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Abstract. For this year’s web track, we concentrated on the entry page finding task. For the content-only runs, in
both the ad-hoc task and the entry page finding task, we used an information retrieval system based on a simple
unigram language model. In the Ad hoc task we experimented with alternatieve approaches to smoothing. For the
entry page task, we incorporated additional information into the model. The sources of information we used in
addition to the document’s content are links, URLs and anchors. We found that almost every approach can improve
the results of a content only run. In the end, a very basic approach, using the depth of the path of the URL as a prior,
yielded by far the largest improvement over the content only results.

1 Introduction

Entry page search searching is different from general information searching, not only because entry pages differ from
other web documents, but also because the goals of the tasks are different. Where in general information seeking we’re
interested in finding as much information as possible, for entry page searches we’re looking for one specific document.
Therefore, the entry page task is clearly a high precision task. Because of both the differences in the task and in the
documents, for this task information sources other then the document’s content can be very useful for locating the
relevant entry page.

For the content-only runs, in both the ad-hoc task and the entry page finding task, we used an information retrieval
system based on a simple unigram language model. This IR model, which we introduced at the TREC-7 conference
[4] and which worked effectively on last year’s web task, is presented in section 2. Section 3 describes how we used
links, anchors andURLs to improve a content only run and section 4 lists the official results for the submitted runs as
well as the results for the additional runs we did. Finally, section 5 lists our conclusions.

2 Basic IR model

All runs were carried out with an information retrieval system based on a simple statistical language model [3]. The
basic idea is that documents can be represented by unigram language models. Now, if a query is more probable given a
language model based on documentd1, than given e.g. a language model based on documentd2, then we hypothesise
that the documentd1 is more relevant to the query than documentd2. Thus the probability of generating a certain
query given a document-based language model can serve as a score to rank documents with respect to relevance.

P (T1, T2, · · · , Tn|Dk)P (Dk) = P (Dk)
n∏

i=1

(1 − λ)P (Ti|C) + λP (Ti|Dk) (1)

Equation 1 shows the basic idea of this approach to information retrieval, where the document-based language model
is smoothed by interpolation with a background language model to compensate for sparseness. In the equation,Ti is
a random variable for the query term on positioni in the query (1 ≤ i ≤ n, wheren is the query length), which
sample space is the set{t(0), t(1), · · · , t(m)} of all terms in the collection. The probability measureP (Ti|C) defines
the probability of drawing a term at random from the collection,P (Ti|Dk) defines the probability of drawing a term



at random from documentk; andλ is the interpolation parameter1. The a-priori probability of relevanceP (Dk) is
usually taken to be a linear function of the document length, modelling the empirical fact that longer documents have
a higher probability of relevance.

2.1 Combining external information

The basic ranking model is based on the content of the web pages. There is evidence that other sources of information
(link structure, anchor text) play a decisive role in the ranking process of entry pages (e.g. Google2). The preferred
way to incorporate extra information about web pages is to include this information in the model. A clean method is
to incorporate this information in the prior probability of a document. A second manner is to model different types of
evidence as different types of ranking models, and combine these methods via interpolation.

scorecombi = αscorecontent+ (1 − α)scorefeatures (2)

Equation 2 shows how two ranking functions can be combined by interpolation. The combined score is based on a
weighted function of the unigram document model and the posterior probability given the document feature set and a
Bayesian classifier trained on the training set. As features we experimented with the number of inlinks and theURL
form. However, for interpolation, scores have to be normalised across queries, because the interpolation scheme is
query independent. Therefore, for the interpolation method we normalised the content score by the query length, the
ranking models based on other document information that we applied are (discriminative) probabilities and thus need
no normalisation. The interpolation method has shown to work well in cases where score normalisation is a key factor
[6]. For the experiments we describe here, we have applied both methods and they yield similar results. In a context
where score normalisation is not necessary, we prefer method one. We determined the document priors (document-
content independent prior probabilities) using various techniques, either postulating a relationship, or learning priors
from training data conditioning on e.g. theURL form. This process will be described in more detail in the Section 3.

2.2 Smoothing variants

Recent experiments at CMU have shown that the particular choice of smoothing technique can have a large influence on
the retrieval effectiveness. For title adhoc queries, Zhai and Lafferty [8] found Dirichlet smoothing to be more effective
than linear interpolation3 Both methods start from the idea that the probability estimate for unseen terms:Pu(Ti|Dk) is
modelled a constant times the collection based estimate:P (Ti|C). A crucial difference between Dirichlet and Jelinek-
Mercer smoothing is that the smoothing constant is dependent on the document length for Dirichlet, reflecting the
fact that probability estimates are more reliable for longer documents. Equation (3) shows the weighting formula for
Dirichlet smoothing, wherec(Ti|Dk) is the term frequency of termTi in documentDk ,

∑
w c(Ti;Dk) is the length of

documentDk andµ is a constant. The collection specific smoothing constant is in this case µ∑
w c(Ti;Dk)+µ , whereas

the smoothing constant is(1 − λ) in the Jelinek-Mercer based model.

P (T1, T2, · · · , Tn|Dk)P (Dk) = P (Dk)
n∏

i=1

c(Ti;Dk) + µP (Ti|C)∑
w c(Ti;Dk) + µ

(3)

3 Entry page Search

To improve the results of a content only run in the entry page finding task, we experimented with various link,URL and
anchor based methods. We tested several well-known and novel techniques on the set of 100 training topics provided
by NIST and found that each method we tested was more or less beneficial for finding entry pages. This contrasts
with last year’s findings where link based techniques didn’t add anything in an ad hoc search task [7]. In the following
subsections, we subsequently discuss link based methods,URL based methods and anchor based methods, along with
our findings on the training data.

1 We apply a simplified version of the model developed in [3], whereλ is term specific, denoting the term importance
2 http://www.google.com
3 Also called Jelinek-Mercer smoothing.
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3.1 Links

One of the sources of information one can use in addition to the content is the link structure. This is the structure
of hyperlinks connecting the documents on the web. We took two different approaches exploiting this structure, both
relying on the fact that entry pages tend to have a different link structure than other documents.

Inlinks The first link-based approach we experimented with is based on the assumption that entry pages tend to have
a higher number of inlinks than other documents (i.e. they are referenced more often). A well known example of a
commercial search engine which is based on a similar assumption is Google [1]. To check whether this assumption
holds, we made a of plot ofP (entrypage|#inlinks) (See Figure 1). The probabilities are estimated on half of the
training data. The figure shows that indeed documents with more inlinks tend to have a higher probability of being an
entry page. Therefore, for an entry page task, the number of inlinks might be a good prior. In fact, as figure 2 shows,
the assumption that longer documents have a higher probability of being relevant does not hold for entry page searches
and a prior based on the number of inlinks might be better than one based on the length of the document.

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000

P
(e

nt
ry

 p
ag

e 
| #

in
lin

ks
)

#inlinks

Fig. 1.P (entrypage | #inlinks)

As a prior for ad hoc searches, we usually take a document length prior:

P (Dk) =
doclen(Dk)∑N

j=1 doclen(Dj)
(4)

We define the inlink prior as:

P (Dk) =
#inlinks(Dk)∑N

j=1 #inlinks(Dj)
(5)

We compared the two priors of equations 4 and 5 on the training data. We normalised the content score by the
query length and interpolated with the inlink prior (cf. eq. 2), the doclen prior is used conform eq. 1. Table 1 shows the
mean reciprocal ranks (MRR)4. The interpolation parameters used in the table gave the best results. The scores show
that indeed, the number of inlinks is a better prior than the length of the document.

4 The reciprocal of the rank of the relevant entry page averaged over all queries.

3



1e-06

1e-05

0.0001

0.001

10 100 1000 10000 100000
1e-06

1e-05

0.0001

0.001

10 100 1000 10000 100000

Ad hoc search Entry page search

Fig. 2.P (relevant | doclen)

run MRR
content 0.26
content + doclen prior 0.21
0.7 * content + 0.3 * inlink 0.38

Table 1.MRRs Inlink and doclen priors on training data

Kleinberg The second link-based approach we experimented with is based on Kleinberg’s hub and authority algorithm
[5]. This algorithm identifies authorities (important sources of information) and hubs (lists of pointers to authorities)
by analysing the structure of hyperlinks. Since entry pages can be seen as authorities on a very specific subject (a
certain organisation), Kleinberg’s algorithm can be useful for the entry page search task. The algorithm works by
iteratively assigning hub and authority scores to documents in such a way that good hubs are pages that refer to many
good authorities and good authorities are referenced by many good hubs:

1. Take the top N results from the content run
2. Extend this setS with all documents that are linked toS (either through in or through outlinks)
3. Initialise all hub and authority scores in this set to 1.
4. hub(D) =

∑
{i|link D → i exists} auth(i)

5. auth(D) =
∑

{i|link i → D exists} hub(i)
6. normalise hub and auth scores such that

∑
s∈S hub2(s) =

∑
s∈S auth2(s) = 1

7. repeat steps 4 - 6

We computed hubs and authorities for the top N of the content only run and used the resulting authority scores to
rank the documents. Table 2 shows the results for different values of N.

As the results show, taking only the top 5 or top 10 ranks from the content run and computing authority scores
starting from those, is sufficient to improve the results. Apparently, if an entry page is not in the top 5 from the content
run, it is often in the set of documents linked to these 5 documents.

3.2 URLs

Apart from content and links, a third source of information are the document’sURLs. Entry pageURLs often contain
the name or acronym of the corresponding organisation. Therefore, an obvious way of exploitingURL information is
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N MRR
content 0.26

1 0.18
5 0.33

10 0.32
50 0.30

Table 2.MRRs Kleinberg@10 results on training data

trying to match query terms andURL terms. OurURL approach however, is based on the observation that entry page
URLs tend to be higher in a server’s document tree than other web pages, i.e. the number of slashes (’/’) in an entry
pageURL tends to be relatively small.

We define 4 different types ofURLs:

– root: a domain name, optionally followed by ’index.html’ (e.g.http://trec.nist.gov )
– subroot: a domain name, followed by a single directory, optionally followed by ’index.html’ name (e.g.http:

//trec.nist.gov/pubs/ )
– path: a domain name, followed by an arbitrarily deep path, but not ending in a file name other than ’index.html’

(e.g.http://trec.nist.gov/pubs/trec9/papers/ )
– file: anything ending in a filename other than ’index.html’ (e.g.http://trec.nist.gov/pubs/trec9/

t9_proceedings.html )

We analysed WT10g and the relevant entry pages for half of the training documents to see how entry pages and
other documents are distributed over theseURL types. Table 3 shows the statistics.

URL type #entry pages #WT10g
root 38 (71.7%) 11680 (0.6%)
subroot 7 (13.2%) 37959 (2.2%)
path 3 (5.7%) 83734 (4.9%)
file 3 (5.7%) 1557719 (92.1%)

Table 3.Distributions of entry pages and WT10g over URL types

From these statistics, we estimated prior probabilities of being an entry page on the basis of theURL type
P (entrypage|URLtype = t) for all URL typest. We then interpolated these priors with the normalised content
only scores (cf. eq. 2) and tested this on the other 50 entry page search topics of the training data. This gave a major
improvement on the content only results (see table 4).

run MRR
content only 0.26
0.7 * content + 0.3 * URL prior 0.79

Table 4.URL prior results

3.3 Anchors

The fourth source of information is provided by the anchor texts of outlinks. These anchor texts are the underlined and
highlighted texts of hyperlinks in web pages. We gathered all anchor texts of the outlinks, combined all texts pointing
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to the same document to form a new textual representation of that document, and built a separate index on these texts.
The texts include the so-calledALT-tags of images as well as the words occurring in theURL.

Note that the score provided by an anchor run is not a document prior. The anchor texts and the body texts (‘content-
only’) provide two very different textual representations of the documents. The information retrieval language models
are particularly well-suited for combining several document representations [3]. Our preferred way of combining two
representations would be by the following, revised ranking formula.

score= log(Pprior(Dk)) +
n∑

i=1

log((1−λ−µ)P (Tt|C) + λPcontent(Ti|Dk) + µPanchor(Ti|Dk)) (6)

So, the combination of the anchor run with the content run would be done on a ‘query term by query term’ basis,
whereas the document prior (provided by inlinks orURLs) is added separately. Unfortunately, the current implemen-
tation of the retrieval system does not support combining document representations like this. Instead, the anchor runs
were done separately from the content runs, their document scores being combined afterwards.

run MRR
content only 0.26
anchor only 0.29
0.9 * content + 0.1 * anchor 0.36
0.63 * content + 0.07 * anchor + 0.3 * url 0.82

Table 5.MRRs of anchor runs on training data

Table 5 shows theMRRs on half of the training topics. Surprisingly, the anchor-only run slightly outperforms
the content-only run. Apparently, search engines do not actually have to see entry pages to provide some useful re-
trieval functionality. Combining the two approaches leads to improved results. Anchors still seem to provide additional
information if they are combined with the successfulURL priors.

4 Results

4.1 Ad hoc task

For the Ad Hoc task, we submitted two runs, based on a Jelinek-Mercer smoothing scheme. We did some post hoc
runs, based on the Dirichlet smoothing method and were impressed by their superior performance. All runs used only
the title field of the topics.

run description m.a.p.
tnout10t1 JM smoothing (λ = 0.8) without doclen prior 0.1652
tnout10t2 JM smoothing (λ = 0.5) with doclen prior 0.1891
tnout10t3 Dirichlet smoothing (µ = 1000) without doclen prior 0.2039

Table 6.Results of the Ad Hoc runs

Table 4.1 gives the results (mean average precision) for the title only adhoc runs (offical runs in bold font). We
know from previous experiments that the Jelinek-Mercer smoothing scheme as such works better on full queries than
on title queries. For title queries, the system has too much preference for shorter documents in comparison with the
ideal line depicted byP (rel|dlen) (see fig. 3). This can be “compensated” by assuming a prior probability which is
linearly dependent on the document length. However, a strict linear relationship will favour long documents too much.
An alternative is to use Dirichlet smoothing, such a system yields aP (ret|dlen) curve which has the same shape and
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orientation as the idealP (rel|dlen) curve (fig. 3). The Dirichlet smoothing scheme is less sensitive to query length
[8], and the preference for longer documents is inherent, since less smoothing is applied to longer documents.

Figure 3 illustrates the effect. The Dirichlet run follows the shape of theP (rel|dlen) line more closely than the
runs based on Jelinek-Mercer smoothing. The JM run based on a document length dependent prior indeed follows
the ideal curve better in the lower ranges of document lengths, but overcompensates for the higher document length
ranges.

4.2 Entry page task

For the entry page task, we submitted four runs: a content only run, a anchor only run, a content run withURL
prior5 and a run with content, anchors andURL priors. We did some additional runs to have results for all sensible
combinations of content, anchors and priors, as well as an inlinkprior run and a Kleinberg run. The mean reciprocal
ranks for all runs are shown in table 7 (official runs in bold face). Figure 4 shows the success rate at N for all runs6 (on
a logarithmic scale to emphasise high precision).

The first thing that should be noted from the results is that each combination of content and another source of
information outperforms the content only run. The same holds for combinations with the anchor run. However, the
improvement when addingURL information is for the anchor run less impressive than for the content run. This is
probably due to the differences in the two runs. Although these runs have similar scores (MRR around 0.33), they have
different characteristics. The anchor run is a high precision run, whereas the content run also has a reasonable recall.
Therefore, it is hard to improve the anchor run since the entry pages that are retrieved are already in the top ranks and
the other entry pages are simply not retrieved at all. Figure 4 shows the differences between the two runs: the anchor
run has a slightly higher success rate for the lower ranks, but as the ranks get higher, the content run takes over.

As mentioned in section 2.1, our preferred way of combining sources of information when normalisation is not
necessary, is to incorporate the additional information in the prior probability of a document. However, in the runs
listed in table 7 we interpolatedURL priors and inlink priors with the content scores. We did additional runs in which
we used the priors exactly as in equation 1; Table 8 shows the results.

5 We recomputed the priors on the whole set of training data.
6 The number of entry pages retrieved within the top N documents returned
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run scores description MRR
tnout10epC contentscore Content only run 0.3375
tnout10epA anchorscore Anchor only run 0.3306
tnout10epCU 0.7 · contentscore + Content run combined with URL priors 0.7716

0.3 · urlprior
tnout10epAU 0.7 · anchorscore+ Anchor run combined with URL priors 0.4798

0.3 · urlpriors
tnout10epCA 0.9 · contentscore+ Interpolation of Content and Anchor runs 0.4500

0.1 · anchorscore
tnout10epCAU 0.63 · contentscore + Interpolation of Content and Anchor runs 0.7745

0.07 · anchorscore + combined with URL priors
0.3 · urlpriors

tnout10epInlinks 0.7 · contentscore + Content run combined with Inlink priors 0.4872
0.3inlinkprior

tnout10epKlein10Kleinberg′s auth.score @ 10 Authority scores after Kleinberg algorithm 0.3548
on top 10 ranks from Content run

Table 7.Entry Page results
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run MRR
content only 0.3375
content * URL prior 0.7743
content * inlink prior 0.4251
content * inlink prior * URL prior 0.5440
content * combiprior 0.7746

Table 8.Results with clean (non-interpolated) priors

Table 8 shows that also when we use priors in the clean way(cf. eq 1, they improve our results. Comparing these
results to the ones in table 7, we see no difference in performance between the interpolated inlinks and the clean
inlinks. The interpolatedURL priors are slightly better than the clean ones.

When we take a combination of inlink andURL information as a prior, by simply multiplying the two priors,
our results drop (see table 8). This indicates that the two sources of information are not independent. We therefore
dropped the independence assumption and had another look at the training data. Just like with the estimation of the
URL priors, we subdivided the collection into different categories and estimated prior probabilities of being an entry
page given a certain category. As a basis for the categories, we took the 4URL types defined in section 3.2, then we
subdivided the root type into categories on the basis of the number of inlinks. Again we counted the number of entry
pages from the training data and the number of documents from WT10g that fell into each category and estimated the
prior probabilities from that. We took the categories from theURL types as a starting point and subdivided the root
type into 4 subtypes on the basis of the number of inlinks. Table 9 shows the statistics for the different categories.

Document type #entry pages #WT10g
root with 1-10 inlinks 39 (36.1%) 8938 (0.5%)
root with 11-100 inlinks 25 (23.1%) 2905 (0.2%)
root with 101-1000 inlinks 11 (10.2%) 377 (0.0%)
root with 1000+ inlinks 4 (3.7%)) 38 (0.0%)
subroot 15 (13.9%) 37959 (2.2%)
path 8 (7.4%) 83734 (4.9%)
file 6 (5.6%) 1557719 (92.1%)

Table 9.Distribution entry pages and WT10g over different document types

As can be seen in table 8, this proper combination ofURL and inlink information (i.e. without the independence
assumption) performs as good as or better than the two separate priors.

5 Conclusion

Post hoc runs show that the Dirichlet smoothing technique yields superior performance for title ad hoc queries on the
web collection. This is probably due to the document length dependent smoothing constant, but further investigation
is needed.

The Entry page finding task turns out to be very different from an ad hoc task. In previous web tracks link infor-
mation didn’t seem to help for general searches [7] [2]. This year, we found that in addition to content, other sources
of information can be very useful for identifying entry pages. We described two different ways of combining different
sources of information into our unigram language model: either as a proper prior or by interpolating results from dif-
ferent ranking models. We used both methods successfully when combining content information with other sources as
diverse as inlinks,URLs and anchors. URL info gives the best prior info. Adding inlinks yields marginal improvement.
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