X) = Zoa(X) [ o¥i, Yia, Xi, X)) [ [ w(v5, X)),
s i=1 j=1
n—1 n
Zsa(X) = Z[H o(Yi,Yig1, Xo, Xit1) H (Y5, X5)]
Y i=1 j=1

Then we have the log likelihood objective function:
n—1

Loa = Z [ZIOg(ﬁ(Yi,YiJrl,Xi,XiH)

(V,X)eD i=1
+ > log(Y;
j=1

The derivative for the unary parameters ¢ (Y}, X;):

(14)

X;) —log Zsa(X)].

0Lsa  _ #(Y5,X,|D) E. Y, X;|1X
(Y5, X;) (Y5, X;) (Y’g):ED by #G X5 X)],

where Ep | v [#(Y], X;|X)] is the expectation of the
counts of the pattern (Y}, X;) in X with respect to the
estimated distribution P(Y|X).

#(X; IX)P(Y |X5)

Since Epy ) [#(Y), X;|X)] = X SO
0Lu _ _ #05,X%ID) g~ #51X) P(Y;1X;5)
a’ll}(ij,Xj) 7/1(Y]7X (v, X)eD (1/}7XJ)
_ #(Y5,X,ID) _ #(X;|D)P(Y;|X;) (15)
(Y;, X;) (Y5, X;)

where P(Y;|X;) =
mated marginal.

(Y|X) is the unary esti-

2y, P

Unfortunately, if we set the derivative (Eqn. 15) to
0, the parameter ¢ (Y;, X;) which we want to estimate
is cancelled out. So we can not obtain a closed form

solution from this derivative. But we get the wunary
MLE condition:

#(Y;. X,D) _ #(¥;.X,|D)
#GID) TSy, #07, X1D)

P(Y;1X;) = P(Y;|X;).

(16)
That is the unary estimated marginals are equal to the
unary empirical marginals. So the derivative does tell
us a closed form solution of MLE but tells us the condi-
tion for checking a MLE. Using these MLE conditions,
we normally use gradient-based optimizers, such as L-
BFGS, to update the parameters (Y}, X;) iteratively
so as to approach the estimated marginals to the em-
pirical marginals. When the estimated marginals are
equal to the empirical marginals, the optimizer stops.
Similarly, we can obtain the pairwise MLE conditions:

P(Y:, Yir1| XiXip1) = P(Y:, Yigr | Xi Xisn). (17)
Put Eqn. (16) and Eqn. (17) together we get the
complete MLE conditions of the standard training on
linear-chain CRFs: for each clique (unary and pair-
wise), the estimated marginals must be equal to the

empirical marginals.

3.4.2. e¢p 1s A MLE ofF SD

Theorem 1. The MLE of empirical training is also a
MLE of the standard training.

Proof. Let 4a(Y;, X;) = vep(¥s, Xj) = P(Yj|X;)
aI}d ¢sd(Yi,Yi+1,Xi,Xi+1) = ¢ep(Yi7Yi+1:Xi:Xi+1) =
PG Yl X X)) |
P(Y;|X3)P(Yiq1|Xiqt1) '

sd Y |X Z Psd Y|X
Y\Y;
n—1 n
= Z Z H¢6P Y17Y1+17X17X1+1 H Y},X
Y\Y; j=1
= P(Y;|X;).

So the unary MLE condition (Eqn. 16) is met. Simi-
larly, we can prove the pairwise MLE condition (Eqn.
17) is also satisfied. O

This is verified by experiment (Sec. 4.3). Eqn. (14) is
convex but not strictly convex. In the next subsection,
we give another MLE of the standard training which
suffers from the Test Time Problem.
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3.4.3. THE TEST TIME PROBLEM (TTP)

Suppose X = [a,b,¢,d] and Y = [Y7, Y3, Y3, Y] which
is labelled as [0,0,0,0] for 4 times and [0,1,1,0] only
once in the training dataset. At test time, we want
to predict the tags of the observation sequence [b,c].
Obviously, the correct tags should be [0,0]. But the
following MLE of the standard training, denoted by
ttp, will make the wrong prediction [1,1]:

D(Y1,a) = (Y, b) = (Y3, c) = (Vs d) = 1,
b(Y1,Ya,a,b) = P(Y1, Ya|ab), (18)
BV, Ya,b,¢) = CR(Ya; Yabe) = W
(19)
¢(Y3,Y4,C d) (YE))?Y4|Cd) (20)

We first check ttp is a MLE of the standard training:

P(Y|X) :ﬁmcb(m,yma, b)(Ya, Ya, b, c)d(Ya, Ya, ¢, d)
B(Y, ) (Ya, bYb(Ys, )b (Ya, d)
P(Yl,Y2|a) ()@,Y3|bc) (Y3,Y4|Cd)
B(Yalb)B(Ysc) '

It is easy to prove Zgq(X) = 1 and the MLE condi-
tions (Eqn. 16, 17) are satisfied. So tfp is a MLE
of the standard training. This is verified by experi-
ment (Sec. 4.2). Since tfp and €p are both MLEs of
standard training, so standard training can have many
MLEs. At test time we predict the tags of [b c]. Be-
cause 1h(1,b)(1,¢)d(1,1,b,¢) = 1 x 1 $ g 92s =5 >
(0,b)1(0,¢)p(0,0,b,¢) = 1% 1% T 8*0 5 = 1.25, 50 [b,c]
will be mislabelled as [1,1]. This is verified by the
experiment in Sec. (4.2).

In this example, the problem is that under the MLE
conditions, the unary probabilities can be freely com-
bined with any pairwise factors in different ways. So
some pairwise factors (Eqn. 18, 20) include the unary
probabilities but others (Eqn. 19) not. But at test
time, we can not distinguish if a pairwise factor in-
cludes unary probabilities or not and we treat them in
a uniform way. This causes the Test Time Problem. In
the empirical training, we treat the unary probabilities
as a single parameter and they can not be combined to
the pairwise factors. So empirical training is immune
to this problem. This is verified by experiment (Sec.
4.2). Again we see to factorize a joint probability into
unary probabilities and CRs is critical (Sec. 2).

With the increasing number of different training in-
stances, the MLE solution space of the standard train-
ing will be tightened. As €p is always in this space,

finally this space will be tightened to close to €p. For
example if we add the training instances ([0,0],[a,b]),
([0,0],[b,c]) and ([0,0],[c,d]) to the training data, then
ttp is no longer a MLE of standard training, but ép
still is.

Adding regularization makes the objective function
(Eqn. 14) strictly convex (Sutton & McCallum, 2012),
so there is a unique MLE of the regularized likelihood.
But the regularized MLE can not deviate far from un-
regularized MLEs. So it may also suffer from the Test
Time Problem.

3.5. The label bias problem

Another option for sequence labelling is MEMMs (Mc-
Callumallum & Freitag, 2000). But MEMMs suffer
from the label bias problem (LBP) (Lafferty et al.,
2001). MEMMs suffer from this problem because they
include the factors P(Y;11 | Y;, Xi+1) which are local
conditional probabilities with respect to Y. These fac-
tors prefer the Y; with fewer outgoing transitions. The
extreme case is when Y; has only one possible outgo-
ing transition, then its local conditional probability is
always 1 no matter what X;; is. Global normaliza-
tion keeps CRFs away from this problem. Empirical
training is also unaffected by LBP even though it is
locally normalized. The reason is that, in contrast
to MEMMSs, the factors of empirical training are CRs
and unary probabilities. As CR(Y;, Yi11|X:Xiy1) =
ng&y);tyiﬁ;fl), all the transition (Y;, Y1) are
normalized in one probability space conditioned by
X;X;+1 and X;q1 is always used for deciding Y;41.
This is confirmed by experiment (Sec. 4.4).

3.6. Piecewise Training (PW)

Following Sutton & McCallum (2005),
(Y;,X) =1 and have:

we set all

n—1

H ¢(Y27Y—i+17X) (21)

1=1

1

PoulYIX) = 5

Zp(X) = T[L S 60Vivier, X)) (22)

i=1 Y;Y; 11

Sutton & McCallum (2005) proves the piecewise esti-
mator maximizes a lower bound on the standard like-
lihood. So normally the MLE of the piecewise training
is not a MLE of the standard training except when the
low bound equals the standard likelihood.

Following the form of Eqn. (21), the global normaliza-
tion of the standard training is:
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Zoa(X) = Z[f[ ¢(Yi, Y1, X)] (23)

Y i=1

=D [p(Y1, Y2, X) D [6(Va, Vs, X).. > ¢(Yno1,Yn, X).]].

Y1Ys Y3 Yn

In Eqn. (22), local summations are calculated inde-
pendently and then multiplied. In Eqn. (23), before
we calculate the local summations, each entry in the
summation needs to be multiplied with the previous
result. So for each add operation, there is an addi-
tional multiplication operation in Eqn. (23). Sup-
pose an add operation takes time of ¢t(A) and multipli-
cation t(M), then the time complexity of calculating
Zpw(X) is about (n—1)t(A)]Y;|? and Zs4(X) is about
(n—1)(t(A) +t(M))|Y;|?, where |Y;| is the cardinality
of Y;. So the piecewise training and standard training
has the same asymptotic time complexity O(n|Y;|?).
Thus piecewise training can not make orders of mag-
nitude reduction of training time.

3.7. Extension To OOVs

Until now, we only consider one feature that is the
observation itself (Eqn. 12, 13). This needs to be
extended to other features to handle OOVs!. Because
if X; in Eqn. (12) is OOV, then P(X;) = 0, so the
P(Yi, X)
P(X;)
In this case, other features of X; are needed to predict
P(Y;]X;). We present two extensions.

empirical marginal P(Y;|X;) = is undefined.

3.7.1. FuLLY EMPIRICAL

For non-OOVs, we just use Eqn. (12, 13). If X;
is OOV, we need other features. Suppose there are
m features {f1(X;), ..., fm(X;)} which have been seen
in the training data, then v, (V;, X;) = P(Y;|X;) ~

uoovw, where 10, 15 an additional pa-

rameter which can be adjusted to achieve the best ac-
curacy using a held-out dataset. A good selection of
features should make this approximation as true as
possible. For extremely insufficient data, if even the
m features have not been seen in the training data,
then e, (Yi, X;) = P(Y;|X;) ~ P(Y;). Similarly, we
can extend qgep(Y;, Yir1, Xi, Xig1).

3.7.2. EXPONENTIAL FUNCTIONS

For non-OOVs, we just use Eqn. (12, 13). For OOVs,
following Lafferty et al. (2001), we use exponential
functions. For each observation X; we have:

OO0V stands for out-of-vocabulary. That is the pattern
which has not been seen in the training data.

bep(Yi, Xi) = P(Yi| Xi) = s BELLIGIRD,
ep\Liy i) = v _Zyiexpzylzl)\fjfj(Yi:Xi)'

The big fraction is denoted by w(Yj,X;). For non-
OO0Vs, P(Y;|X;) is available. For OOVs, we hope
u(Yj, X;) is a good prediction of P(Y;|X;). The idea
is that we fit the parameters of u(Y;, X;) to P(Y;|X;)
for non-OOVs, and assume that the fitted parameters
still work well for OOVs.

For each non-OOV X;, we fit u(Y}, X;) to P(V;|X;).
This forms a system of equations as P(Y;|X;) can be
considered as a constant with respect to a training
dataset. By solving these equations, we obtain the es-
timation of the parameters in u(Yj, X;). Solving these
equations is equivalent to optimizing the following con-
strained objective function:

L= > ilogu(yj,xj) sty (Y, X;) =1

(Y, X)eD j=1 Y;

If we calculate % and set it to 0, we have
u(Y;, X;) = P(Y;]X;). That is when £ is optimized,
the system of equations are solved. In practice, we use
L-BFGS for optimizing £ and also add a L2 regulation
(=3, 352) for reducing over-fitting.

Similarly, for each (X;, X;41):

P(Y;'|Xi)(£ep(yi7 Yit1, Xi, Xi+1)15(Yz‘+1 | Xit1)
= P(Y;,Yig1|Xi, Xig1)
_ exp Y it 09,95 (Yi, Yigr, Xi, Xiv1)

D viYips OXP 225 0,95 (Yi, Yigr, X, Xiga)

The big fraction is denoted by v(Y;, Yii1, Xy, Xit1),
then for each observation (X;, Xi1), we have a
equation 'U(Y;', Y;Jrh Xi, Xi+1) = P(Y;, }/i+1 |,Xv7,7 Xi+1).
This forms a system of equations. Solving these equa-
tions is equivalent to optimizing the following con-
strained objective function:

n—1

L= > > logo(V;,Yirn, X5, Xj1)  (24)
(Y, X)eD j=1

s.t. Z v(Y;, Y1, X5, X)) = 1.

Y;iYja

oL
If set Y XX t? 0, we

v(Yi, Yigr, Xi, Xiya) = P(Y3,YiulXi, Xip).
Note that at test time ¢¢p(Y5,Yig1, Xi, Xig1) =
(Y5,Y541,X5, X 41)
P(Yi|X:)P(Yig1|Xit1)

have
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Eqn. (24) is different from the log likelihood of piece-
wise training (Sutton & McCallum, 2005):

n—1

Low= > > [ogv'(¥;,Yj41,X;, X;11) (25)
(v,X)eD j=1

— log Z U/(Yjvyj-!-l,Xj’Xj-H)]'

YiYjta

According to Sutton & McCallum (2005), Ly,
has no closed form solution with respect to
v'(Y;,Yj41,X;5,X41).  But as we discussed, for
Equn. (24), there is a closed form solution:
v(Y}, Y1, Xy, Xjp1) = P(Yi,Yip1| Xy, Xigr).  This
is because ZY7'Y7'+1 v(Y;, Y41, X5, X41) = 1, but
v,V v'(Y;, Y41, X, Xj41) is not necessarily 1.

3.8. Decoding

Decoding of empirical training can be efficiently im-
plemented using the Viterbi Algorithm. Suppose the
observation sequence is [Xj,...Xy] and the tag space
is T = {to, ...tar }. The gain matrix G[M x N] and pre-
tag matrix PT[M x N] can be constructed as follows:

For j=0,0<i< M:
Gij = ep(ti, Xo), PTij = null.

For1<j<Nand 0<1:< M:

Gij = max{(z;ep(tiytm:X]':Xj—l)'l/:'ep(ti,Xj)ij—l,tm S T}
PT;; = arg rr%ax{qgep

The maximum tag sequence can be linked from tail to
head in the pre-tag matrix.

4. Experiments

We implement empirical training in Java. We use the
L-BFGS algorithm of MALLET (McCallum, 2002) for
optimizing. CRF++ version 0.57 (Kudo, 2012) and
the piecewise training of MALLET are adopted for
comparison. All experiments were performed on a
Linux workstation. We denote the first (Sec. 3.7.1)
and the second (Sec. 3.7.2) empirical training by
EP1 and EP2, respectively. CRF-++ is the stan-
dard training and the piecewise training is PW.

4.1. Maximum Likelihood Estimation

Following Sec. (3.4.3), the training data consist of
5 instances: 4 of (X=[a,b,c,d], Y=[0,0,0,0]) and one
(X=[a,b,c,d], Y=[0,1,1,0]). [b,c] is to be predicted. On
this training data, we did two experiments:

4.2. The Test Time Problem

In this experiment, we verify that the estimation (tip)
described in Sec. (3.4.3) is a MLE of the standard
training and it suffers from the Test Time Problem.
To make sure the optimizer can first encounter tip, we
set the initial values of parameters according to ttp. In
CRF++, initial values can be set to the vector alpha in
the source file encoder.cpp. To avoid the affect of the
regularization (— ), %), we set the o with a very big
value (10e8). CRF++ provides a command parameter
(—c¢) to do this. The result shows that the optimizer
stops at the initial values and the objective value out-
put by CRF++ is 2.50202. This means ttp is a MLE of
the standard training, otherwise the optimizer will not
stop at it. Using these trained parameters, CRF++
makes the wrong prediction [1,1]. This means the stan-
dard training suffers from the Test Time Problem. But
both EP1 and EP2 make the right prediction [0,0].

4.3. MLE of EP is a MLE of SD

In this experiment, we verify that the MLE of empiri-
cal training (€p) is also a MLE of the standard training.
We set the initial values of parameters according to €p
(Eqn. 12, 13). The results show that the optimizer
stops at the initial values and the objective value out-
put by CRF++ is also 2.50202 which is exactly the
same as ttp. This means €p is a MLE of the standard
training. CRF++ using these parameters makes the
correct prediction [0,0].

(tiste, Xjy Xi-1)Wep(ti, X;)Gajr, te € T}If we set all the initial values to 0.0 which is different

from ttp and €p, the optimizer stops with the objective
value of 2.50202 (The command parameter -e should
be set to small enough.) and the estimated parameters
are different from tip and €p. CRF++ using these es-
timated parameters makes the wrong prediction [1,1].
This means there is a third MLE of the standard train-
ing which suffers from the Test Time Problem.

4.4. Modeling Label Bias

We test the label bias problem on simulated data fol-
lowing Lafferty et al. (2001). We generate the sim-
ulated data as follows. There are five members in
the tag space: {R1,R2,1,0,B} and four members
in the observed symbol space: {r,i,0,b}. The des-
ignated symbol for both R1 and R2 is r, for I it is
i, for O it is o and for B it is b. We generate the
paired sequences from two tag sequences: [R1,1, B|
and [R2, 0, B]. Each tag emits the designated symbol
with probability of 29/32 and each of other three sym-
bols with probability 1/32. The size of training data
is 2000 and for testing is 500. The accuracy on tags
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(FEZmilass ) is reported in Tab. (1).

EP1 | EP2 | CRF++ | PW | MEMMs
95.8 | 95.9 95.9 96.0 66.6

Table 1. Accuracy For label bias problem

The experiment results show only MEMMs suffers
from the label bias problem.

4.5. POS Tagging Experiment

We use the Brown Corpus (Francis & Kucera, 1979)
for Part-of-Speech (POS) tagging. There are 34623
sentences. The size of the tag space is 252. Follow-
ing Lafferty et al. (2001), we introduce parameters for
each tag-word pair and tag-tag pair. We also use the
same spelling features as those used by Lafferty et al.
(2001). We select 1000 sentences as held out dataset
for training p.., and fix it for all the experiments of
POS tagging. In the first experiment, we use a sub-
set (5000 sentences excluding held-out dataset) of the
full corpus (34623 sentences). On this 5000 sentence
corpus, we try three splits: 1000-4000 (Tab. 2) (1000
sentences for training and 4000 sentences for testing),
2500-2500 and 4000-1000. In the second experiment,
we use the full corpus excluding the held-out dataset
and try two splits: 17311-16312 and 32623-1000.

Metric EP1 | EP2 | CRF++ | PW
Overall 86.7 | 86.8 82.6 69.4
non-O0OVs | 94.9 | 94.9 89.7 75.3
OO0Vs 55.9 | 56.3 56.2 47.5
Time (s) 0.4 4 7177 30705

Table 2. 1000-4000 Train-Test Split Accuracy

Metric | EP1 | EP2 | CRF++ | PW
Overall | 90.0 | 90.2 | 87.6 | 75.5
non-O0Vs | 955 | 95.6 | 92.6 | 80.0
OOVs | 582 | 58.6 | 588 | 495
Time () | 0.6 | 13 | 33853 | 66258

Table 3. 2500-2500 Train-Test Split Accuracy

Metric EP1 | EP2 | CRF++ PW

Overall 95.6 | 95.6 95.4 82.9

non-OOVs | 96.9 | 96.8 96.1 84.0

OOVs 70.1 | 70.4 717 59.9
Time (s) 3.9 | 294.9 | 4571807 3791648
(53 days) | (44 days)

Table 6. 32623-1000 Train-Test Split Accuracy

From these results, empirical training is much faster
than other training methods. Empirical training
achieves better or competitive results than the stan-
dard training on overall accuracy and non-OOVs.

Metric | EP1 | EP2 | CRF++ | PW
Overall | 91.7 | 91.9 | 90.1 | 79.25
non-OOVs | 96.1 | 96.2 | 94.0 83.0
OOVs | 605 | 61.4 | 621 52.5

Time (s) | 0.9 | 24 | 70298 | 138406

Table 4. 4000-1000 Train-Test Split Accuracy

Metric EP1 | EP2 | CRF++ PW

Overall 94.18 | 94.2 93.2 78.9
non-OOVs | 96.4 | 96.4 95.3 80.8

O0OVs 60.8 | 61.0 62.3 50.4
Time (s) 2.2 125 | 1064385 | 1946706

Table 5. 17311-16312 Train-Test Split Accuracy

With the increasing of number of training instances,
the overall accuracy gap between EP and SD is getting
smaller. This may due to the MLE solution space of
the standard training is tightened to close to €p. Theo-
retically for one iteration the piecewise training should
be faster than the standard training. But in practice,
the training time depends on the number of iterations
which is difficult to predict and the implementation.

4.6. Named Entity Recognition

In this experiment, we use the the Dutch part of
CoNLL-2002 NER Corpus?. There are three files:
ned.train (13221) for training, ned.testa (2305) as
held-out data and ned.testb (4211) for testing. The
size of the tag space is 9. We use the same features as
those described in the POS tagging experiment. The
results are listed in Tab. (7).

Metric EP1 | EP2 | CRF++ | PW
Overall 96.11 | 96.14 96.13 94.4
non-OOVs | 98.8 | 98.8 98.2 97.2
OO0Vs 72.6 | T2.7 77.4 69.6
Time (s) 1.6 53 794 4617

Table 7. Named Entity Recognition Accuracy

On the NER task, empirical training is the fastest and
obtains competitive overall accuracy. On non-OOVs
empirical training is consistently better than the stan-
dard training. But on OOVs, standard training is bet-
ter than empirical training. We suspect the reason is
that in standard training the OOVs and non-OOVs
parameters are trained together. They fit into each
other very well. But OOVs and non-OOVs are trained
separately in empirical training. We believe the OOV
accuracy of empirical training can be further improved

by training them together.

“http://www.cnts.ua.ac.be/conl12002/ner/
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5. Conclusions

We proposed the empirical training for CRFs which
is motivated by Co-occurrence Rate. We showed that
considering a joint probability as a multiplication of
CRs and unary probabilities is critical. The stan-
dard training (unregularized) can have many MLEs.
The MLE of the empirical training is one of them and
has a unique closed form solution. For the first time,
we identified the Test Time Problem of the standard
training which may lead to low accuracy. Empirical
training is unaffected by the Test Time Problem and
also the label bias problem even it is a local normalized
model. We verified all of these statements by exper-
iments. Experiments on two real-world NLP dataset
show empirical training speeds up the training radi-
cally and obtains competitive results to the standard
and piecewise training.
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