
The Mirror DBMS at TRECArjen P. de Vries and Djoerd Hiemstrafarjen,hiemstrag�
tit.utwente.nlCTIT, University of TwenteThe NetherlandsAbstra
tThe database group at University of Twente parti
ipates in TREC8using the Mirror DBMS, a prototype database system espe
ially designedfor multimedia and web retrieval. From a database perspe
tive, the pur-pose has been to 
he
k whether we 
an get suÆ
ient performan
e, and toprepare for the very large 
orpus tra
k in whi
h we plan to parti
ipatenext year. From an IR perspe
tive, the experiments have been designedto learn more about the e�e
t of the global statisti
s on the ranking.1 Introdu
tionThe Mirror DBMS [dV99℄ 
ombines 
ontent management and data managementin a single system. The main advantage of su
h integration is the fa
ility to
ombine IR with traditional data retrieval. Furthermore, IR resear
hers 
anexperiment more easily with new retrieval models, using and 
ombining varioussour
es of information. This is an important bene�t for advan
ed IR resear
h;web retrieval, spee
h retrieval, and 
ross-language retrieval, ea
h require the useof several representations of 
ontent, whi
h is hard to handle in the traditional�le-based approa
h, and be
omes too slow in traditional database systems.In the Mirror DBMS, the IR retrieval model is 
ompletely integrated in thedatabase ar
hite
ture, emphasizing eÆ
ient set-oriented query pro
essing. Thesupport for information retrieval in our system is presented in detail in [dV98℄and [dVW99℄. It supports other types of media as well, whi
h has been demon-strated in the image retrieval system prototype des
ribed in [dVvDBA99℄. Themain goal of our parti
ipation in TREC is to test if our system 
an handle largerdata sets without too many problems. Also, we wanted to �nd out the e�e
t ofglobal statisti
s on the ranking.This paper is organized as follows. Se
tions 2 and 3 review the design of theMirror DBMS and its support for IR, and dis
uss its use for TREC pro
essing.Se
tion 4 explains the experimental setup and interprets our results. Se
tion1



2 The Mirror DBMS at TREC
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Figure 1: The multi-model DBMS ar
hite
ture next to the extended relationaland E-ADT DBMS ar
hite
tures (from left to right).5 dis
usses our experien
e with using the Mirror DBMS for TREC, followed by
on
lusions.2 DesignA 
omplete overview and motivation of all aspe
ts of the design of the MirrorDBMS is presented in [dV99℄. Although following a traditional three-s
hemaar
hite
ture, it uses di�erent data models at di�erent levels: we therefore 
lassifyits design as multi-model DBMS ar
hite
ture. The 
ru
ial ar
hite
turaldi�eren
e from other extensible database systems is that query pro
essing atthe logi
al layer uses only operators that are provided by the physi
al layer (seealso Figure 1), and, domain-spe
i�
 query pro
essing (su
h as an IR extension)is de�ned at the logi
al level primarily. This 
hoi
e enfor
es a system-widephysi
al data model and algebra spanning all extensions. Of 
ourse, the physi
alalgebra 
an also be extended if ne
essary, i.e. when logi
al operations 
annot beexpressed eÆ
iently in the physi
al algebra. The stri
t separation between thelogi
al and physi
al levels allows using algebrai
 query optimization te
hniques,a key property of relational database management systems but hardly ever usedin non-business appli
ation areas like 
ontent management.The multi-model ar
hite
ture provides the query pro
essor with transparan
ythrough the layers. Put informally, query evaluation 
an `look down' fromthe original request through all layers of the ar
hite
ture. This should en-able set-oriented query evaluation for almost every request, and allow maximalexploitation of parallelization and pipelining. In 
ontrast, the bla
k-box ADTsof `obje
t-relational' database systems restri
t the DBMS in the possible ma-nipulations of the query plans. This makes it more 
ompli
ated to distributeand parallelize the query plans, or 
hange the bu�er strategy for iterative querypro
essing as proposed in [JFS98℄. Another alternative, the enhan
ed ADTsproposed by Seshadri [Ses98℄, provides little opportunity for optimizations that
ross the bounderies between di�erent extensions. Figure 1 
ompares these three



Arjen P. de Vries and Djoerd Hiemstra 3ar
hite
tures s
hemati
ally.3 ImplementationThe prototype implementation of the Mirror DBMS uses Moa at the logi
al level,and Monet at the physi
al level. Monet is a parallel main-memory databasesystem under development at the CWI in Amsterdam [BK95, BMK99℄, that istargeted as a ba
kend system for various (query-intensive) appli
ation domains,su
h as GIS and data mining.1 Moa is an obje
t algebra studied in the databasegroup at University of Twente, that is extensible with domain-spe
i�
 stru
-tures. The Moa tools transform expressions in this algebra into sequen
es ofoperations in MIL, an algebra for the binary relational data model supportedby Monet.For the support of IR, we extendedMoa with new stru
tures at the logi
al level tohandle do
ument representation, ranking, and the 
omputation of 
o-o

urren
estatisti
s. In 
ombination with Moa's kernel support for 
olle
tions and tuples,these stru
tures 
an model a wide variety of IR retrieval models: the 
urrentprototype supports the well-known Okapi ranking s
heme, InQuery's inferen
enetwork retrieval model, as well as the linguisti
ally motivated retrieval model(LMM, presented in Se
tion 4.3). To illustrate, the following Moa expressionranks a 
olle
tion of do
uments:map[sum(THIS)℄(map[getBL(THIS, query, stats)℄( do
s ));The �rst map operation 
omputes term probabilities for the query terms o

ur-ring in the do
ument, using the global statisti
s spe
i�ed in stru
ture stats.The subsequent map 
ombines these probabilities using a sum operation. Al-though this parti
ular expression may not seem very interesting, the IR rankingoperators 
an be 
ombined with other operators su
h as sele
t, resulting in apowerful query language.The representation of the logi
al IR stru
tures at the physi
al level is termedthe 
attened representation of the 
ontent. It 
onsists of three binary tables(BATs), storing the frequen
y tf (ti; dj) of term ti in do
ument dj , for ea
h termti o

urring in do
ument dj . Table 1 illustrates this for a 
olle
tion fd1; d2g withdo
uments d1 = [a; 
; 
; a; 
℄ and d2 = [a; e; b; b; e℄. Computing the probabilityof relevan
e of the obje
ts for query q = [a; b℄ pro
eeds as follows. First, atable with the query terms is joined with the do
ument terms in ti (the result1Monet is used su

esfully on a 
ommer
ial basis by Data Distilleries, a start-up spe
ializingin data mining appli
ations.



4 The Mirror DBMS at TRECdj ti tfij1 a 21 
 32 a 12 b 22 e 2 intermediate resultsqdj qti qtfij qntfij1 a 2 0.7965782 a 1 0.6214422 b 2 0.900426do
ument 
olle
tionTable 1: Representation of 
ontent in BATsis 
alled qti). Next, (using additional joins) the do
ument identi�ers and theterm frequen
ies are looked up (qdj and qtfij).2 Finally, the retrieval statusvalues are 
omputed with some variant of the popular tf � idf ranking formula.To support these 
omputations, Monet's physi
al algebra has to be extendedwith new operators, either in C or C++, or as a MIL pro
edure. The latter ispreferrable for easy experimentation; for example, the following MIL pro
edure
omputes the term probabilities given normalized term frequen
y and inversedo
ument frequen
y using the LMM model:PROC bel( nidfi, ntfij ) := {RETURN log( 1.0 + nidfi * ntfij * C );}An evaluation run pro
esses 50 topi
s in bat
h, but the 
lient interfa
es of theMirror DBMS have been designed for intera
tive sessions with an end-user. Also,transferring the data from Monet to the Moa 
lient has not been implementedoptimally. Furthermore, optimizations su
h as using materialized views are notperformed in the 
urrent Moa rewriter. These minor 
aws would have inferredan unfair performan
e penalty to the evaluation of the ar
hite
ture, and madelogging the results rather 
umbersome. Therefore, as a (temporary) solution,the MIL program generated by the Moa rewriter has been manually edited toloop over the 50 topi
s, log the 
omputed ranking for ea
h topi
, and use twoadditional tables, one with pre
omputed normalized inverse do
ument frequen-
ies (a materialized view), and one with the do
ument-spe
i�
 
onstants fornormalizing the term frequen
ies.2Note that these joins are exe
uted very eÆ
iently, be
ause the Moa stru
tures make surethat the BATs remain syn
hronized all the time.



Arjen P. de Vries and Djoerd Hiemstra 54 Experimental setup and resultsColle
tion fusion is the pro
ess of merging the results of retrieval runs onseperate, autonomous do
ument 
olle
tions into an e�e
tive 
ombined result[VGJL95℄. We have fo
used on this problem be
ause large 
olle
tions will befragmented (horizontally) in several partitions, ea
h managed by a separateserver. Maintaining the exa
t global statisti
s indu
es an extra overhead, thatmay not be ne
essary if the fragments are suÆ
iently large.Colle
tion fusion is a trivial task for exa
t mat
hing retrieval systems like sys-tems using Boolean retrieval, but more 
ompli
ated if a ranked retrieval sys-tem is used. In a number of publi
ations on 
olle
tion fusion it is argued thatsimply 
omparing similarity measures a

ross sub
olle
tions leads to unsatisfa
-tory results be
ause of di�eren
es in the 
olle
tion-dependent frequen
y 
ounts[Bau97, CLC95, VF95, VGJL95℄. One of the obje
tives of the TREC-8 eval-uation des
ribed in this paper is to question this hypothesis. We feel thatsimilarity measures a
ross sub
olle
tions might in fa
t be 
omparable, but showworse evaluation results be
ause of the evaluation setup.4.1 Evaluation using the TREC 
olle
tionRelevan
e assessments on the TREC test 
olle
tions are assembled by the pool-ing method: a pool of possibly relevant do
uments is 
reated by taking the asample of do
uments retrieved by ea
h parti
ipating system. This pool is thenshown to the human assessors [VH99a℄. The sampling method used in TRECtakes the top 100 of the retrieved do
uments of ea
h parti
ipating system.Sin
e the start of TREC in 1992, the test 
olle
tions have been used in numerousevaluations outside the oÆ
ial TREC. For these evaluations, all do
uments thatwere not in the top 100 of any of the oÆ
ial parti
ipating systems are assumedto be not relevant. But, evaluations that did not 
ontribute to the TREC poolprobably have unjudged do
uments in the top 100 making these evaluations lessreliable than the oÆ
ial TREC evaluation. This is espe
ially true for new, previ-ously unexplored approa
hes to retrieval. If a systems �nds relevant do
umentsthat no system was able to �nd before, then these do
uments will probably notbe judged in an old TREC 
olle
tion. The only way to 
he
k the relevan
e ofthese do
uments is by oÆ
ial TREC parti
ipation.4.2 Conditions for naive 
olle
tion fusionLet us de�ne 'naive' 
olle
tion fusion as the pro
ess of merging the sear
h resultson the sub
olle
tions based on the do
ument similarities. The �rst 
onditionfor naive 
olle
tion fusion is that ea
h sub
olle
tion uses the same retrievalmodel or weighting algorithm for retrieval. Se
ondly, we assume that ea
h



6 The Mirror DBMS at TRECsub
olle
tion uses the same indexing vo
abulary [Bau97℄. A third 
ondition isthat sub
olle
tions are suÆ
iently large to allow for the reliable lo
al estimationof do
ument frequen
ies. If the sub
olle
tions are too small, ine�e
tive retrievalon the sub
olle
tions will a�e
t the merged result.An evaluation of Callan et al. [CLC95℄ under these 
onditions for TREC topi
s51-150 showed that naive merging was signi�
antly worse than ranking based onglobally estimated do
ument frequen
ies, 
ausing losses from 10-20% in averagepre
ision. But, the results of naive merging reported by Callan et al. [CLC95℄were not part of an oÆ
ial TREC parti
ipation. It is likely that their mergedrun has a worse 
overage of judgements, be
ause the TREC-2 and 3 pools were(almost) only 
reated by systems that use a 
entral index for retrieval. Maybe,their merged run was as good as the 
entral index run after all. To 
he
k thishypothesis, we de
ided to put up a retrieval run using naive merging for judging.4.3 Some theoreti
al ba
k-up for naive mergingThe Mirror DBMS uses the linguisti
ally motivated probabilisti
 model of in-formation retrieval [Hie99, HK99℄. The model builds a simple statisti
al lan-guage model for ea
h do
ument in the 
olle
tion. The probability that a queryT1; T2; � � � ; Tn of length n is generated by the language model of the do
umentwith identi�er D is de�ned by the following equation:P (T1= t1;� � �; Tn= tnjD=d) = nYi=1(�1 df(ti)Pt df(t) + �2 tf (ti; d)Pt tf (t; d) ) (1)Equation 1 
an be rewritten to a ve
tor produ
t formula by �rst dividing itby Qni=1(�1df(ti)=Pt df(t)) [Hie99℄. This will not a�e
t the ranking within asub
olle
tion, but it will a�e
t the �nal ranking after merging the sear
h re-sults of the seperate sub
olle
tions, be
ause we divided by 
olle
tion spe
i�
do
ument frequen
ies. It 
an be shown that the ranking of the ve
tor produ
tformula in table 2 approximates the ranking de�ned by the 
onditional proba-bility P (DjT1; T2; � � � ; Tn) of a do
ument being relevant given a query.ve
tor produ
t formula: similarity(Q;D) = lXk=1wqk � wdkquery term weight: wqk = tf (tk; q)do
ument term weight: wdk = log(1 + tf (tk; d)df(tk)Pt tf (t; d) � �2Pt df(t)�1 )Table 2: tf � idf term weighting algorithmFrom Bayes' rule we know that dividing equation 1 by P (T1; T2; � � � ; Tn) andmultiplying it by P(D) results in P (DjT1; T2; � � � ; Tn). For a large 
olle
tion



Arjen P. de Vries and Djoerd Hiemstra 7and a query that has a small number of hits, tf (t; d) =0 for most terms t anddo
uments d. Therefore, Qni=1(�1df(ti)=Pt df(t)) approximates the marginalprobability P (T1; T2; � � � ; Tn) and the ranking de�ned by table 2 approximatesthe ranking de�ned by P (DjT1; T2; � � � ; Tn). The a-priori probability P (D= d)of a do
ument d being relevant 
an be in
luded by adding the logarithm ofequation 2 to the similarities of table 2 as a �nal step.P (D = d) = Pt tf (t; d)PtPd tf (t; d) (2)We hypothesise that, if the approximation is not too far o�, the result aftermerging is not signi�
antly worse than what would have been possible with a
entral index.4.4 OÆ
ial resultsTable 3 lists the oÆ
ial TREC runs. Global runs denote runs using the global
olle
tion statisti
s. Lo
al runs denote the naive 
olle
tion fusion runs, using lo-
al 
olle
tion statisti
s on the four TREC sub
olle
tions: Federal Register, For-eign Broad
ast Information Servi
es, Los Angelas Times and Finan
ial Times.run name des
ription avg. pre
.UT800 global run 0.260UT803 global run; LCA 0.176UT803b global run; LCA from F.Times and LA Times 0.260UT810 lo
al run (judged) 0.043UT813 lo
al run; LCA from lo
al 0.145Table 3: oÆ
ial resultsUnfortunately, our submitted oÆ
ial runs have been degraded by two bugs,that a�e
ted in parti
ular the naive merging run that was judged by NIST.By our own mistake, the global runs have used the wrong (lo
al) normalizing
onstant for the idf ;3 an error in Monet's join implementation resulted inrandom answers for three of the four lo
al runs. After �xing these bugs, theresults of the global run UT800 improved from 0.260 to 0.275 and the resultsof the lo
al run UT810 improved from 0.043 to 0.260. Table 4 lists the resultson the four sub
olle
tions. Ex
ept for the Federal Register, whi
h has hits foronly 19 topi
s anyway, the average pre
ision on the sub
olle
tions do not di�ermu
h at all. UnoÆ
ial runs, with these bugs �xed, are indi
ated in this paperby a `u' post�x (so `UT500u' is the �xed `UT500' run).The merged lo
al run is about 6% worse than the global run. This might bea signi�
ant di�eren
e a

ording to some signi�
an
e test, like e.g. the t-test[Hul93℄; but, if so, it is still not valid to draw the 
on
lusion that the global3Strange enough, this mistake improves average pre
ision slightly on the TREC6 topi
s.



8 The Mirror DBMS at TRECrun name Fed.Reg. FBIS LATimes F.Times mergedUT800u (global) 0.326 0.317 0.279 0.356 0.275UT810u (lo
al) 0.351 0.319 0.276 0.356 0.260topi
s w. hits 19 43 45 49 50Table 4: average pre
ision per sub
olle
tion after bug-�xapproa
h is indeed better than the naive merging approa
h. This 
on
lusionwould only be valid if both evaluations were done under identi
al, 
ontrolled,
onditions; whi
h they are not, be
ause both runs were not judged by NISTand we do not 
ontrol the other systems that 
ontributed to the pool. Almostall systems that 
ontributed to the TREC-8 pool were systems using the globalapproa
h. Therefore, the pool favours 
entral index approa
hes over distributedindex approa
hes if it is used to evaluate runs that did not 
ontribute to thepool. This 
an be shown by looking at the per
entage of do
uments that arejudged for di�erent 
ut-o� levels of the �xed UT800u and UT810u runs. Theper
entage of do
uments in a run that are judged, will be 
alled the judgedfra
tion.run name P at 10 P at 30 P at 100 P at R avg. PUT800u (global) 0.496 0.378 0.234 0.319 0.275UT810u (lo
al) 0.436 0.343 0.222 0.310 0.260run name J at 10 J at 30 J at 100 J at RUT800u (global) 1.000 1.000 0.996 0.987UT810u (lo
al) 0.984 0.978 0.952 0.947Table 5: merged results after bug-�x: a) pre
ision; b) judged fra
tionTable 5a and b show the pre
ision and the judged fra
tion of the global andthe lo
al run at di�erent 
ut-o� levels. There is a major di�eren
e between thejudged fra
tions of the global run and the lo
al run. The global run misses 0.4%of the do
uments in its top 100. The lo
al run misses 4.8% of the do
uments inthe top 100, some of them are even missing in the top 10.4.5 Lo
al 
ontext analysisBased on its su

ess on InQuery at previous TREC 
onferen
es, we expe
ted asigni�
ant improvement by using topi
s expanded with LCA [XC96℄. Also, in-vestigating the expansion terms, LCA seemed to do a good job. For example, ontopi
 311 (whi
h is about industrial espionage), it �nds terms like `spy', `intel-ligen
e', and `
ounterintelligen
e', and from the �nan
ial times sub-
olle
tion iteven identi�es `Opel', `Volkswagen', and `Lopez' as relevant terms. But, insteadof improving the e�e
tiveness of retrieval, the measured performan
e turned outto have degraded. Some tweaking of the parameters, redu
ing the weights ofexpansion terms and using fewer of them (N=30), the performan
e improved



Arjen P. de Vries and Djoerd Hiemstra 9upon the baseline, but only slightly; on the runs submitted for TREC-8, it hasdegraded performan
e.A possible explanation for these disappointing results is that the algorithm hasbeen applied to do
uments instead of passages (as done in [XC96℄), and theTREC 
olle
tion itself was used to �nd expansion terms instead of another,larger 
olle
tion. One result was that the varying length of do
uments hada large impa
t on the expansion terms 
hosen, whi
h is undesirable. Anotherexplanation is that LMM weighting provides su
h a high baseline, that it is veryhard to improve upon. A 
omparison between the (impressive) baseline resultsof LMM on TREC-6 favours the latter explanation: be
ause the performan
eof the Mirror DBMS with LMM weighting s
heme, without LCA, was almost asgood as InQuery's performan
e after using LCA. With the tweaked LCA, LMMweighting performed better on all reported pre
ision and re
all points, ex
eptfor the pre
ision at twenty retrieved do
uments, at whi
h InQuery performedslightly better. On the TREC-8 topi
s it did not 
ontribute positively to theresults.5 Dis
ussionAlthough more of ane
dotal than s
ienti�
 value, the story of our parti
ipationin TREC-8 with the Mirror DBMS illustrates the suitability of this ar
hite
turefor experimental IR. Eight days before the deadline, it still seemed impossible toparti
ipate with this year's TREC, as Monet kept 
rashing while indexing thedata; until, the seventh day, the new release suddenly made things work! Wede
ided to try our lu
k and see how far we 
ould get in a week; and we shouldadmit, it has been a 
razy week. It meant running the topi
s on TREC-6 �rst,to 
ompare the results with the runs performed before; as well as 
hanging theranking formula to integrate do
ument length normalization. In the weekend, weimplemented the use of 
o-o

urren
e statisti
s (whi
h has turned out to be notso useful as expe
ted). So, in one week we managed to index the data, performvarious experiments for 
alibration, run the best experiments on TREC-8, andsubmit �ve runs, just before the �nal deadline.5.1 EÆ
ien
yThe ma
hine on whi
h the experiments have been performed is a Sun Ultra 4with 1 Gb of main-memory, running SunOS 5.6. The ma
hine is not a dedi-
ated server, but shared with some other resear
h groups as a `
ompute server'.Monet e�e
tively 
laims one pro
essor 
ompletely while indexing the 
olle
tion,or pro
essing the �fty topi
s on ea
h of the sub-
olle
tions. The division ofthe 
omplete 
olle
tion in �ve sub-
olle
tions (as it 
omes on di�erent 
ompa
tdis
s) is maintained. The topi
s are �rst run in ea
h sub-
olle
tion, and theintermediate results are merged. Depending on the size of the sub-
olle
tion,



10 The Mirror DBMS at TRECestimating the top 1000 ranking takes between 20 se
onds and two minutes pertopi
. How to further improve this exe
ution performan
e is dis
ussed below.Preparation of the �ve sub-
olle
tions takes about six hours in total. Computingthe table with do
ument-spe
i�
 term frequen
ies is performed using Monet'smodule for 
rosstables. But, using the grouping operation for all do
uments aton
e allo
ates all available memory, and eventually 
rashes the DBMS be
auseit 
annot get more, if it is run on the 
omplete set of do
uments of any but thesmallest sub-
olle
tion.4 Therefore, the indexing s
ripts run on fragments ofthe sub-
olle
tions at a time, and frequently write intermediate results to disk,obviously slowing down the pro
ess more than ne
essary.5.2 The road aheadThe exe
ution performan
e of the Mirror DBMS on TREC is 
learly better thana naive (nested-loop) implementation in any imperative programming language,but, the obtained eÆ
ien
y is not fast enough to beat the better stand-aloneIR systems that also parti
ipate in TREC. But, 
ompared to the te
hniquesused in systems like InQuery (see [Bro95℄), the 
urrent mapping between thelogi
al and physi
al level is too straightforward: it does not use inverted �les,has not fragmented the terms using their do
ument frequen
y, and it ranksall do
uments even if only the beliefs for the top 1000 are used. Also, Monetshould make it relatively easy to take advantage of parallelism in modern SMPworkstations.The merits of some possible improvements 
an only be evaluated experimentally.For example, it is not so 
lear beforehand whether inverted �les are really theway to go. Query pro
essing with inverted �les requires merging the invertedlists before beliefs 
an be 
omputed, whi
h is hard to perform without trashingthe memory 
a
hes frequently; whi
h has been shown a signi�
ant performan
ebottlene
k on modern system ar
hite
tures (see e.g. [BMK99℄ for experimentsdemonstrating this for Monet).Without experiments, mu
h improvement 
an be expe
ted from fragmentationof the do
ument representation BATs based on the do
ument frequen
y, in
ombination with the `unsafe' te
hniques for ranking reported in [Bro95℄. Somepreliminary experiments indi
ate a 100 times improvement with only a smallloss in pre
ision. Su
h (domain-spe
i�
) optimization te
hniques are easy tointegrate in the mapping from Moa stru
tures to MIL, thanks to the de
larativenature of the algebrai
 approa
h. A similar argument applies to extending theMirror DBMS with the bu�er management te
hniques dis
ussed in [JFS98℄. InMIL, bu�er management is equivalent to dire
ting Monet to load and unloadits tables. By integrating su
h dire
tives in the generated MIL programs, it is4Noti
e that su
h problems are not ne
essarily solved by using 
ommer
ial systems;Sarawagi et al. report similar memory problems with DB2 when using normal SQL queriesfor mining for asso
iations hidden in large data sets [STA98℄.



Arjen P. de Vries and Djoerd Hiemstra 11expe
ted that these improvements 
an also be added without many 
ompli
a-tions.6 Con
lusionsWithout any additional algorithms, LMM ranking produ
es reasonably goodresults. Unfortunately, due to the bug in our experiments, we 
annot yet give
on
lusive answers about the di�eren
e between using lo
al or global statisti
s;but, we may 
on
lude that the di�eren
e is rather small. Our 
urrent use of
o-o

urren
e statisti
s has not improved our results, but further resear
h isne
essary in this area.Despite of the 
aws in the 
urrent implementation, we believe that the MirrorDBMS has proven to be a useful platform for IR experiments on the TRECdata. The true bene�ts of its design will only be exploited when the system isdeveloped further, and the indexing task is more 
hallenging. Next year, theMirror DBMS should be ready to parti
ipate in the large WEB tra
k.A
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