
The Mirror DBMS at TRECArjen P. de Vries and Djoerd Hiemstrafarjen,hiemstrag�tit.utwente.nlCTIT, University of TwenteThe NetherlandsAbstratThe database group at University of Twente partiipates in TREC8using the Mirror DBMS, a prototype database system espeially designedfor multimedia and web retrieval. From a database perspetive, the pur-pose has been to hek whether we an get suÆient performane, and toprepare for the very large orpus trak in whih we plan to partiipatenext year. From an IR perspetive, the experiments have been designedto learn more about the e�et of the global statistis on the ranking.1 IntrodutionThe Mirror DBMS [dV99℄ ombines ontent management and data managementin a single system. The main advantage of suh integration is the faility toombine IR with traditional data retrieval. Furthermore, IR researhers anexperiment more easily with new retrieval models, using and ombining varioussoures of information. This is an important bene�t for advaned IR researh;web retrieval, speeh retrieval, and ross-language retrieval, eah require the useof several representations of ontent, whih is hard to handle in the traditional�le-based approah, and beomes too slow in traditional database systems.In the Mirror DBMS, the IR retrieval model is ompletely integrated in thedatabase arhiteture, emphasizing eÆient set-oriented query proessing. Thesupport for information retrieval in our system is presented in detail in [dV98℄and [dVW99℄. It supports other types of media as well, whih has been demon-strated in the image retrieval system prototype desribed in [dVvDBA99℄. Themain goal of our partiipation in TREC is to test if our system an handle largerdata sets without too many problems. Also, we wanted to �nd out the e�et ofglobal statistis on the ranking.This paper is organized as follows. Setions 2 and 3 review the design of theMirror DBMS and its support for IR, and disuss its use for TREC proessing.Setion 4 explains the experimental setup and interprets our results. Setion1
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Figure 1: The multi-model DBMS arhiteture next to the extended relationaland E-ADT DBMS arhitetures (from left to right).5 disusses our experiene with using the Mirror DBMS for TREC, followed byonlusions.2 DesignA omplete overview and motivation of all aspets of the design of the MirrorDBMS is presented in [dV99℄. Although following a traditional three-shemaarhiteture, it uses di�erent data models at di�erent levels: we therefore lassifyits design as multi-model DBMS arhiteture. The ruial arhiteturaldi�erene from other extensible database systems is that query proessing atthe logial layer uses only operators that are provided by the physial layer (seealso Figure 1), and, domain-spei� query proessing (suh as an IR extension)is de�ned at the logial level primarily. This hoie enfores a system-widephysial data model and algebra spanning all extensions. Of ourse, the physialalgebra an also be extended if neessary, i.e. when logial operations annot beexpressed eÆiently in the physial algebra. The strit separation between thelogial and physial levels allows using algebrai query optimization tehniques,a key property of relational database management systems but hardly ever usedin non-business appliation areas like ontent management.The multi-model arhiteture provides the query proessor with transparanythrough the layers. Put informally, query evaluation an `look down' fromthe original request through all layers of the arhiteture. This should en-able set-oriented query evaluation for almost every request, and allow maximalexploitation of parallelization and pipelining. In ontrast, the blak-box ADTsof `objet-relational' database systems restrit the DBMS in the possible ma-nipulations of the query plans. This makes it more ompliated to distributeand parallelize the query plans, or hange the bu�er strategy for iterative queryproessing as proposed in [JFS98℄. Another alternative, the enhaned ADTsproposed by Seshadri [Ses98℄, provides little opportunity for optimizations thatross the bounderies between di�erent extensions. Figure 1 ompares these three



Arjen P. de Vries and Djoerd Hiemstra 3arhitetures shematially.3 ImplementationThe prototype implementation of the Mirror DBMS uses Moa at the logial level,and Monet at the physial level. Monet is a parallel main-memory databasesystem under development at the CWI in Amsterdam [BK95, BMK99℄, that istargeted as a bakend system for various (query-intensive) appliation domains,suh as GIS and data mining.1 Moa is an objet algebra studied in the databasegroup at University of Twente, that is extensible with domain-spei� stru-tures. The Moa tools transform expressions in this algebra into sequenes ofoperations in MIL, an algebra for the binary relational data model supportedby Monet.For the support of IR, we extendedMoa with new strutures at the logial level tohandle doument representation, ranking, and the omputation of o-ourrenestatistis. In ombination with Moa's kernel support for olletions and tuples,these strutures an model a wide variety of IR retrieval models: the urrentprototype supports the well-known Okapi ranking sheme, InQuery's inferenenetwork retrieval model, as well as the linguistially motivated retrieval model(LMM, presented in Setion 4.3). To illustrate, the following Moa expressionranks a olletion of douments:map[sum(THIS)℄(map[getBL(THIS, query, stats)℄( dos ));The �rst map operation omputes term probabilities for the query terms our-ring in the doument, using the global statistis spei�ed in struture stats.The subsequent map ombines these probabilities using a sum operation. Al-though this partiular expression may not seem very interesting, the IR rankingoperators an be ombined with other operators suh as selet, resulting in apowerful query language.The representation of the logial IR strutures at the physial level is termedthe attened representation of the ontent. It onsists of three binary tables(BATs), storing the frequeny tf (ti; dj) of term ti in doument dj , for eah termti ourring in doument dj . Table 1 illustrates this for a olletion fd1; d2g withdouments d1 = [a; ; ; a; ℄ and d2 = [a; e; b; b; e℄. Computing the probabilityof relevane of the objets for query q = [a; b℄ proeeds as follows. First, atable with the query terms is joined with the doument terms in ti (the result1Monet is used suesfully on a ommerial basis by Data Distilleries, a start-up speializingin data mining appliations.



4 The Mirror DBMS at TRECdj ti tfij1 a 21  32 a 12 b 22 e 2 intermediate resultsqdj qti qtfij qntfij1 a 2 0.7965782 a 1 0.6214422 b 2 0.900426doument olletionTable 1: Representation of ontent in BATsis alled qti). Next, (using additional joins) the doument identi�ers and theterm frequenies are looked up (qdj and qtfij).2 Finally, the retrieval statusvalues are omputed with some variant of the popular tf � idf ranking formula.To support these omputations, Monet's physial algebra has to be extendedwith new operators, either in C or C++, or as a MIL proedure. The latter ispreferrable for easy experimentation; for example, the following MIL proedureomputes the term probabilities given normalized term frequeny and inversedoument frequeny using the LMM model:PROC bel( nidfi, ntfij ) := {RETURN log( 1.0 + nidfi * ntfij * C );}An evaluation run proesses 50 topis in bath, but the lient interfaes of theMirror DBMS have been designed for interative sessions with an end-user. Also,transferring the data from Monet to the Moa lient has not been implementedoptimally. Furthermore, optimizations suh as using materialized views are notperformed in the urrent Moa rewriter. These minor aws would have inferredan unfair performane penalty to the evaluation of the arhiteture, and madelogging the results rather umbersome. Therefore, as a (temporary) solution,the MIL program generated by the Moa rewriter has been manually edited toloop over the 50 topis, log the omputed ranking for eah topi, and use twoadditional tables, one with preomputed normalized inverse doument frequen-ies (a materialized view), and one with the doument-spei� onstants fornormalizing the term frequenies.2Note that these joins are exeuted very eÆiently, beause the Moa strutures make surethat the BATs remain synhronized all the time.



Arjen P. de Vries and Djoerd Hiemstra 54 Experimental setup and resultsColletion fusion is the proess of merging the results of retrieval runs onseperate, autonomous doument olletions into an e�etive ombined result[VGJL95℄. We have foused on this problem beause large olletions will befragmented (horizontally) in several partitions, eah managed by a separateserver. Maintaining the exat global statistis indues an extra overhead, thatmay not be neessary if the fragments are suÆiently large.Colletion fusion is a trivial task for exat mathing retrieval systems like sys-tems using Boolean retrieval, but more ompliated if a ranked retrieval sys-tem is used. In a number of publiations on olletion fusion it is argued thatsimply omparing similarity measures aross subolletions leads to unsatisfa-tory results beause of di�erenes in the olletion-dependent frequeny ounts[Bau97, CLC95, VF95, VGJL95℄. One of the objetives of the TREC-8 eval-uation desribed in this paper is to question this hypothesis. We feel thatsimilarity measures aross subolletions might in fat be omparable, but showworse evaluation results beause of the evaluation setup.4.1 Evaluation using the TREC olletionRelevane assessments on the TREC test olletions are assembled by the pool-ing method: a pool of possibly relevant douments is reated by taking the asample of douments retrieved by eah partiipating system. This pool is thenshown to the human assessors [VH99a℄. The sampling method used in TRECtakes the top 100 of the retrieved douments of eah partiipating system.Sine the start of TREC in 1992, the test olletions have been used in numerousevaluations outside the oÆial TREC. For these evaluations, all douments thatwere not in the top 100 of any of the oÆial partiipating systems are assumedto be not relevant. But, evaluations that did not ontribute to the TREC poolprobably have unjudged douments in the top 100 making these evaluations lessreliable than the oÆial TREC evaluation. This is espeially true for new, previ-ously unexplored approahes to retrieval. If a systems �nds relevant doumentsthat no system was able to �nd before, then these douments will probably notbe judged in an old TREC olletion. The only way to hek the relevane ofthese douments is by oÆial TREC partiipation.4.2 Conditions for naive olletion fusionLet us de�ne 'naive' olletion fusion as the proess of merging the searh resultson the subolletions based on the doument similarities. The �rst onditionfor naive olletion fusion is that eah subolletion uses the same retrievalmodel or weighting algorithm for retrieval. Seondly, we assume that eah



6 The Mirror DBMS at TRECsubolletion uses the same indexing voabulary [Bau97℄. A third ondition isthat subolletions are suÆiently large to allow for the reliable loal estimationof doument frequenies. If the subolletions are too small, ine�etive retrievalon the subolletions will a�et the merged result.An evaluation of Callan et al. [CLC95℄ under these onditions for TREC topis51-150 showed that naive merging was signi�antly worse than ranking based onglobally estimated doument frequenies, ausing losses from 10-20% in averagepreision. But, the results of naive merging reported by Callan et al. [CLC95℄were not part of an oÆial TREC partiipation. It is likely that their mergedrun has a worse overage of judgements, beause the TREC-2 and 3 pools were(almost) only reated by systems that use a entral index for retrieval. Maybe,their merged run was as good as the entral index run after all. To hek thishypothesis, we deided to put up a retrieval run using naive merging for judging.4.3 Some theoretial bak-up for naive mergingThe Mirror DBMS uses the linguistially motivated probabilisti model of in-formation retrieval [Hie99, HK99℄. The model builds a simple statistial lan-guage model for eah doument in the olletion. The probability that a queryT1; T2; � � � ; Tn of length n is generated by the language model of the doumentwith identi�er D is de�ned by the following equation:P (T1= t1;� � �; Tn= tnjD=d) = nYi=1(�1 df(ti)Pt df(t) + �2 tf (ti; d)Pt tf (t; d) ) (1)Equation 1 an be rewritten to a vetor produt formula by �rst dividing itby Qni=1(�1df(ti)=Pt df(t)) [Hie99℄. This will not a�et the ranking within asubolletion, but it will a�et the �nal ranking after merging the searh re-sults of the seperate subolletions, beause we divided by olletion spei�doument frequenies. It an be shown that the ranking of the vetor produtformula in table 2 approximates the ranking de�ned by the onditional proba-bility P (DjT1; T2; � � � ; Tn) of a doument being relevant given a query.vetor produt formula: similarity(Q;D) = lXk=1wqk � wdkquery term weight: wqk = tf (tk; q)doument term weight: wdk = log(1 + tf (tk; d)df(tk)Pt tf (t; d) � �2Pt df(t)�1 )Table 2: tf � idf term weighting algorithmFrom Bayes' rule we know that dividing equation 1 by P (T1; T2; � � � ; Tn) andmultiplying it by P(D) results in P (DjT1; T2; � � � ; Tn). For a large olletion



Arjen P. de Vries and Djoerd Hiemstra 7and a query that has a small number of hits, tf (t; d) =0 for most terms t anddouments d. Therefore, Qni=1(�1df(ti)=Pt df(t)) approximates the marginalprobability P (T1; T2; � � � ; Tn) and the ranking de�ned by table 2 approximatesthe ranking de�ned by P (DjT1; T2; � � � ; Tn). The a-priori probability P (D= d)of a doument d being relevant an be inluded by adding the logarithm ofequation 2 to the similarities of table 2 as a �nal step.P (D = d) = Pt tf (t; d)PtPd tf (t; d) (2)We hypothesise that, if the approximation is not too far o�, the result aftermerging is not signi�antly worse than what would have been possible with aentral index.4.4 OÆial resultsTable 3 lists the oÆial TREC runs. Global runs denote runs using the globalolletion statistis. Loal runs denote the naive olletion fusion runs, using lo-al olletion statistis on the four TREC subolletions: Federal Register, For-eign Broadast Information Servies, Los Angelas Times and Finanial Times.run name desription avg. pre.UT800 global run 0.260UT803 global run; LCA 0.176UT803b global run; LCA from F.Times and LA Times 0.260UT810 loal run (judged) 0.043UT813 loal run; LCA from loal 0.145Table 3: oÆial resultsUnfortunately, our submitted oÆial runs have been degraded by two bugs,that a�eted in partiular the naive merging run that was judged by NIST.By our own mistake, the global runs have used the wrong (loal) normalizingonstant for the idf ;3 an error in Monet's join implementation resulted inrandom answers for three of the four loal runs. After �xing these bugs, theresults of the global run UT800 improved from 0.260 to 0.275 and the resultsof the loal run UT810 improved from 0.043 to 0.260. Table 4 lists the resultson the four subolletions. Exept for the Federal Register, whih has hits foronly 19 topis anyway, the average preision on the subolletions do not di�ermuh at all. UnoÆial runs, with these bugs �xed, are indiated in this paperby a `u' post�x (so `UT500u' is the �xed `UT500' run).The merged loal run is about 6% worse than the global run. This might bea signi�ant di�erene aording to some signi�ane test, like e.g. the t-test[Hul93℄; but, if so, it is still not valid to draw the onlusion that the global3Strange enough, this mistake improves average preision slightly on the TREC6 topis.



8 The Mirror DBMS at TRECrun name Fed.Reg. FBIS LATimes F.Times mergedUT800u (global) 0.326 0.317 0.279 0.356 0.275UT810u (loal) 0.351 0.319 0.276 0.356 0.260topis w. hits 19 43 45 49 50Table 4: average preision per subolletion after bug-�xapproah is indeed better than the naive merging approah. This onlusionwould only be valid if both evaluations were done under idential, ontrolled,onditions; whih they are not, beause both runs were not judged by NISTand we do not ontrol the other systems that ontributed to the pool. Almostall systems that ontributed to the TREC-8 pool were systems using the globalapproah. Therefore, the pool favours entral index approahes over distributedindex approahes if it is used to evaluate runs that did not ontribute to thepool. This an be shown by looking at the perentage of douments that arejudged for di�erent ut-o� levels of the �xed UT800u and UT810u runs. Theperentage of douments in a run that are judged, will be alled the judgedfration.run name P at 10 P at 30 P at 100 P at R avg. PUT800u (global) 0.496 0.378 0.234 0.319 0.275UT810u (loal) 0.436 0.343 0.222 0.310 0.260run name J at 10 J at 30 J at 100 J at RUT800u (global) 1.000 1.000 0.996 0.987UT810u (loal) 0.984 0.978 0.952 0.947Table 5: merged results after bug-�x: a) preision; b) judged frationTable 5a and b show the preision and the judged fration of the global andthe loal run at di�erent ut-o� levels. There is a major di�erene between thejudged frations of the global run and the loal run. The global run misses 0.4%of the douments in its top 100. The loal run misses 4.8% of the douments inthe top 100, some of them are even missing in the top 10.4.5 Loal ontext analysisBased on its suess on InQuery at previous TREC onferenes, we expeted asigni�ant improvement by using topis expanded with LCA [XC96℄. Also, in-vestigating the expansion terms, LCA seemed to do a good job. For example, ontopi 311 (whih is about industrial espionage), it �nds terms like `spy', `intel-ligene', and `ounterintelligene', and from the �nanial times sub-olletion iteven identi�es `Opel', `Volkswagen', and `Lopez' as relevant terms. But, insteadof improving the e�etiveness of retrieval, the measured performane turned outto have degraded. Some tweaking of the parameters, reduing the weights ofexpansion terms and using fewer of them (N=30), the performane improved



Arjen P. de Vries and Djoerd Hiemstra 9upon the baseline, but only slightly; on the runs submitted for TREC-8, it hasdegraded performane.A possible explanation for these disappointing results is that the algorithm hasbeen applied to douments instead of passages (as done in [XC96℄), and theTREC olletion itself was used to �nd expansion terms instead of another,larger olletion. One result was that the varying length of douments hada large impat on the expansion terms hosen, whih is undesirable. Anotherexplanation is that LMM weighting provides suh a high baseline, that it is veryhard to improve upon. A omparison between the (impressive) baseline resultsof LMM on TREC-6 favours the latter explanation: beause the performaneof the Mirror DBMS with LMM weighting sheme, without LCA, was almost asgood as InQuery's performane after using LCA. With the tweaked LCA, LMMweighting performed better on all reported preision and reall points, exeptfor the preision at twenty retrieved douments, at whih InQuery performedslightly better. On the TREC-8 topis it did not ontribute positively to theresults.5 DisussionAlthough more of anedotal than sienti� value, the story of our partiipationin TREC-8 with the Mirror DBMS illustrates the suitability of this arhiteturefor experimental IR. Eight days before the deadline, it still seemed impossible topartiipate with this year's TREC, as Monet kept rashing while indexing thedata; until, the seventh day, the new release suddenly made things work! Wedeided to try our luk and see how far we ould get in a week; and we shouldadmit, it has been a razy week. It meant running the topis on TREC-6 �rst,to ompare the results with the runs performed before; as well as hanging theranking formula to integrate doument length normalization. In the weekend, weimplemented the use of o-ourrene statistis (whih has turned out to be notso useful as expeted). So, in one week we managed to index the data, performvarious experiments for alibration, run the best experiments on TREC-8, andsubmit �ve runs, just before the �nal deadline.5.1 EÆienyThe mahine on whih the experiments have been performed is a Sun Ultra 4with 1 Gb of main-memory, running SunOS 5.6. The mahine is not a dedi-ated server, but shared with some other researh groups as a `ompute server'.Monet e�etively laims one proessor ompletely while indexing the olletion,or proessing the �fty topis on eah of the sub-olletions. The division ofthe omplete olletion in �ve sub-olletions (as it omes on di�erent ompatdiss) is maintained. The topis are �rst run in eah sub-olletion, and theintermediate results are merged. Depending on the size of the sub-olletion,



10 The Mirror DBMS at TRECestimating the top 1000 ranking takes between 20 seonds and two minutes pertopi. How to further improve this exeution performane is disussed below.Preparation of the �ve sub-olletions takes about six hours in total. Computingthe table with doument-spei� term frequenies is performed using Monet'smodule for rosstables. But, using the grouping operation for all douments atone alloates all available memory, and eventually rashes the DBMS beauseit annot get more, if it is run on the omplete set of douments of any but thesmallest sub-olletion.4 Therefore, the indexing sripts run on fragments ofthe sub-olletions at a time, and frequently write intermediate results to disk,obviously slowing down the proess more than neessary.5.2 The road aheadThe exeution performane of the Mirror DBMS on TREC is learly better thana naive (nested-loop) implementation in any imperative programming language,but, the obtained eÆieny is not fast enough to beat the better stand-aloneIR systems that also partiipate in TREC. But, ompared to the tehniquesused in systems like InQuery (see [Bro95℄), the urrent mapping between thelogial and physial level is too straightforward: it does not use inverted �les,has not fragmented the terms using their doument frequeny, and it ranksall douments even if only the beliefs for the top 1000 are used. Also, Monetshould make it relatively easy to take advantage of parallelism in modern SMPworkstations.The merits of some possible improvements an only be evaluated experimentally.For example, it is not so lear beforehand whether inverted �les are really theway to go. Query proessing with inverted �les requires merging the invertedlists before beliefs an be omputed, whih is hard to perform without trashingthe memory ahes frequently; whih has been shown a signi�ant performanebottlenek on modern system arhitetures (see e.g. [BMK99℄ for experimentsdemonstrating this for Monet).Without experiments, muh improvement an be expeted from fragmentationof the doument representation BATs based on the doument frequeny, inombination with the `unsafe' tehniques for ranking reported in [Bro95℄. Somepreliminary experiments indiate a 100 times improvement with only a smallloss in preision. Suh (domain-spei�) optimization tehniques are easy tointegrate in the mapping from Moa strutures to MIL, thanks to the delarativenature of the algebrai approah. A similar argument applies to extending theMirror DBMS with the bu�er management tehniques disussed in [JFS98℄. InMIL, bu�er management is equivalent to direting Monet to load and unloadits tables. By integrating suh diretives in the generated MIL programs, it is4Notie that suh problems are not neessarily solved by using ommerial systems;Sarawagi et al. report similar memory problems with DB2 when using normal SQL queriesfor mining for assoiations hidden in large data sets [STA98℄.



Arjen P. de Vries and Djoerd Hiemstra 11expeted that these improvements an also be added without many omplia-tions.6 ConlusionsWithout any additional algorithms, LMM ranking produes reasonably goodresults. Unfortunately, due to the bug in our experiments, we annot yet giveonlusive answers about the di�erene between using loal or global statistis;but, we may onlude that the di�erene is rather small. Our urrent use ofo-ourrene statistis has not improved our results, but further researh isneessary in this area.Despite of the aws in the urrent implementation, we believe that the MirrorDBMS has proven to be a useful platform for IR experiments on the TRECdata. The true bene�ts of its design will only be exploited when the system isdeveloped further, and the indexing task is more hallenging. Next year, theMirror DBMS should be ready to partiipate in the large WEB trak.AknowledgementsMany thanks go to Peter Bonz and the other members of the CWI Monet team,for their great support. The work reported in this paper is funded in part bythe Duth Telematis Institute projet DRUID.Referenes[Bau97℄ C. Baumgarten. A probabilisti model of distributed information retrieval. InProeedings of the 20th ACM SIGIR Conferene on Researh and Developmentin Information Retrieval (SIGIR'97), pages 258{266, 1997.[BK95℄ P.A. Bonz and M.L. Kersten. Monet: An impressionist sketh of an advaneddatabase system. In BIWIT'95: Basque international workshop on informationtehnology, July 1995.[BMK99℄ P.A. Bonz, S. Manegold, and M.L. Kersten. Database arhiteture optimizedfor the new bottlenek: Memory aess. In Proeedings of 25th InternationalConferene on Very Large Databases (VLDB '99), Edinburgh, Sotland, UK,September 1999. To appear.[Bro95℄ E.W. Brown. Exeution performane issues in full-text information retrieval.PhD thesis, University of Massahusetts, Amherst, Otober 1995. Also appearsas tehnial report 95-81.[CLC95℄ J.P. Callan, Z. Lu, and W.B. Croft. Searhing distributed olletions withinferene networks. In Proeedings of the 18th ACM SIGIR Conferene onResearh and Development in Information Retrieval (SIGIR'95), pages 21{28,1995.
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