
An XML-IR-DB Sandwich:
Is it Better With an Algebra in Between?

Vojkan Mihajlović Djoerd Hiemstra Henk Ernst Blok Peter M. G. Apers
CTIT, University of Twente

P.O. Box 217, 7500AE Enschede, The Netherlands
{v.mihajlovic, d.hiemstra, h.e.blok, p.m.g.apers}@utwente.nl

ABSTRACT
In this paper we address the problem of immediate trans-
lation of XPath+IR queries to relational database expres-
sions and exert the benefits of using an intermediate alge-
bra. Adding an intermediate algebra on the logical level of
a database enables a level of abstraction from both query
languages for IR in XML documents and the underlying re-
lational storage. This paper proposes a region algebra that
can be extended to support ranking operators in an elegant
way while staying algebraic. Furthermore, region algebra
operator properties provide a firm ground for query rewrit-
ing and optimization.

1. INTRODUCTION
Despite the numerous existing systems dealing with XML
querying, the problem of expressing as well as executing In-
formation Retrieval-like (IR-like) queries over XML databases
is still an open issue [1]. An IR-like query (an example is
given in Figure 2 in Section 2) does not specify hard con-
ditions on XML elements, but queries the collection for el-
ements ‘about’ a certain topic. For instance, an XML ele-
ment that is relevant to a query for elements about “rela-
tional databases” might not contain the phrase “relational
databases”, or even both words “relational” and “databases”.
IR-like queries should result in a ranked list of XML ele-
ments, in decreasing order of some score value that the sys-
tem assigns to each element. The score value has to reflect
the probability (or degree) of relevance of the element to the
IR-like query.

A promising approach to executing XPath and XQuery is
the use of relational database technology [9, 17], which is
easily extended to IR-like querying of XML [6, 12]. What
would be the most effective way to support IR-like querying
in XPath and XQuery using relational database technology?
The semantics of XPath and XQuery give rules for naviga-
tion through XML structure, but not the rules that specify
how score values for XML elements should propagate and
relate to each other. Similarly, the semantics of relational al-

WIRD’04, the first Workshop on the Integration of Information Retrieval
and Databases (WIRD’04), Sheffield, United Kingdom
c© 2004 the author/owner

gebra introduce rules for manipulating relational tables that
describe XML data, but again the rules for score computa-
tion and propagation cannot be derived from the relations
present in the relational database.

We follow a three level database approach for developing
an XML-IR system, consisting of conceptual, logical, and
physical level. The benefits of the usage of a three level
database management system is that we are able to provide
data independence between the relational representation on
the physical level, the proposed algebra on logical level, and
the query language used on the conceptual level, and provide
a certain level of abstraction from the information retrieval
model used for ranked retrieval.

The introduction of an intermediate level allows for the us-
age of algebraic properties for query rewriting and optimiza-
tion. The optimization should be achieved not only for the
regular XPath/XQuery queries but for the IR-like queries
as well. In this paper we study the usefulness of algebraic
properties for query optimization and for developing and un-
derstanding IR-like extensions. The algebra we propose is
based on so-called region algebras [2, 4, 11, 13]. Region alge-
bras are sufficiently simple to study algebraic properties in
depth, and they are sufficiently powerful to express IR-like
queries as those proposed in the NEXI query language used
for the evaluation of XML retrieval in INEX [16]. NEXI
stands for “narrowed extended XPath”. It only uses the de-
scendant axis step from XPath, and it extends XPath with a
special about-function that provides IR-like search. The re-
gion algebra can be easily extended to support other XPath
axis steps with additional parent information [14]. The basic
idea behind the algebra is to support as much as possible for
the full text search requirements [3] and it is driven by the
wish to integrate XML databases and information retrieval
as discussed in [1].

Unlike many approaches for ranked retrieval in XML, the
algebra we define assumes that the ranking is a part of the
algebra and not a side effect of performing some operations
on regions (like in [13]) or a separate IR module (like in many
IR approaches for XML retrieval). Therefore, we follow the
approach taken by Fuhr et al. [7, 8], although we base our
algebra on containment model rather than path model, and
do not make any restrictions on the definition of retrieval
model. By defining the algebra in such a way we have the
opportunity to utilize the optimization methods not just for
basic region algebra operators, but for the ranking region

<article lang=’’en’’ date=’’10/02/04’’>
<title>Region algebra</title>
<bdy>

<sec>
<p>Structured documents ...</p>
<p>Text search ...</p>

</sec>
...

</bdy>
...

</article>

Figure 1: Example XML document.

algebra operators as well. This allows for the introduction
of more powerful optimization techniques concerned with
speeding-up the execution of operations that compute score
values for ranked retrieval.

The paper is organized as follows. In Section 2 we explain
how relational technology is used to process NEXI queries.
We give the translation of NEXI queries into relational al-
gebra and discuss why we need an intermediate level. Sec-
tion 3 introduces our region algebra and discuss region al-
gebra operator properties. In Section 4, we illustrate how
operators for ranked retrieval follow the properties of ba-
sic region algebra operators and discuss the opportunities
for query optimization in our region algebra, extended for
ranked retrieval. We conclude the paper with a discussion
and our plans for future research.

2. XML AND RELATIONAL DATABASES
In this section we explain the formation of the XML data set
and discuss some issues on the indexing of XML documents.
The relational storage of such documents is also discussed,
along with the relational algebra expressions for two NEXI
query examples.

2.1 Representing XML in Relational Databases
Most of the database approaches to XML choose to in-
dex XML documents before storing them into relational ta-
bles. The rationale for this is the structural organization of
XML documents and the benefits that can be achieved when
querying such indexed relational representation of XML doc-
uments. For an illustration we refer to [10] where the authors
used the pre-post and stretched pre-post indexing scheme for
the relational storage of XML documents. In our approach
we used a variant of the stretched pre-post indexing1 scheme
that also indexes each word in XML text nodes. Note that
the indexing also produces the initial data set for the data
model that we define in Section 3.

The data set creation, i.e., the formation of the initial data
set from (plain text) XML documents can be explained through
the usage of a two step indexing process2. The indexing pro-
cess is explained using an example XML document given in
Figure 1. In the first step each token in the XML document
(denoted with D) is indexed regarding its relative position
with respect to its beginning and its type: I1 : D → X. As

1Note that the term indexing differs from the concept of indexing
as defined in the traditional database systems. It denotes the
method used for creation of the initial data set.
2Although XML documents are actually graphs we will simplify
the XML structure and treat these entities as if they were orga-
nized as a hierarchical (tree-like) structure.

a result we obtain a set of elements: x ∈ X, uniquely identi-
fied by their position in the XML document. Each element
has the form of x = {position, token, token type} as shown
in Table 1.

Table 1: Intermediate index structure (X) obtained af-

ter initial indexing (I1) of XML document depicted in

Figure 1.
position token token type

0 <article> start tag
1 lang attribute name
2 ‘‘en’’ attribute value
3 date attribute name
4 ‘‘10/02/04’’ attribute value
5 <title> start tag
6 region term
7 algebra term
8 </title> end tag
9 <bdy> start tag
10 <sec> start tag
11 <p> start tag
12 structured term
13 documents term
...
54 </p> end tag
...

576 </sec> end tag
...

9876 </bdy> end tag
...

10034 </article> end tag

The second step produces regions that we can consider as the
initial data set. These regions are produced by pairing cor-
responding tokens that represent opening and closing tags,
attribute names and values, etc., and by removing mark-up
delimiters from the tokens: I2 : X → R. This will result in a
data set like the one presented in Table 2. Thus, the initial
data set construction can be defined as a composition of two
indexing procedures: I = I1 ◦ I2. Although the indexing is
a two step process it can be implemented as a single walk
through an XML document using the SAX parser and stack
structures (see [10]).

Table 2: Data model for XML document presented in

Figure 1 obtained after the composition of initial index-

ing (I1) and final indexing (I2).
start end name type

0 10034 article node
1 2 lang attr name
2 2 en attr value
3 4 date attr name
4 4 10/02/04 attr value
5 8 title node
6 8 - text
6 6 region term
7 7 algebra term
9 9876 bdy node
10 576 sec node
11 54 p node
12 53 - text
12 12 structured term
13 13 documents term
...

An indexed XML document, however, is not stored in one
relational table since this table will be huge and in most

cases (on most platforms) hard to process. In many rela-
tional approaches to XML different fragmentations of this
basic table are used. The fragmentation can be horizontal,
based only on type of XML nodes (like in [10] and [12]), ver-
tical based on a name and/or type of XML elements, e.g.,
[6], or based on paths to XML nodes in an XML tree struc-
ture (like in [15]). For illustrative purpose we use horizontal
fragmentation of XML data as presented in [12]. Conse-
quently, different relational tables are defined for the XML
element nodes and attribute nodes and the word table is de-
fined for the words in the XML text nodes. This is depicted
in Table 3. In further discussion we will not consider the
attribute table since it is not of the interest for the issues
that we are discussing in this paper.

Table 3: Relational data model for storing XML docu-

ment presented in Figure 1.
Node table N

start end name type

0 10034 article node
5 8 title node
6 8 - text
9 9876 bdy node
10 576 sec node
11 54 p node
12 53 - text
...

Word table W
start name

6 region

7 algebra

12 structured

13 documents

... ...

Attribute table A
start owner name type

1 0 lang name
2 0 en value
3 0 date name
4 0 10/02/04 value
...

2.2 From XML Queries to Relational Algebra
The two example queries given in Figure 2 will be used as
our leading examples in the following sections. As query
language we use NEXI query language which has officially
been adopted for INEX 20043. Its detailed description can
be found in [16]. For now we consider that the about condi-
tion inside queries is strict (corresponds to a Boolean search,
i.e., about behaves the same as XPath contains expression).
Later on in this paper we elaborate more on the use of the
about clause for ranking.

For the chosen storage model, composed of N and W (and
A), we can directly transform any NEXI expression into
relational algebra expression. For NEXI example query 1
depicted in Figure 2 a possible relational algebra expressions
could be specified as given in Figure 3. We disregard the
type attribute in expressions for brevity.

Note that there is a frequent usage of a group of expressions
consisting of join and projection operations that simulate the
XPath descendant/ancestor step. This group of expressions
actually represents the bottleneck for XPath query process-
ing, since its naive execution is extremely slow. A number
of techniques have been proposed to speed up the execu-
tion of XPath descendant and ancestor steps, such as multi-
predicate merge join [17], staircase join [10], containment
join [12], etc. Using such abstract join operators, denoted

3http://inex.is.informatik.uni-duisburg.de:2004/.

with 1= (for expression types R7, R8 and R10 in Figure 3)
and 1< (for expression type R6 in Figure 3), the query plan
for NEXI query example 2 can be expressed as shown in
Figure 4.

Figure 3: Relational query plan for example query 1

given in Figure 2.

R1 = σname=“article“(N)

R2 = σname=“bdy“(N)

R3 = σname=“sec“(N)

R4 = σname=“structured“(W)

R5 = σname=“documents“(W)

R6 = πstart2,end2,name2(R2 1start2>start1,end2<end1 R1)

R7 = πstart3,end3,name3(R3 1start3<start4,end3>end4 R4)

R8 = πstart3,end3,name3(R3 1start3<start5,end3>end5 R5)

R9 = R7 ∩R8

R10 = πstart6,end6,name6(R6 1start6<start9,end6>end9 R9)

Figure 4: Relational query plan for example query 2

given in Figure 2.

R1 = σname=“article“(N)

R2 = σname=“bdy“(N)

R3 = σname=“sec“(N)

R4 = σname=“p“(N)

R5 = σname=“region“(W)

R6 = σname=“algebra“(W)

R7 = σname=“XML“(W)

R8 = σname=“information“(W)

R9 = σname=“retrieval“(W)

R10 = R2 1< R1

R11 = ((R10 1= R5) ∩ (R10 1= R6)) 1= (R3 1= R7)

R12 = R4 1< R11

R13 = (R12 1= R8) ∩ (R12 1= R9)

2.3 Do We Need an Algebra in Between?
There might be a number of reasons to define an algebra.
First of all, as we saw in the previous section, to be able to
express XPath+IR (NEXI) queries in relational databases
we need new operators for efficient execution of XPath+IR
subexpressions, such as descendant and ancestor steps, con-
tainment conditions, etc. The exact technique how we im-
plement the subexpression is defined on the physical level,
and it does not have to be unique, i.e., we can have multi-
ple variants of relational expression for the same XPath+IR
subexpressions. The execution times for distinct implemen-
tations differ regarding the relational storage of the XML
data, parameters of the relational tables, and index struc-
ture used for the acceleration of relational expression execu-
tion in relational databases.

Another important issue concerning immediate translation
of XPath+IR expressions into relational algebra is that the
algebraic expressions are highly dependent on the relational
model chosen for the storage of XML data. If we change
the relational storage model, the relational algebra expres-
sions for each query have to be rewritten according to the

Figure 2: NEXI queries.

Example NEXI query 1:

//article//bdy[about(.//sec, structured) and about(.//sec, documents)]

Example NEXI query 2:

//article//bdy[about(., region) and about(., algebra)][about(.//sec, XML)]//p[about(., information) and

about(., retrieval)]

relational model. This is especially the case for XML, since
usually huge relational tables, which have more than a mil-
lion entries, are typically broken into a number of smaller
ones using one of the fragmentation methods mentioned in
section 2.1. Having a logical level with the algebra defined
in it would provide the right level of abstraction considering
different XPath+IR queries formed on the conceptual level,
and the relational storage structure chosen on the physical
level. In such a way we provide the needed data indepen-
dence on logical level. Furthermore, the reasoning that can
be done on the logical level can be useful for query rewrit-
ing and optimization. Using knowledge about the size of the
operands and the cost for the execution of different operators
on the physical level we are able to generate different logi-
cal query plans achieving faster execution times and lower
usage of main memory when executing on physical level.

A final but important reason for defining an algebra is to en-
able the expression of IR-like queries (about in NEXI), i.e.,
score computation and ranking of XML elements. There-
fore, the algebra should provide a specific level of IR un-
derstanding that is based on the retrieval model used for
score computation. The operators used for score computa-
tion should adhere to certain operator properties which can
be used for query optimization based on the definition of
score operators.

The exact way of how we use region algebra operator prop-
erties on the logical level, and how we extend the region
algebra to support ranked retrieval is explained in the next
two sections.

3. REGION ALGEBRA
For defining the intermediate logical level we have chosen
the region algebra approach, because it is already well es-
tablished in the area of structured document retrieval [2, 4,
11, 13], and because of the useful properties of region algebra
operators as we discuss in the remainder of the paper.

With the specification of the region algebra data model we
provide a uniform platform for defining region algebra oper-
ators. We discuss the basic XML region algebra data model
which can be defined using four region attributes, based on
the indexed data set described in the previous section (for
more details see [12]).

Definition 1. The basic region algebra data model is de-
fined on the domain R which represents a set of region tu-
ples. A region tuple r (r ∈ R), r = (s, e, n, t), is defined by
these four attributes: region start attribute - s, region end
attribute - e, region name attribute - n, and region type at-
tribute - t. The region start and end attributes must satisfy
ordering constraints (ei ≥ si).

The semantics of region start and region end attributes are
the same as in other region algebra approaches: they denote

Table 4: Basic score region algebra operators.
Operator Operator definition

σn=name(R) {r|r ∈ R ∧ n = name}
R1 = R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ s1 < s2 ∧ e1 > e2}
R1 < R2 {r1|r1 ∈ R1 ∧ ∃r2 ∈ R2 ∧ s1 > s2 ∧ e1 < e2}
R1 uR2 {r|r ∈ R1 ∧ r ∈ R2}
R1 tR2 {r|r ∈ R1 ∨ r ∈ R2}

the bounds of a region. The region name attributes are
used to denote node names, content words, attribute names,
attribute values, etc. To be able to distinguish different node
types in XML the type information is needed.

Next, we define the basic region algebra operators. The
definition of region algebra operators is based on the op-
erators specified in the previous region algebra approaches,
extended to support a specific XML structure. Table 4 de-
fines the following five basic region algebra operators: se-
lection (σ), containing (=), contained by (<), region set
intersection (u), and region set union (t). We use Ri (i =
1, 2, ...) to denote the region sets, their corresponding non-
capitals to denote regions in these region sets (ri), and cor-
responding indexed non-capitals to denote region attributes
(si, ei, ni, ti)

4.

As can be noticed in Table 4, instead of an interval operator
used in [2, 4, 11, 13] (usually denoted with I (token) in re-
gion algebra approaches) which is actually not a real region
algebra operator but rather specifies the indexing function
applied to a specified token that returns the region set of the
occurrences of token in a document, we introduced a selec-
tion operator (σ). The selection operator is a unary region
algebra operator that operates on a region set and produces
a region set as a result. It is defined to enable the selec-
tion of regions formed during the initial data set creation
(explained in section 2.1), based on name (and type) region
attributes.

Following the query examples given in Figure 2, we give the
same query execution plans defined using the region algebra
operators instead of the relational ones. The region algebra
query plans for query examples 1 and 2 are given in Figure 5
and Figure 6. We use C to denote the initial data set of
regions. We can note a great resemblance between the pre-
vious relational query plans and region algebra query plans.
This exerts the simplicity of transforming region algebra ex-
pressions into relational expression. However, the change in
the relational storage will result in the change of query plan
on the physical level, while the query plan on the logical
level will remain the same.

We can state here that in order to model XML properly, we

4In Table 4 we do not use the type information as it is not of
great importance for this paper. Thus, the exact definition of
selection operator should be σn=name,t=type(R) = {r|r ∈ R∧n =
name ∧ t = type}, if type attribute would be used.

Figure 5: Region algebra query plan for example query

1 given in Figure 2.

article = σn=“article“(C)

bdy = σn=“bdy“(C)

sec = σn=“sec“(C)

structured = σn=“structured“(C)

documents = σn=“documents“(C)

R1 = (sec = structured) u (sec = documents)

R2 = (bdy < article) = R1

Figure 6: Region algebra query plan for example query

2 given in Figure 2.

article = σn=“article“(C)

bdy = σn=“bdy“(C)

sec = σn=“sec“(C)

p = σn=“p“(C)

region = σn=“region“(C)

algebra = σn=“algebra“(C)

xml = σn=“XML“(C)

information = σn=“information“(C)

retrieval = σn=“retrieval“(C)

R1 = bdy < article

R2 = ((R1 = region) u (R1 = algebra)) = (sec = xml)

R3 = (p < R2)

R4 = (R3 = information) u (R3 = retrieval)

could enrich the definition of a region with the additional
information of XML references, parent or level information,
etc. For details on some extensions on region algebra ap-
proaches we refer to papers [12] and [14].

3.1 Region Algebra Operator Properties
In this section we discuss properties of algebraic operators
and their use for query rewriting and optimization. Some
of the properties are illustrated using the examples given in
Figure 5 and Figure 6. Many properties are mentioned in pa-
pers about region algebra by Clarke et al. [4], and Jaakkola
and Kilpelainen [11], but none of the papers discuss their
usage. Our study on region algebra shows that there are
only few operators that have the basic operator properties
such as: identity, inverse, commutativity, associativity, and
distributivity. However, there is a number of region algebra
specific properties which can be considered as a special case
of distributivity and associativity properties.

In general, we can distinguish two classes of binary region
algebra operators. The first class consists of containment
operators: =, <, while the second class consists of the stan-
dard set operators: u and t. Only set operators have the
identity element, which is the initial data set C for oper-
ator u (property (1)), and the empty set ∅ for operator t
(property (2)). There is no inverse element for any of the op-
erators. The set operators are commutative (properties (3)
and (4)) and associative (properties (5) and (6)). Consid-
ering the distributivity property, only some combinations of
operators follow it. The operators = and < distribute over
the operator t (properties (7) and (8)), while the operator
u distributes over the operator t and vice versa (properties
(9) and (10)).

Identity
R u C = C uR = R (1)

R t ∅ = ∅ tR = R (2)

Commutativity
R1 uR2 = R2 uR1 (3)

R1 tR2 = R2 tR1 (4)

Associativity

(R1 uR2) uR3 = R1 u (R2 uR3) (5)

(R1 tR2) tR3 = R1 t (R2 tR3) (6)

Distributivity

R1 = (R2 tR3) = (R1 = R2) t (R1 = R3) (7)

R1 < (R2 tR3) = (R1 < R2) t (R1 < R3) (8)

R1 u (R2 tR3) = (R1 uR2) t (R1 uR3) (9)

R1 t (R2 uR3) = (R1 tR2) u (R1 tR3) (10)

Special cases of associativity and distributivity
There are several interesting properties of the region alge-
bra operators which can be useful for query rewriting and
optimization on the logical level of a database. Here we
mention the special case of containment operator associa-
tivity (property (11)), containment operator normalization
(property (12)), and special case of set operator distributiv-
ity (property (13)). The first two properties are mentioned
in papers [4] and [11]. We know of no publication on region
algebras that mentions the third property.

For operators op1 ∈ {=, <} and op2 ∈ {=, <} properties
(11) and (12) hold.

(R1 op1 R2) op2 R3 = (R1 op2 R3) op1 R2 (11)

(R1 op1 R2) op2 R3 = (R1 op1 R2) u (R1 op2 R3) (12)

For operators op1 ∈ {u,t} and op2 ∈ {=, <} property (13)
is true.

(R1 op1 R2) op2 R3 = (R1 op2 R3) op1 (R2 op2 R3) (13)

To illustrate properties (11) and (12) we use the region al-
gebra expression specified for the example query 1, given in
Figure 5:

(bdy < article) = ((sec = structured)u (sec = documents))

The expression may be read as follows: “Retrieve bdy-elements
contained-by article-elements containing the intersection of
sec-elements containing the term ’structured’ and sec-elements
containing the term ’documents’.” Using the property (11)
we can rewrite this expression into:

(bdy = ((sec = structured)u (sec = documents))) < article

Furthermore, using the property (12) this expression can be
rewritten into:

(bdy = ((sec = structured) = documents)) < article

or using again the property (11) to:

(bdy = ((sec = documents) = structured)) < article

Using properties (11) and (12) we are able to choose the
most appropriate query plan assuming that we have the in-
formation on which subexpressions are more selective. This
reasoning can be applied for choosing which subexpressions
will be more selective for sec = documents or sec =

structured, or similarly for bdy = ((sec = documents) =

structured) or bdy < article expressions. For example,
since usually all regions from the bdy region set are con-
tained in the article region set, bdy < article expression
should be pushed up in the query plan as it is not a selec-
tive expression. Also the formulations of the query with the
u operator can be useful for parallel execution of two con-
tainment subqueries, if there exist an opportunity for such
execution.

Property (13) is explained on a part of the example query
2, denoted with R2 in Figure 6. Using the expression R1 =
bdy < article the part of the query example 2 can be ex-
pressed in region algebra as follows:

((R1 = region) u (R1 = algebra)) = (sec = xml)

Using property (13) for operators u and =, this expression
can be rewritten into:

((R1 = region) = (sec = xml))u((R1 = algebra) = (sec = xml))

We would obtain a similar region algebra expression for the
or expression of the example NEXI query 1 in Figure 2 in-
stead of the and expression, where operator u will be re-
placed with the operator t. This will provide the opportu-
nity for e.g., parallelization.

Furthermore, using the property (11) the next expression
could be obtained from the previous one:

((R1 = (sec = xml)) = region)u((R1 = (sec = xml)) = algebra)

and after the usage of property (12) the final expression is:

((R1 = (sec = xml)) = region) = algebra

Therefore, instead of six operands and five operators we have
a reduction to five operands and four operators, where the
selection of regions R1 that contain sections that contain
term XML is pushed down to the first subexpression (as-
suming it is highly selective).

A similar expression can be obtained for the or combination
in the about, where the distributivity property (8) could be
applied as the last step:

((R1 = (sec = xml)) = (region t algebra)

4. UNDERSTANDING IR
In this section some issues about the impact of introducing
relevance ranking (i.e., score computation) in region algebra
are discussed.

4.1 Relevance Ranking in Region Algebra
Relevance ranking cannot be explicitely expressed in the na-
tive relational algebra. To store the score information addi-
tional attribute for each entry in relational tables must be
introduced. It stores the ranking score values for particu-
lar XML regions during the query execution. Furthermore,
a number of operators have to be defined in the relational
algebra which combination should express the score compu-
tation, i.e. instead of a join operator in Figure 4 we would
use a combination of relational score operators. However,
the introduction of score operators in the region algebra is
easier and more elegant than in the relational algebra since
the score computation is done on the right level of abstrac-
tion (logical level) and without considering the issues of how

these operators are implemented on the physical level, i.e.,
in the relational algebra.

We use the same example query expressions given in Fig-
ure 2, except that we treat the about clause as a vague
constraint instead of the strict interpretation in previous
sections. Thus, paths and terms in the about clause do not
have to be strictly matched, and the vague match is defined
by the retrieval model. To be able to express IR-like search
in XML databases the region algebra can be extended to
support ranked retrieval. For that purpose the basic region
algebra data model is extended with an additional attribute
called score (denoted with p to resemble the probabilistic
value).

To enable the score computation and the region ranking
based on computed scores new region algebra operators are
introduced. For each binary region algebra operator defined
in Table 4 the probabilistic counterpart is defined. To dis-
tinguish between basic region algebra operators and score
region algebra operators we use the index p for score oper-
ators. The score operators are depicted in Table 5. Note
that the operators =p and <p produce all regions from the
first operand (R1) as a result, except that the score value
(p3) is changed according to the operator definition. The
definitions of other two operators (up and tp) are similar to
the definitions of basic ones except that they include score
manipulation.

In the definition of score operators we introduced two com-
plex scoring functions: f= and f<, as well as two abstract
operators: ⊗ and ⊕, which define the retrieval model. By
using such definition of operators we leave their exact im-
plementation for the physical level (for more details on this
issue see [12]). However, for the operator ⊕ we assume that
there exist a default value for score (denoted with d), and
in case when the region r1 is not present in the region set
R2 the score is computed as p3 = p1 ⊕ d and in case when
the region r2 is not present in the region set R1 the score is
computed as p3 = d⊕ p2.

The functions f=(r, R) and f<(r, R), applied to a region
r1 and region set R2, result in the numeric value that takes
into account the score values of region r2 ∈ R2 and the prob-
abilistic value that reflects the structural relation between
the region r1 and the region set R2. For containing operator
usually many regions from the region set R2 are contained
in the region r1 (e.g., sections inside the article element).
Although for contained by operator there is a small chance
that the region r1 is contained by a set of regions present in
R2, it can happen that e.g., there are nested XML elements
with the same name (e.g., section inside other sections), and
therefore, one region can be contained in multiple regions
with the same name.

Following the previous discussion we can define complex
functions as follows:

f=(r, R) = p ∗
∑

r̄∈R<R′
(g=(r̄, r) ∗ p̄)

f<(r, R) = p ∗
∑

r̄∈R′=R

(g<(r̄, r) ∗ p̄)

We assume that R′ is the region set containing a single
region r, and g=(r̄, r) and g<(r̄, r) are abstract functions

Table 5: Region algebra operators for score manipulation.
Operator Operator definition

R1 =p R2 {r|r1 ∈ R1 ∧ (s, e, n) := (s1, e1, n1) ∧ p := p1 ∗ f=(r1, R2)}
R1 <p R2 {r|r1 ∈ R1 ∧ (s, e, n) := (s1, e1, n1) ∧ p := p1 ∗ f<(r1, R2)}
R1 up R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ (s1, e1, n1) = (s2, e2, n2) ∧ (s, e, n) := (s1, e1, n1) ∧ p := p1 ⊗ p2}
R1 tp R2 {r|r1 ∈ R1 ∧ r2 ∈ R2 ∧ ((s, e, n) := (s1, e1, n1) ∨ (s, e, n) := (s2, e2, n2)) ∧ p := p1 ⊕ p2}

used to define the score propagation based on the structural
relation between the region r and regions in the region set
R. In the straightforward implementation functions g=(r̄, r)
and g<(r̄, r) can be constant functions equal to e.g., 1. If
we base the retrieval model on the term frequency, former

function can be defined as g=(r̄, r) = size(r̄)
size(r)

. Similarly latter

function can be defined as g<(r̄, r) = size(r̄)∑
r̄ size(r̄)

. Since the

exact retrieval model is not the main issue in this paper we
will not elaborate more on it.

The abstract operator ⊗ specifies how scores are combined
in an and expression, while the operator ⊕ defines the score
combination in an or expression inside the NEXI predicate.
In this paper we take the simple approach where ⊗ is a
product of two score values, while ⊕ is the sum of scores, as
it shows good behavior for retrieval (see [12]).

To illustrate the elegance of expressing score computation
in region algebra we show how we can express NEXI query
1 in score region algebra:

(bdy =p ((sec =p structured)up(sec =p documents))) < article

which very much resembles the original query plan for ex-
ample query 1 given in Figure 5.

4.2 Properties of Score Operators
Considering the properties of score operators we can exert
that some of the properties follow ones defined for the re-
gion algebra without scores, some of them hold only if some
conditions are satisfied (conditional properties which depend
on the underlying retrieval model), and some of them are no
longer valid.

Operator up defines the Boolean-like AND combination of
scores obtained for two regions with the same region bounds
(i.e., s and e values). It preserves the identity and inverse
element properties from the u operator (property (1)), but
only in case the default score value for all regions in the
initial region set is the value which is the identity element
for abstract operator ⊗, i.e., 1 for the multiplication.

R up C = C up R = R, i.e., p ∗ 1 = 1 ∗ p = p, ∀r ∈ R (14)

Furthermore, the operator up is commutative or associative
(properties (3) and (5)) if the operator ⊗ is commutative or
associative, respectively, which is the case for multiplication.

An extension of the set union operator is given by the tp

operator. It defines the Boolean-like OR combination of
scores for two regions. Similarly to up operator, operator tp

preserves the identity and inverse element properties from
the t operator (property (2)) but only in case the default
value (d) taken for the tp operator is the value which is the
identity element for the abstract operator ⊕, i.e., 0 for the
summation in our case.

R tp ∅ = ∅ tp R = R, i.e., p + 0 = 0 + p = p, ∀r ∈ R (15)

As in the up operator case, commutativity and associativity
properties depend on the definition of ⊕ operator. In other
words, operator tp is commutative or associative (properties
(4) and (6)) if the operator ⊕ is commutative or associative,
respectively, which is true for the summation.

Following the reasoning above and the fact that each region
can equally likely be the right answer to a user query, we
will consider that the default value for region score in the
initial data set C is 1, from now on, and that the default
value for score d of a region not present in the region set for
operator tp is 0.

Based on the definition of operators using the region fre-
quency it can be proven that the operators =p and <p do
not distribute over the operator tp in general case (proper-
ties (7) and (8)). However, the operator up distributes over
the operator tp, since ∗ distributes over + (property (9)).
Vice versa is not the case (property (10)).

R1 up (R2 tp R3) = (R1 up R2) tp (R1 up R3) (16)

There are some additional conditional properties of score
operators which can be of interest for the optimization. If
we assume that functions f=(r, R) and f<(r, R) are not de-
pendant on the score value of a region r (i.e., f=(r, R) =
f=(s, t, n, R) and f<(r, R) = f<(s, t, n, R) property (11) holds
for op1p ∈ {=p, <p} and op2p ∈ {=p, <p}.

(R1 op1p R2) op2p R3 = (R1 op2p R3) op1p R2 (17)

In other words the score for each region in the result region
set, denoted with p, is computed as:

p = (p1 ∗ f(r1, R2)) ∗ f(r1, R3) = (p1 ∗ f(r1, R3)) ∗ f(r1, R2)

We use f(r, R) to denote one of the functions f=(r, R) or
f<(r, R).

Furthermore, if the score value for all regions in the first
operand R1 is equal to 1 (default value for all regions), and
we assume that the regions in each operand, R2 and R3, have
the same score value, denoted with p2 and p3, property (12)
holds.

(R1 op1p R2) op2p R3 = (R1 op1p R2) up (R1 op2p R3) (18)

i.e., for every region in the result set we obtain score p:

p = (1 ∗
∑

r̄

(g(r̄, r1)) ∗ p2) ∗
∑

r̄

(g(r̄, r1)) ∗ p3

= (1 ∗
∑

r̄

(g(r̄, r1)) ∗ p2) ∗ (1 ∗
∑

r̄

(g(r̄, r1)) ∗ p3

where g(r̄, r) is used either for g=(r̄, r) or for g<(r̄, r) and
r̄ ∈ R = R′ or r̄ ∈ R′ < R based on the type of operators
op1p and op2p.

If we consider the expression R4 in the NEXI query 2 we
can come up with two query plans shown below.

((p <p R2) =p information) up ((p <p R2) =p retrieval)

and ((p =p information) up (p =p retrieval)) <p R2

Although they are almost the same we could not apply prop-
erty (18) to the first query plan since the scores of regions in
p <p R2 are not equal to 1 in general case. For the second
query plan the score value for all regions in p is 1 and the
property can be applied. Thus, at the end we can come up
with the query plan as shown below:

((p =p information) =p retrieval) <p R2

A version of property (13) for score operators does not hold
for up score operator, but holds for tp . For example next
equation is not true.

(R1 up R2) =p R3 = (R1 =p R3) up (R2 =p R3)

It will be true only if f=(r1,2, R3) = 1 which is not true in
general case:

(p1 ∗ p2) ∗ f=(r1,2, R3) 6= (p1 ∗ f=(r1,2, R3)) ∗ (p2 ∗ f=(r1,2, R3))

However, next equation is true for opp = {=p, <p}.
(R1 tp R2) opp R3 = (R1 opp R3) tp (R2 opp R3) (19)

i.e.,

(p1+p2)∗fop(r1|2, R3) = (p1 ∗fop(r1|2, R3))+(p2 ∗fop(r1|2, R3))

5. CONCLUSIONS AND FUTURE WORK
In this paper we address the problem of translating and
executing IR-like queries over XML documents stored in re-
lational databases. We exert the usefulness of intermediate
logical level, for which we chose region algebra. The region
algebra provides a number of properties which can be used
for query optimization on the logical level of a database.
Furthermore, the region algebra can support score opera-
tors used for ranked retrieval as an integral part of the alge-
bra, and not as a sideffect. The expressiveness considering
ranked retrieval in our region algebra is far more sophisti-
cated than in other region algebra approaches that support
ranked retrieval, like [2] and [13].

An important property of the region algebra is that express-
ing query plans using the operators given in Table 4 and Ta-
ble 5 preserves data independence between the conceptual,
the logical, and the physical level of a database. Similarly,
these operators partially enable the separation between the
structural query processing and the underlying probabilistic
model used for ranked retrieval: a design property termed
content independence in [5].

We are planning to further investigate the usefulness of re-
gion algebra operator properties and to experimentally eval-
uate the benefits of intermediate logical level. Further study
on the influence of the definition of score operators (score
functions and abstract operators) on score operator proper-
ties is needed. Our future research is also concerned with the
consequences of modifying or changing the retrieval model
used, e.g., by adding background statistics (i.e., collection
frequency, document frequency) or by adapting the model
for phrase search, etc. Moreover, we will work on the theo-
retical foundations as a support of retrieval models used for
handling scores in region algebra.

6. REFERENCES
[1] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram.

TeXQuery: A Full-Text Search Extension to XQuery. In
Proceedings of the 13th conference on World Wide Web,
pages 583–594, 2004.

[2] F.J. Burkowski. Retrieval Activities in a Database
Consisting of Heterogeneous Collections of Structured
Texts. In Proceedings of the 15th ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 112–125, 1992.

[3] S. Buxton and M. Rys. XQuery and XPath Full-Text
Requirements. Technical report, W3C, 2003.

[4] C.L.A. Clarke, G.V. Cormack, and F.J. Burkowski. An
Algebra for Structured Text Search and a Framework for
its Implementation. The Computer Journal, 38(1):43–56,
1995.

[5] A.P. de Vries. Content independence in multimedia
databases. Journal of the American Society for Information
Science and Technology, 52(11):954–960, September 2001.

[6] D. Florescu and I. Manolescu. Integrating Keyword Search
into XML Query Processing. In Proceedings of the 9th
International World Wide Web Conference, pages 67–76,
2000.

[7] N. Fuhr and K. Großjohann. XIRQL: A Query Language
for Information Retrieval in XML Documents. In
Proceedings of the 24th ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
172–180, 2001.

[8] N. Fuhr and K. Großjohann. XIRQL: An XML Query
Language Based on Information Retrieval Concepts. ACM
TOIS, 22(2):313–356, 2004.

[9] T. Grust. Accelerating XPath Location Steps. In
Proceedings of the 21st ACM SIGMOD International
Conference on Management of Data, pages 109–120, 2002.

[10] Torsten Grust and Maurice van Keulen. Tree Awareness for
Relational DBMS Kernels: Staircase Join. In H. M.
Blanken, T. Grabs, H.-J. Schek, R. Schenkel, and
G. Weikum, editors, Intelligent Search on XML, volume
2818 of Lecture Notes in Computer Science/Lecture Notes
in Artificial Intelligence (LNCS/LNAI), pages 179–192.
Springer-Verlag, Berlin, New York, etc., August 2003.

[11] J. Jaakkola and P. Kilpelainen. Using sgrep for Querying
Structured Text Files. Technical Report C-1996-83,
Department of Computer Science, University of Helsinki,
1996.

[12] J. List, V. Mihajlović, A. de Vries, G. Ramirez, and
D. Hiemstra. The TIJAH XML-IR System at INEX 2003.
In Proceedings of the 2nd Initiative on the Evaluation of
XML Retrieval (INEX 2003), ERCIM Workshop
Proceedings, 2004.

[13] Katsuya Masuda. A Ranking Model of Proximal and
Structural Text Retrieval Based on Region Algebra. In
Proceedings of the ACL-2003 Student Research Workshop,
pages 50–57, 2003.

[14] V. Mihajlović, D. Hiemstra, and P. Apers. On Region
Algebras, XML Databases, and Information Retrieval. In
Proceedings of the 4th Dutch-Belgian Information Retrieval
Workshop, 2003.

[15] G. Ramirez and A. P. de Vries. Combinining Indexing
Schemes to Accelerate Querying XML on Content and
Structure. In Proceedings of the first Twente Data
Management Workshop (TDM’04), to apear, 2004.

[16] A. Trotman and R. A. O’Keefe. The Simplest Query
Language That Could Possibly Work. In N. Fuhr,
M. Lalmas, and S. Malik, editors, Proceedings of the
Second Workshop of the INitiative for the Evaluation of
XML retrieval (INEX), ERCIM Publications, 2004.

[17] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. On Supporting Containment Queries in
Relational Database Management Systems. In Proceedings
of the 2001 ACM SIGMOD international conference on
Management of data, pages 425–436, 2001.

